2uu7 Citations

Crystal structures of mammalian glutamine synthetases illustrate substrate-induced conformational changes and provide opportunities for drug and herbicide design.

J Mol Biol 375 217-28 (2008)
Related entries: 2ojw, 2qc8

Cited: 76 times
EuropePMC logo PMID: 18005987

Abstract

Glutamine synthetase (GS) catalyzes the ligation of glutamate and ammonia to form glutamine, with concomitant hydrolysis of ATP. In mammals, the activity eliminates cytotoxic ammonia, at the same time converting neurotoxic glutamate to harmless glutamine; there are a number of links between changes in GS activity and neurodegenerative disorders, such as Alzheimer's disease. In plants, because of its importance in the assimilation and re-assimilation of ammonia, the enzyme is a target of some herbicides. GS is also a central component of bacterial nitrogen metabolism and a potential drug target. Previous studies had investigated the structures of bacterial and plant GSs. In the present publication, we report the first structures of mammalian GSs. The apo form of the canine enzyme was solved by molecular replacement and refined at a resolution of 3 A. Two structures of human glutamine synthetase represent complexes with: a) phosphate, ADP, and manganese, and b) a phosphorylated form of the inhibitor methionine sulfoximine, ADP and manganese; these structures were refined to resolutions of 2.05 A and 2.6 A, respectively. Loop movements near the active site generate more closed forms of the eukaryotic enzymes when substrates are bound; the largest changes are associated with the binding of the nucleotide. Comparisons with earlier structures provide a basis for the design of drugs that are specifically directed at either human or bacterial enzymes. The site of binding the amino acid substrate is highly conserved in bacterial and eukaryotic GSs, whereas the nucleotide binding site varies to a much larger degree. Thus, the latter site offers the best target for specific drug design. Differences between mammalian and plant enzymes are much more subtle, suggesting that herbicides targeting GS must be designed with caution.

Articles - 2uu7 mentioned but not cited (7)

  1. Molecular Mechanisms of Glutamine Synthetase Mutations that Lead to Clinically Relevant Pathologies. Frieg B, Görg B, Homeyer N, Keitel V, Häussinger D, Gohlke H. PLoS Comput Biol 12 e1004693 (2016)
  2. Crystallization and preliminary crystallographic characterization of glutamine synthetase from Medicago truncatula. Seabra AR, Carvalho H, Pereira PJ. Acta Crystallogr Sect F Struct Biol Cryst Commun 65 1309-1312 (2009)
  3. Structural Insight into the Contributions of the N-Terminus and Key Active-Site Residues to the Catalytic Efficiency of Glutamine Synthetase 2. Chen WT, Yang HY, Lin CY, Lee YZ, Ma SC, Chen WC, Yin HS. Biomolecules 10 E1671 (2020)
  4. Bestrophin-2 and glutamine synthetase form a complex for glutamate release. Owji AP, Yu K, Kittredge A, Wang J, Zhang Y, Yang T. Nature 611 180-187 (2022)
  5. Crystal structure of N-terminal degron-truncated human glutamine synthetase. Chek MF, Kim SY, Mori T, Kojima H, Hakoshima T. Acta Crystallogr F Struct Biol Commun 77 427-434 (2021)
  6. Toward structural-omics of the bovine retinal pigment epithelium. Morgan CE, Zhang Z, Miyagi M, Golczak M, Yu EW. Cell Rep 41 111876 (2022)
  7. A cryo-electron microscopic approach to elucidate protein structures from human brain microsomes. Tringides ML, Zhang Z, Morgan CE, Su CC, Yu EW. Life Sci Alliance 6 e202201724 (2023)


Reviews citing this publication (12)

  1. The Pleiotropic Effects of Glutamine Metabolism in Cancer. Bott AJ, Maimouni S, Zong WX. Cancers (Basel) 11 E770 (2019)
  2. Regulation of astrocyte glutamine synthetase in epilepsy. Eid T, Tu N, Lee TS, Lai JC. Neurochem Int 63 670-681 (2013)
  3. Roles of glutamine synthetase inhibition in epilepsy. Eid T, Behar K, Dhaher R, Bumanglag AV, Lee TS. Neurochem Res 37 2339-2350 (2012)
  4. Relationships Between Essential Manganese Biology and Manganese Toxicity in Neurological Disease. Pfalzer AC, Bowman AB. Curr Environ Health Rep 4 223-228 (2017)
  5. Glutamine synthetase in legumes: recent advances in enzyme structure and functional genomics. Betti M, García-Calderón M, Pérez-Delgado CM, Credali A, Estivill G, Galván F, Vega JM, Márquez AJ. Int J Mol Sci 13 7994-8024 (2012)
  6. Structural genomics and drug discovery: all in the family. Weigelt J, McBroom-Cerajewski LD, Schapira M, Zhao Y, Arrowsmith CH. Curr Opin Chem Biol 12 32-39 (2008)
  7. Critical Evaluation of the Changes in Glutamine Synthetase Activity in Models of Cerebral Stroke. Jeitner TM, Battaile K, Cooper AJ. Neurochem Res 40 2544-2556 (2015)
  8. Minireview on Glutamine Synthetase Deficiency, an Ultra-Rare Inborn Error of Amino Acid Biosynthesis. Spodenkiewicz M, Diez-Fernandez C, Rüfenacht V, Gemperle-Britschgi C, Häberle J. Biology (Basel) 5 E40 (2016)
  9. Glutamine Synthetase as a Therapeutic Target for Cancer Treatment. Kim GW, Lee DH, Jeon YH, Yoo J, Kim SY, Lee SW, Cho HY, Kwon SH. Int J Mol Sci 22 1701 (2021)
  10. Glutamine synthetase in Medicago truncatula, unveiling new secrets of a very old enzyme. Seabra AR, Carvalho HG. Front Plant Sci 6 578 (2015)
  11. Polyamine and Ethanolamine Metabolism in Bacteria as an Important Component of Nitrogen Assimilation for Survival and Pathogenicity. Krysenko S, Wohlleben W. Med Sci (Basel) 10 40 (2022)
  12. Nitrogen metabolism in mycobacteria: the key genes and targeted antimicrobials. Xu Y, Ma S, Huang Z, Wang L, Raza SHA, Wang Z. Front Microbiol 14 1149041 (2023)

Articles citing this publication (57)

  1. SLC39A8 Deficiency: A Disorder of Manganese Transport and Glycosylation. Park JH, Hogrebe M, Grüneberg M, DuChesne I, von der Heiden AL, Reunert J, Schlingmann KP, Boycott KM, Beaulieu CL, Mhanni AA, Innes AM, Hörtnagel K, Biskup S, Gleixner EM, Kurlemann G, Fiedler B, Omran H, Rutsch F, Wada Y, Tsiakas K, Santer R, Nebert DW, Rust S, Marquardt T. Am J Hum Genet 97 894-903 (2015)
  2. Glutamine Triggers Acetylation-Dependent Degradation of Glutamine Synthetase via the Thalidomide Receptor Cereblon. Nguyen TV, Lee JE, Sweredoski MJ, Yang SJ, Jeon SJ, Harrison JS, Yim JH, Lee SG, Handa H, Kuhlman B, Jeong JS, Reitsma JM, Park CS, Hess S, Deshaies RJ. Mol Cell 61 809-820 (2016)
  3. Regulation of brain glutamate metabolism by nitric oxide and S-nitrosylation. Raju K, Doulias PT, Evans P, Krizman EN, Jackson JG, Horyn O, Daikhin Y, Nissim I, Yudkoff M, Nissim I, Sharp KA, Robinson MB, Ischiropoulos H. Sci Signal 8 ra68 (2015)
  4. Improving the efficiency of CHO cell line generation using glutamine synthetase gene knockout cells. Fan L, Kadura I, Krebs LE, Hatfield CC, Shaw MM, Frye CC. Biotechnol Bioeng 109 1007-1015 (2012)
  5. Molecular in situ topology of Aczonin/Piccolo and associated proteins at the mammalian neurotransmitter release site. Limbach C, Laue MM, Wang X, Hu B, Thiede N, Hultqvist G, Kilimann MW. Proc Natl Acad Sci U S A 108 E392-401 (2011)
  6. p97/VCP promotes degradation of CRBN substrate glutamine synthetase and neosubstrates. Nguyen TV, Li J, Lu CJ, Mamrosh JL, Lu G, Cathers BE, Deshaies RJ. Proc Natl Acad Sci U S A 114 3565-3571 (2017)
  7. Metabotropic glutamate receptor subtype 4 selectively modulates both glutamate and GABA transmission in the striatum: implications for Parkinson's disease treatment. Cuomo D, Martella G, Barabino E, Platania P, Vita D, Madeo G, Selvam C, Goudet C, Oueslati N, Pin JP, Acher F, Pisani A, Beurrier C, Melon C, Kerkerian-Le Goff L, Gubellini P. J Neurochem 109 1096-1105 (2009)
  8. Natural course of glutamine synthetase deficiency in a 3 year old patient. Häberle J, Shahbeck N, Ibrahim K, Hoffmann GF, Ben-Omran T. Mol Genet Metab 103 89-91 (2011)
  9. Glutamine synthetase encoded by glnA-1 is necessary for cell wall resistance and pathogenicity of Mycobacterium bovis. Chandra H, Basir SF, Gupta M, Banerjee N. Microbiology (Reading) 156 3669-3677 (2010)
  10. Structural basis for the inhibition of Mycobacterium tuberculosis glutamine synthetase by novel ATP-competitive inhibitors. Nilsson MT, Krajewski WW, Yellagunda S, Prabhumurthy S, Chamarahally GN, Siddamadappa C, Srinivasa BR, Yahiaoui S, Larhed M, Karlén A, Jones TA, Mowbray SL. J Mol Biol 393 504-513 (2009)
  11. Inhibition of human glutamine synthetase by L-methionine-S,R-sulfoximine-relevance to the treatment of neurological diseases. Jeitner TM, Cooper AJ. Metab Brain Dis 29 983-989 (2014)
  12. Structures of the Bacillus subtilis glutamine synthetase dodecamer reveal large intersubunit catalytic conformational changes linked to a unique feedback inhibition mechanism. Murray DS, Chinnam N, Tonthat NK, Whitfill T, Wray LV, Fisher SH, Schumacher MA. J Biol Chem 288 35801-35811 (2013)
  13. Mode-of-action profiling reveals glutamine synthetase as a collateral metabolic vulnerability of M. tuberculosis to bedaquiline. Wang Z, Soni V, Marriner G, Kaneko T, Boshoff HIM, Barry CE, Rhee KY. Proc Natl Acad Sci U S A 116 19646-19651 (2019)
  14. A rapid method to improve protein detection by indirect ELISA. Hnasko R, Lin A, McGarvey JA, Stanker LH. Biochem Biophys Res Commun 410 726-731 (2011)
  15. Genetic determination of essential residues of the Vibrio cholerae actin cross-linking domain reveals functional similarity with glutamine synthetases. Geissler B, Bonebrake A, Sheahan KL, Walker ME, Satchell KJ. Mol Microbiol 73 858-868 (2009)
  16. Crystal structure of Saccharomyces cerevisiae glutamine synthetase Gln1 suggests a nanotube-like supramolecular assembly. He YX, Gui L, Liu YZ, Du Y, Zhou Y, Li P, Zhou CZ. Proteins 76 249-254 (2009)
  17. The conserved hypothetical protein Rv0574c is required for cell wall integrity, stress tolerance, and virulence of Mycobacterium tuberculosis. Garg R, Tripathi D, Kant S, Chandra H, Bhatnagar R, Banerjee N. Infect Immun 83 120-129 (2015)
  18. Cytoarchitecture and ultrastructure of neural stem cell niches and neurogenic complexes maintaining adult neurogenesis in the olfactory midbrain of spiny lobsters, Panulirus argus. Schmidt M, Derby CD. J Comp Neurol 519 2283-2319 (2011)
  19. Evaluation of the amino acid binding site of Mycobacterium tuberculosis glutamine synthetase for drug discovery. Nordqvist A, Nilsson MT, Röttger S, Odell LR, Krajewski WW, Evalena Andersson C, Larhed M, Mowbray SL, Karlén A. Bioorg Med Chem 16 5501-5513 (2008)
  20. Hyperammonemia following glufosinate-containing herbicide poisoning: a potential marker of severe neurotoxicity. Mao YC, Wang JD, Hung DZ, Deng JF, Yang CC. Clin Toxicol (Phila) 49 48-52 (2011)
  21. A sensing role of the glutamine synthetase in the nitrogen regulation network in Fusarium fujikuroi. Wagner D, Wiemann P, Huß K, Brandt U, Fleißner A, Tudzynski B. PLoS One 8 e80740 (2013)
  22. Glutamine synthetase facilitates cancer cells to recover from irradiation-induced G2/M arrest. Peng Y, Fu S, Hu W, Qiu Y, Zhang L, Tan R, Sun LQ. Cancer Biol Ther 21 43-51 (2020)
  23. Secondary NAD+ deficiency in the inherited defect of glutamine synthetase. Hu L, Ibrahim K, Stucki M, Frapolli M, Shahbeck N, Chaudhry FA, Görg B, Häussinger D, Penberthy WT, Ben-Omran T, Häberle J. J Inherit Metab Dis 38 1075-1083 (2015)
  24. Attenuated glutamine synthetase as a selection marker in CHO cells to efficiently isolate highly productive stable cells for the production of antibodies and other biologics. Lin PC, Chan KF, Kiess IA, Tan J, Shahreel W, Wong SY, Song Z. MAbs 11 965-976 (2019)
  25. Bisphosphonic acids as effective inhibitors of Mycobacterium tuberculosis glutamine synthetase. Kosikowska P, Bochno M, Macegoniuk K, Forlani G, Kafarski P, Berlicki Ł. J Enzyme Inhib Med Chem 31 931-938 (2016)
  26. Discovery of Potential Anti-infective Therapy Targeting Glutamine Synthetase in Staphylococcus xylosus. Cui WQ, Qu QW, Wang JP, Bai JW, Bello-Onaghise G, Li YA, Zhou YH, Chen XR, Liu X, Zheng SD, Xing XX, Eliphaz N, Li YH. Front Chem 7 381 (2019)
  27. Glutamine synthetase licenses APC/C-mediated mitotic progression to drive cell growth. Zhao JS, Shi S, Qu HY, Keckesova Z, Cao ZJ, Yang LX, Yu X, Feng L, Shi Z, Krakowiak J, Mao RY, Shen YT, Fan YM, Fu TM, Ye C, Xu D, Gao X, You J, Li W, Liang T, Lu Z, Feng YX. Nat Metab 4 239-253 (2022)
  28. Structural Analysis of Glutamine Synthetase from Helicobacter pylori. Joo HK, Park YW, Jang YY, Lee JY. Sci Rep 8 11657 (2018)
  29. Biochemical and inhibition studies of glutamine synthetase from Leishmania donovani. Kumar V, Yadav S, Soumya N, Kumar R, Babu NK, Singh S. Microb Pathog 107 164-174 (2017)
  30. Glutamine Synthetase Drugability beyond Its Active Site: Exploring Oligomerization Interfaces and Pockets. Moreira C, Ramos MJ, Fernandes PA. Molecules 21 E1028 (2016)
  31. Nanomolar inhibitors of Mycobacterium tuberculosis glutamine synthetase 1: synthesis, biological evaluation and X-ray crystallographic studies. Couturier C, Silve S, Morales R, Pessegue B, Llopart S, Nair A, Bauer A, Scheiper B, Pöverlein C, Ganzhorn A, Lagrange S, Bacqué E. Bioorg Med Chem Lett 25 1455-1459 (2015)
  32. Phosphinothricin resistance in Aspergillus niger and its utility as a selectable transformation marker. Ahuja M, Punekar NS. Fungal Genet Biol 45 1103-1110 (2008)
  33. The Enzymology of 2-Hydroxyglutarate, 2-Hydroxyglutaramate and 2-Hydroxysuccinamate and Their Relationship to Oncometabolites. Hariharan VA, Denton TT, Paraszcszak S, McEvoy K, Jeitner TM, Krasnikov BF, Cooper AJ. Biology (Basel) 6 E24 (2017)
  34. Integrated Systems Pharmacology, Urinary Metabonomics, and Quantitative Real-Time PCR Analysis to Uncover Targets and Metabolic Pathways of the You-Gui Pill in Treating Kidney-Yang Deficiency Syndrome. Chen R, Wang J, Zhan R, Zhang L, Wang X. Int J Mol Sci 20 E3655 (2019)
  35. Phosphorylation of Glutamine Synthetase on Threonine 301 Contributes to Its Inactivation During Epilepsy. Huyghe D, Denninger AR, Voss CM, Frank P, Gao N, Brandon N, Waagepetersen HS, Ferguson AD, Pangalos M, Doig P, Moss SJ. Front Mol Neurosci 12 120 (2019)
  36. Characterization and improved properties of Glutamine synthetase from Providencia vermicola by site-directed mutagenesis. Zuo W, Nie L, Baskaran R, Kumar A, Liu Z. Sci Rep 8 15640 (2018)
  37. Delivery of glutamine synthetase gene by baculovirus vectors: a proof of concept for the treatment of acute hyperammonemia. Torres-Vega MA, Vargas-Jerónimo RY, Montiel-Martínez AG, Muñoz-Fuentes RM, Zamorano-Carrillo A, Pastor AR, Palomares LA. Gene Ther 22 58-64 (2015)
  38. Biodistribution and estimation of radiation-absorbed doses in humans for 13N-ammonia PET. Yi C, Yu D, Shi X, He Q, Zhang X, Zhang X. Ann Nucl Med 29 810-815 (2015)
  39. Glutamine synthetase predicts adjuvant TACE response in hepatocellular carcinoma. Zhang B, Liu K, Zhang J, Dong L, Jin Z, Zhang X, Xue F, He J. Int J Clin Exp Med 8 20722-20731 (2015)
  40. The relationship between serum ammonia level and neurologic complications in patients with acute glufosinate ammonium poisoning: A prospective observational study. Cha YS, Kim H, Lee Y, Choi EH, Kim HI, Kim OH, Cha KC, Lee KH, Hwang SO. Hum Exp Toxicol 37 571-579 (2018)
  41. Assembly status transition offers an avenue for activity modulation of a supramolecular enzyme. Chen Y, Xu W, Yu S, Ni K, She G, Ye X, Xing Q, Zhao J, Huang C. Elife 10 e72535 (2021)
  42. Identification of an essential cysteinyl residue for the structure of glutamine synthetase alpha from Phaseolus vulgaris. Estivill G, Guardado P, Buser R, Betti M, Márquez AJ. Planta 231 1101-1111 (2010)
  43. Mechanistic Basis for ATP-Dependent Inhibition of Glutamine Synthetase by Tabtoxinine-β-lactam. Patrick GJ, Fang L, Schaefer J, Singh S, Bowman GR, Wencewicz TA. Biochemistry 57 117-135 (2018)
  44. Molecular dissection of the glutamine synthetase-GlnR nitrogen regulatory circuitry in Gram-positive bacteria. Travis BA, Peck JV, Salinas R, Dopkins B, Lent N, Nguyen VD, Borgnia MJ, Brennan RG, Schumacher MA. Nat Commun 13 3793 (2022)
  45. A spatial similarity of stereochemical environments formed by amino acid residues defines a common epitope of two non-homologous proteins. Nakashima K, Iwashita S, Suzuki T, Kato C, Kohno T, Kamei Y, Sasaki M, Urayama O, Ohno-Iwashita Y, Dohmae N, Song SY. Sci Rep 9 14818 (2019)
  46. Impairment of motor coordination and interneuron migration in perinatal exposure to glufosinate-ammonium. Kim KT, Kwak YJ, Han SC, Hwang JH. Sci Rep 10 20647 (2020)
  47. Kinetic commitment in the catalysis of glutamine synthesis by GS1 from Arabidopsis using 14N/15N and solvent isotope effects. Mauve C, Giraud N, Boex-Fontvieille ERA, Antheaume I, Tea I, Tcherkez G. Plant Physiol Biochem 108 203-211 (2016)
  48. Mechanism-Based Design of the First GlnA4-Specific Inhibitors. Purder PL, Meyners C, Krysenko S, Funk J, Wohlleben W, Hausch F. Chembiochem 23 e202200312 (2022)
  49. An Ancient Enzyme Takes a Hit in Epilepsy. Eid T. Epilepsy Curr 19 400-401 (2019)
  50. Arsinothricin Inhibits Plasmodium falciparum Proliferation in Blood and Blocks Parasite Transmission to Mosquitoes. Yoshinaga M, Niu G, Yoshinaga-Sakurai K, Nadar VS, Wang X, Rosen BP, Li J. Microorganisms 11 1195 (2023)
  51. Computational structural analysis and kinetic studies of a cytosolic glutamine synthetase from Camellia sinensis (L.) O. Kuntze. Yadav SK. Protein J 28 428-434 (2009)
  52. Cross-linking mass spectrometry reveals structural insights of the glutamine synthetase from Leishmania braziliensis. de Lima JY, Santos MDM, Murakami MT, Carvalho PC, de Souza TACB. Mem Inst Oswaldo Cruz 116 e210209 (2022)
  53. Distinct evolution of type I glutamine synthetase in Plasmodium and its species-specific requirement. Ghosh S, Kundu R, Chandana M, Das R, Anand A, Beura S, Bobde RC, Jain V, Prabhu SR, Behera PK, Mohanty AK, Chakrapani M, Satyamoorthy K, Suryawanshi AR, Dixit A, Padmanaban G, Nagaraj VA. Nat Commun 14 4216 (2023)
  54. M. mazei glutamine synthetase and glutamine synthetase-GlnK1 structures reveal enzyme regulation by oligomer modulation. Schumacher MA, Salinas R, Travis BA, Singh RR, Lent N. Nat Commun 14 7375 (2023)
  55. Multi-Omic Profiling, Structural Characterization, and Potent Inhibitor Screening of Evasion-Related Proteins of a Parasitic Nematode, Haemonchus contortus, Surviving Vaccine Treatment. Palevich N, Maclean PH, Carbone V, Jauregui R, Umair S. Biomedicines 11 411 (2023)
  56. Multiple oxidative post-translational modifications of human glutamine synthetase mediate peroxynitrite-dependent enzyme inactivation and aggregation. Campolo N, Mastrogiovanni M, Mariotti M, Issoglio FM, Estrin D, Hägglund P, Grune T, Davies MJ, Bartesaghi S, Radi R. J Biol Chem 299 102941 (2023)
  57. Reduction of anoxia-induced bioenergetic disturbance in astrocytes by methanol fruit extract of Tetrapleura tetraptera and in silico evaluation of the effect of its antioxidative constituents on excitotoxicity. Saliu IO, Bhagat R, Ojo OB, Akinmoladun AC, Olaleye MT, Seth P, Rema V. Toxicol Rep 8 264-276 (2021)