2shp Citations

Crystal structure of the tyrosine phosphatase SHP-2.

Cell 92 441-50 (1998)
Cited: 537 times
EuropePMC logo PMID: 9491886

Abstract

The structure of the SHP-2 tyrosine phosphatase, determined at 2.0 angstroms resolution, shows how its catalytic activity is regulated by its two SH2 domains. In the absence of a tyrosine-phosphorylated binding partner, the N-terminal SH2 domain binds the phosphatase domain and directly blocks its active site. This interaction alters the structure of the N-SH2 domain, disrupting its phosphopeptide-binding cleft. Conversely, interaction of the N-SH2 domain with phosphopeptide disrupts its phosphatase recognition surface. Thus, the N-SH2 domain is a conformational switch; it either binds and inhibits the phosphatase, or it binds phosphoproteins and activates the enzyme. Recognition of bisphosphorylated ligands by the tandem SH2 domains is an integral element of this switch; the C-terminal SH2 domain contributes binding energy and specificity, but it does not have a direct role in activation.

Reviews - 2shp mentioned but not cited (10)

  1. Targeting protein tyrosine phosphatases for anticancer drug discovery. Scott LM, Lawrence HR, Sebti SM, Lawrence NJ, Wu J. Curr Pharm Des 16 1843-1862 (2010)
  2. Perspectives for the use of structural information and chemical genetics to develop inhibitors of Janus kinases. Haan C, Behrmann I, Haan S. J Cell Mol Med 14 504-527 (2010)
  3. Tyrosine phosphatase SHP2 inhibitors in tumor-targeted therapies. Song Z, Wang M, Ge Y, Chen XP, Xu Z, Sun Y, Xiong XF. Acta Pharm Sin B 11 13-29 (2021)
  4. Overview of protein structural and functional folds. Sun PD, Foster CE, Boyington JC. Curr Protoc Protein Sci Chapter 17 Unit 17.1 (2004)
  5. Strategies to overcome drug resistance using SHP2 inhibitors. Liu M, Gao S, Elhassan RM, Hou X, Fang H. Acta Pharm Sin B 11 3908-3924 (2021)
  6. Immune Checkpoint Receptors Signaling in T Cells. Baldanzi G. Int J Mol Sci 23 3529 (2022)
  7. Regulation of Brain-Derived Neurotrophic Factor and Growth Factor Signaling Pathways by Tyrosine Phosphatase Shp2 in the Retina: A Brief Review. Abbasi M, Gupta V, Chitranshi N, You Y, Dheer Y, Mirzaei M, Graham SL. Front Cell Neurosci 12 85 (2018)
  8. Recent advances in the discovery of protein tyrosine phosphatase SHP2 inhibitors. Kong J, Long YQ. RSC Med Chem 13 246-257 (2022)
  9. SH2 Domains: Folding, Binding and Therapeutical Approaches. Diop A, Santorelli D, Malagrinò F, Nardella C, Pennacchietti V, Pagano L, Marcocci L, Pietrangeli P, Gianni S, Toto A. Int J Mol Sci 23 15944 (2022)
  10. Modeling (not so) rare developmental disorders associated with mutations in the protein-tyrosine phosphatase SHP2. Solman M, Woutersen DTJ, den Hertog J. Front Cell Dev Biol 10 1046415 (2022)

Articles - 2shp mentioned but not cited (54)

  1. Diversity and functional consequences of germline and somatic PTPN11 mutations in human disease. Tartaglia M, Martinelli S, Stella L, Bocchinfuso G, Flex E, Cordeddu V, Zampino G, Burgt Iv, Palleschi A, Petrucci TC, Sorcini M, Schoch C, Foa R, Emanuel PD, Gelb BD. Am J Hum Genet 78 279-290 (2006)
  2. Molecular mechanism of SHP2 activation by PD-1 stimulation. Marasco M, Berteotti A, Weyershaeuser J, Thorausch N, Sikorska J, Krausze J, Brandt HJ, Kirkpatrick J, Rios P, Schamel WW, Köhn M, Carlomagno T. Sci Adv 6 eaay4458 (2020)
  3. Prediction of functional sites by analysis of sequence and structure conservation. Panchenko AR, Kondrashov F, Bryant S. Protein Sci 13 884-892 (2004)
  4. Evaluating caveolin interactions: do proteins interact with the caveolin scaffolding domain through a widespread aromatic residue-rich motif? Byrne DP, Dart C, Rigden DJ. PLoS One 7 e44879 (2012)
  5. Dissection of the BCR-ABL signaling network using highly specific monobody inhibitors to the SHP2 SH2 domains. Sha F, Gencer EB, Georgeon S, Koide A, Yasui N, Koide S, Hantschel O. Proc Natl Acad Sci U S A 110 14924-14929 (2013)
  6. Structural and mechanistic insights into LEOPARD syndrome-associated SHP2 mutations. Yu ZH, Xu J, Walls CD, Chen L, Zhang S, Zhang R, Wu L, Wang L, Liu S, Zhang ZY. J Biol Chem 288 10472-10482 (2013)
  7. Structural reorganization of SHP2 by oncogenic mutations and implications for oncoprotein resistance to allosteric inhibition. LaRochelle JR, Fodor M, Vemulapalli V, Mohseni M, Wang P, Stams T, LaMarche MJ, Chopra R, Acker MG, Blacklow SC. Nat Commun 9 4508 (2018)
  8. A tandem SH2 domain in transcription elongation factor Spt6 binds the phosphorylated RNA polymerase II C-terminal repeat domain (CTD). Sun M, Larivière L, Dengl S, Mayer A, Cramer P. J Biol Chem 285 41597-41603 (2010)
  9. Structure-energy-based predictions and network modelling of RASopathy and cancer missense mutations. Kiel C, Serrano L. Mol Syst Biol 10 727 (2014)
  10. Phosphotyrosine recognition domains: the typical, the atypical and the versatile. Kaneko T, Joshi R, Feller SM, Li SS. Cell Commun Signal 10 32 (2012)
  11. A conserved mechanism for control of human and mouse embryonic stem cell pluripotency and differentiation by shp2 tyrosine phosphatase. Wu D, Pang Y, Ke Y, Yu J, He Z, Tautz L, Mustelin T, Ding S, Huang Z, Feng GS. PLoS One 4 e4914 (2009)
  12. Inhibitors of Src homology-2 domain containing protein tyrosine phosphatase-2 (Shp2) based on oxindole scaffolds. Lawrence HR, Pireddu R, Chen L, Luo Y, Sung SS, Szymanski AM, Yip ML, Guida WC, Sebti SM, Wu J, Lawrence NJ. J Med Chem 51 4948-4956 (2008)
  13. The structural impact of cancer-associated missense mutations in oncogenes and tumor suppressors. Stehr H, Jang SH, Duarte JM, Wierling C, Lehrach H, Lappe M, Lange BM. Mol Cancer 10 54 (2011)
  14. Evolutionary plasticity of protein families: coupling between sequence and structure variation. Panchenko AR, Wolf YI, Panchenko LA, Madej T. Proteins 61 535-544 (2005)
  15. Structural insights into Noonan/LEOPARD syndrome-related mutants of protein-tyrosine phosphatase SHP2 (PTPN11). Qiu W, Wang X, Romanov V, Hutchinson A, Lin A, Ruzanov M, Battaile KP, Pai EF, Neel BG, Chirgadze NY. BMC Struct Biol 14 10 (2014)
  16. Identification of cryptotanshinone as an inhibitor of oncogenic protein tyrosine phosphatase SHP2 (PTPN11). Liu W, Yu B, Xu G, Xu WR, Loh ML, Tang LD, Qu CK. J Med Chem 56 7212-7221 (2013)
  17. Structural and Functional Consequences of Three Cancer-Associated Mutations of the Oncogenic Phosphatase SHP2. LaRochelle JR, Fodor M, Xu X, Durzynska I, Fan L, Stams T, Chan HM, LaMarche MJ, Chopra R, Wang P, Fortin PD, Acker MG, Blacklow SC. Biochemistry 55 2269-2277 (2016)
  18. Identification of small molecular weight inhibitors of Src homology 2 domain-containing tyrosine phosphatase 2 (SHP-2) via in silico database screening combined with experimental assay. Yu WM, Guvench O, Mackerell AD, Qu CK. J Med Chem 51 7396-7404 (2008)
  19. Structural mechanism associated with domain opening in gain-of-function mutations in SHP2 phosphatase. Darian E, Guvench O, Yu B, Qu CK, MacKerell AD. Proteins 79 1573-1588 (2011)
  20. Counteracting effects operating on Src homology 2 domain-containing protein-tyrosine phosphatase 2 (SHP2) function drive selection of the recurrent Y62D and Y63C substitutions in Noonan syndrome. Martinelli S, Nardozza AP, Delle Vigne S, Sabetta G, Torreri P, Bocchinfuso G, Flex E, Venanzi S, Palleschi A, Gelb BD, Cesareni G, Stella L, Castagnoli L, Tartaglia M. J Biol Chem 287 27066-27077 (2012)
  21. Critical role of Shp2 in tumor growth involving regulation of c-Myc. Ren Y, Chen Z, Chen L, Fang B, Win-Piazza H, Haura E, Koomen JM, Wu J. Genes Cancer 1 994-1007 (2010)
  22. Inhibition of cellular Shp2 activity by a methyl ester analog of SPI-112. Chen L, Pernazza D, Scott LM, Lawrence HR, Ren Y, Luo Y, Wu X, Sung SS, Guida WC, Sebti SM, Lawrence NJ, Wu J. Biochem Pharmacol 80 801-810 (2010)
  23. Receptor tyrosine kinases regulate signal transduction through a liquid-liquid phase separated state. Lin CC, Suen KM, Jeffrey PA, Wieteska L, Lidster JA, Bao P, Curd AP, Stainthorp A, Seiler C, Koss H, Miska E, Ahmed Z, Evans SD, Molina-París C, Ladbury JE. Mol Cell 82 1089-1106.e12 (2022)
  24. Phosphotyrosine couples peptide binding and SHP2 activation via a dynamic allosteric network. Marasco M, Kirkpatrick J, Nanna V, Sikorska J, Carlomagno T. Comput Struct Biotechnol J 19 2398-2415 (2021)
  25. Decoding disease-causing mechanisms of missense mutations from supramolecular structures. Hijikata A, Tsuji T, Shionyu M, Shirai T. Sci Rep 7 8541 (2017)
  26. Receptor tyrosine kinase ubiquitylation involves the dynamic regulation of Cbl-Spry2 by intersectin 1 and the Shp2 tyrosine phosphatase. Okur MN, Russo A, O'Bryan JP. Mol Cell Biol 34 271-279 (2014)
  27. Targeting Oncogenic Src Homology 2 Domain-Containing Phosphatase 2 (SHP2) by Inhibiting Its Protein-Protein Interactions. Bobone S, Pannone L, Biondi B, Solman M, Flex E, Canale VC, Calligari P, De Faveri C, Gandini T, Quercioli A, Torini G, Venditti M, Lauri A, Fasano G, Hoeksma J, Santucci V, Cattani G, Bocedi A, Carpentieri G, Tirelli V, Sanchez M, Peggion C, Formaggio F, den Hertog J, Martinelli S, Bocchinfuso G, Tartaglia M, Stella L. J Med Chem 64 15973-15990 (2021)
  28. Structural Determinants of Phosphopeptide Binding to the N-Terminal Src Homology 2 Domain of the SHP2 Phosphatase. Anselmi M, Calligari P, Hub JS, Tartaglia M, Bocchinfuso G, Stella L. J Chem Inf Model 60 3157-3171 (2020)
  29. A specific amino acid context in EGFR and HER2 phosphorylation sites enables selective binding to the active site of Src homology phosphatase 2 (SHP2). Hartman Z, Geldenhuys WJ, Agazie YM. J Biol Chem 295 3563-3575 (2020)
  30. Tyr66 acts as a conformational switch in the closed-to-open transition of the SHP-2 N-SH2-domain phosphotyrosine-peptide binding cleft. Guvench O, Qu CK, MacKerell AD. BMC Struct Biol 7 14 (2007)
  31. Editorial Editorial for the Special Issue of Biophysical Reviews focused on the Biophysical Society of Japan with select scientific content from the 57th BSJ annual meeting, Miyazaki, Japan. Komatsuzaki T, Nakamura H, Tame J, Yanaka S, Nagai T, Nagayama K. Biophys Rev 12 183-185 (2020)
  32. Grb2 binding induces phosphorylation-independent activation of Shp2. Lin CC, Wieteska L, Suen KM, Kalverda AP, Ahmed Z, Ladbury JE. Commun Biol 4 437 (2021)
  33. Redox Regulation of a Gain-of-Function Mutation (N308D) in SHP2 Noonan Syndrome. Machado LESF, Critton DA, Page R, Peti W. ACS Omega 2 8313-8318 (2017)
  34. brief-report SHP2 Inhibition Sensitizes Diverse Oncogene-Addicted Solid Tumors to Re-treatment with Targeted Therapy. Drilon A, Sharma MR, Johnson ML, Yap TA, Gadgeel S, Nepert D, Feng G, Reddy MB, Harney AS, Elsayed M, Cook AW, Wong CE, Hinklin RJ, Jiang Y, Brown EN, Neitzel NA, Laird ER, Wu WI, Singh A, Wei P, Ching KA, Gaudino JJ, Lee PA, Hartley DP, Rothenberg SM. Cancer Discov 13 1789-1801 (2023)
  35. Structure-guided studies of the SHP-1/JAK1 interaction provide new insights into phosphatase catalytic domain substrate recognition. Alicea-Velázquez NL, Jakoncic J, Boggon TJ. J Struct Biol 181 243-251 (2013)
  36. A multifunctional cross-validation high-throughput screening protocol enabling the discovery of new SHP2 inhibitors. Song Y, Zhao M, Wu Y, Yu B, Liu HM. Acta Pharm Sin B 11 750-762 (2021)
  37. Editorial Biophysical Reviews' national biophysical society partnership program. Hall D. Biophys Rev 12 187-192 (2020)
  38. Noonan Syndrome in South Africa: Clinical and Molecular Profiles. Tekendo-Ngongang C, Agenbag G, Bope CD, Esterhuizen AI, Wonkam A. Front Genet 10 333 (2019)
  39. Protein Kinase A (PKA) Phosphorylation of Shp2 Protein Inhibits Its Phosphatase Activity and Modulates Ligand Specificity. Burmeister BT, Wang L, Gold MG, Skidgel RA, O'Bryan JP, Carnegie GK. J Biol Chem 290 12058-12067 (2015)
  40. SHP2 allosteric inhibitor TK-453 alleviates psoriasis-like skin inflammation in mice via inhibition of IL-23/Th17 axis. Wang M, Li T, Ouyang Z, Tang K, Zhu Y, Song C, Sun H, Yu B, Ji X, Sun Y. iScience 25 104009 (2022)
  41. Determining folding and binding properties of the C-terminal SH2 domain of SHP2. Nardella C, Malagrinò F, Pagano L, Rinaldo S, Gianni S, Toto A. Protein Sci 30 2385-2395 (2021)
  42. Discriminating between competing models for the allosteric regulation of oncogenic phosphatase SHP2 by characterizing its active state. Calligari P, Santucci V, Stella L, Bocchinfuso G. Comput Struct Biotechnol J 19 6125-6139 (2021)
  43. The loops of the N-SH2 binding cleft do not serve as allosteric switch in SHP2 activation. Anselmi M, Hub JS. Proc Natl Acad Sci U S A 118 e2025107118 (2021)
  44. The Influence of Molecular Reach and Diffusivity on the Efficacy of Membrane-Confined Reactions. Zhang Y, Clemens L, Goyette J, Allard J, Dushek O, Isaacson SA. Biophys J 117 1189-1201 (2019)
  45. Direct Chemical Activation of a Rationally Engineered Signaling Enzyme. Chio CM, Cheng KW, Bishop AC. Chembiochem 16 1735-1739 (2015)
  46. Discovery of the SHP2 allosteric inhibitor 2-((3R,4R)-4-amino-3-methyl-2-oxa-8-azaspiro[4.5]decan-8-yl)-5-(2,3-dichlorophenyl)-3-methylpyrrolo[2,1-f][1,2,4] triazin-4(3H)-one. Luo Y, Li J, Zong Y, Sun M, Zheng W, Zhu J, Liu L, Liu B. J Enzyme Inhib Med Chem 38 398-404 (2023)
  47. SHP2 regulates adipose maintenance and adipocyte-pancreatic cancer cell crosstalk via PDHA1. Olou AA, Ambrose J, Jack JL, Walsh M, Ruckert MT, Eades AE, Bye BA, Dandawate P, VanSaun MN. J Cell Commun Signal 17 575-590 (2023)
  48. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)
  49. The structural insights of stem cell factor receptor (c-Kit) interaction with tyrosine phosphatase-2 (Shp-2): an in silico analysis. Pati S, Gurudutta GU, Kalra OP, Mukhopadhyay A. BMC Res Notes 3 14 (2010)
  50. CARDIO-PRED: an in silico tool for predicting cardiovascular-disorder associated proteins. Jain P, Thukral N, Gahlot LK, Hasija Y. Syst Synth Biol 9 55-66 (2015)
  51. How a single mutation alters the protein structure: a simulation investigation on protein tyrosine phosphatase SHP2. Hou Y, Lu X, Xu Z, Qu J, Huang J. RSC Adv 13 4263-4274 (2023)
  52. Intramolecular Interaction with the E6 Region Stabilizes the Closed Conformation of the N-SH2 Domain and Concurs with the Self-Inhibitory Docking in Downregulating the Activity of the SHP2 Tyrosine Phosphatase: A Molecular Dynamics Study. Bellacchio E. Int J Mol Sci 23 4794 (2022)
  53. Monobody Inhibitor Selective to the Phosphatase Domain of SHP2 and its Use as a Probe for Quantifying SHP2 Allosteric Regulation. Sha F, Kurosawa K, Glasser E, Ketavarapu G, Albazzaz S, Koide A, Koide S. J Mol Biol 435 168010 (2023)
  54. Structure of cytotoxic associated antigen A protein of Helicobacter pylori from Bali and Lombok isolates of Indonesia. Suharsono H, Wibawa DN, Muttaqin Z, Agustina KK. Vet World 13 1319-1326 (2020)


Reviews citing this publication (135)

  1. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Heinrich PC, Behrmann I, Haan S, Hermanns HM, Müller-Newen G, Schaper F. Biochem J 374 1-20 (2003)
  2. Signaling--2000 and beyond. Hunter T. Cell 100 113-127 (2000)
  3. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Heinrich PC, Behrmann I, Müller-Newen G, Schaper F, Graeve L. Biochem J 334 ( Pt 2) 297-314 (1998)
  4. Protein tyrosine phosphatases in the human genome. Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, Osterman A, Godzik A, Hunter T, Dixon J, Mustelin T. Cell 117 699-711 (2004)
  5. The IL-4 receptor: signaling mechanisms and biologic functions. Nelms K, Keegan AD, Zamorano J, Ryan JJ, Paul WE. Annu Rev Immunol 17 701-738 (1999)
  6. The 'Shp'ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Neel BG, Gu H, Pao L. Trends Biochem Sci 28 284-293 (2003)
  7. Oncogenic mechanisms of the Helicobacter pylori CagA protein. Hatakeyama M. Nat Rev Cancer 4 688-694 (2004)
  8. Structural and evolutionary relationships among protein tyrosine phosphatase domains. Andersen JN, Mortensen OH, Peters GH, Drake PG, Iversen LF, Olsen OH, Jansen PG, Andersen HS, Tonks NK, Møller NP. Mol Cell Biol 21 7117-7136 (2001)
  9. Structure and regulation of Src family kinases. Boggon TJ, Eck MJ. Oncogene 23 7918-7927 (2004)
  10. The RASopathies: developmental syndromes of Ras/MAPK pathway dysregulation. Tidyman WE, Rauen KA. Curr Opin Genet Dev 19 230-236 (2009)
  11. Protein-tyrosine phosphatases and cancer. Ostman A, Hellberg C, Böhmer FD. Nat Rev Cancer 6 307-320 (2006)
  12. Combinatorial control of the specificity of protein tyrosine phosphatases. Tonks NK, Neel BG. Curr Opin Cell Biol 13 182-195 (2001)
  13. Structure and regulation of MAPK phosphatases. Farooq A, Zhou MM. Cell Signal 16 769-779 (2004)
  14. The tyrosine phosphatase Shp2 (PTPN11) in cancer. Chan G, Kalaitzidis D, Neel BG. Cancer Metastasis Rev 27 179-192 (2008)
  15. SHP-1 and SHP-2 in T cells: two phosphatases functioning at many levels. Lorenz U. Immunol Rev 228 342-359 (2009)
  16. Switching signals on or off by receptor dimerization. Weiss A, Schlessinger J. Cell 94 277-280 (1998)
  17. Negative signaling by inhibitory receptors: the NK cell paradigm. Long EO. Immunol Rev 224 70-84 (2008)
  18. Protein tyrosine phosphatases and the immune response. Mustelin T, Vang T, Bottini N. Nat Rev Immunol 5 43-57 (2005)
  19. Protein tyrosine phosphatases: mechanisms of catalysis and regulation. Denu JM, Dixon JE. Curr Opin Chem Biol 2 633-641 (1998)
  20. Noonan syndrome and related disorders: genetics and pathogenesis. Tartaglia M, Gelb BD. Annu Rev Genomics Hum Genet 6 45-68 (2005)
  21. Noonan syndrome and clinically related disorders. Tartaglia M, Gelb BD, Zenker M. Best Pract Res Clin Endocrinol Metab 25 161-179 (2011)
  22. Roles of the SHP-1 tyrosine phosphatase in the negative regulation of cell signalling. Zhang J, Somani AK, Siminovitch KA. Semin Immunol 12 361-378 (2000)
  23. The RAS/MAPK syndromes: novel roles of the RAS pathway in human genetic disorders. Aoki Y, Niihori T, Narumi Y, Kure S, Matsubara Y. Hum Mutat 29 992-1006 (2008)
  24. Phosphotyrosine-binding domains in signal transduction. Yaffe MB. Nat Rev Mol Cell Biol 3 177-186 (2002)
  25. Protein tyrosine phosphatases in the JAK/STAT pathway. Xu D, Qu CK. Front Biosci 13 4925-4932 (2008)
  26. Revisiting the PD-1 pathway. Patsoukis N, Wang Q, Strauss L, Boussiotis VA. Sci Adv 6 eabd2712 (2020)
  27. Shp-2 tyrosine phosphatase: signaling one cell or many. Feng GS. Exp Cell Res 253 47-54 (1999)
  28. The role of Shp2 (PTPN11) in cancer. Mohi MG, Neel BG. Curr Opin Genet Dev 17 23-30 (2007)
  29. Negative regulation of immunoreceptor signaling. Veillette A, Latour S, Davidson D. Annu Rev Immunol 20 669-707 (2002)
  30. Revealing mechanisms for SH2 domain mediated regulation of the protein tyrosine phosphatase SHP-2. Barford D, Neel BG. Structure 6 249-254 (1998)
  31. SH2 and PTB domains in tyrosine kinase signaling. Schlessinger J, Lemmon MA. Sci STKE 2003 RE12 (2003)
  32. Protein tyrosine phosphatases as potential therapeutic targets. He RJ, Yu ZH, Zhang RY, Zhang ZY. Acta Pharmacol Sin 35 1227-1246 (2014)
  33. Helicobacter pylori CagA: a new paradigm for bacterial carcinogenesis. Hatakeyama M, Higashi H. Cancer Sci 96 835-843 (2005)
  34. Phospholipase C-gamma as a signal-transducing element. Carpenter G, Ji Qs. Exp Cell Res 253 15-24 (1999)
  35. Protein tyrosine phosphatase SHP-2: a proto-oncogene product that promotes Ras activation. Matozaki T, Murata Y, Saito Y, Okazawa H, Ohnishi H. Cancer Sci 100 1786-1793 (2009)
  36. Nonreceptor protein-tyrosine phosphatases in immune cell signaling. Pao LI, Badour K, Siminovitch KA, Neel BG. Annu Rev Immunol 25 473-523 (2007)
  37. Disorders of dysregulated signal traffic through the RAS-MAPK pathway: phenotypic spectrum and molecular mechanisms. Tartaglia M, Gelb BD. Ann N Y Acad Sci 1214 99-121 (2010)
  38. Functions of Shp2 in cancer. Zhang J, Zhang F, Niu R. J Cell Mol Med 19 2075-2083 (2015)
  39. X-linked lymphoproliferative disease: a progressive immunodeficiency. Morra M, Howie D, Grande MS, Sayos J, Wang N, Wu C, Engel P, Terhorst C. Annu Rev Immunol 19 657-682 (2001)
  40. A SHPing tale: perspectives on the regulation of SHP-1 and SHP-2 tyrosine phosphatases by the C-terminal tail. Poole AW, Jones ML. Cell Signal 17 1323-1332 (2005)
  41. Recent insights into the complexity of Tank-binding kinase 1 signaling networks: the emerging role of cellular localization in the activation and substrate specificity of TBK1. Helgason E, Phung QT, Dueber EC. FEBS Lett 587 1230-1237 (2013)
  42. Germ-line and somatic PTPN11 mutations in human disease. Tartaglia M, Gelb BD. Eur J Med Genet 48 81-96 (2005)
  43. Polo-box domain: a versatile mediator of polo-like kinase function. Park JE, Soung NK, Johmura Y, Kang YH, Liao C, Lee KH, Park CH, Nicklaus MC, Lee KS. Cell Mol Life Sci 67 1957-1970 (2010)
  44. Redox regulation of protein tyrosine phosphatases: structural and chemical aspects. Tanner JJ, Parsons ZD, Cummings AH, Zhou H, Gates KS. Antioxid Redox Signal 15 77-97 (2011)
  45. Natural killer cell cytotoxicity and its regulation by inhibitory receptors. Kumar S. Immunology 154 383-393 (2018)
  46. Structure and function of Helicobacter pylori CagA, the first-identified bacterial protein involved in human cancer. Hatakeyama M. Proc Jpn Acad Ser B Phys Biol Sci 93 196-219 (2017)
  47. Interleukin-6 signalling: more than Jaks and STATs. Eulenfeld R, Dittrich A, Khouri C, Müller PJ, Mütze B, Wolf A, Schaper F. Eur J Cell Biol 91 486-495 (2012)
  48. The SHP-2 tyrosine phosphatase: signaling mechanisms and biological functions. Qu CK. Cell Res 10 279-288 (2000)
  49. Molecular anatomy and pathogenic actions of Helicobacter pylori CagA that underpin gastric carcinogenesis. Takahashi-Kanemitsu A, Knight CT, Hatakeyama M. Cell Mol Immunol 17 50-63 (2020)
  50. The modular logic of signaling proteins: building allosteric switches from simple binding domains. Lim WA. Curr Opin Struct Biol 12 61-68 (2002)
  51. Protein tyrosine phosphatases: structure-function relationships. Tabernero L, Aricescu AR, Jones EY, Szedlacsek SE. FEBS J 275 867-882 (2008)
  52. Of ITIMs, ITAMs, and ITAMis: revisiting immunoglobulin Fc receptor signaling. Getahun A, Cambier JC. Immunol Rev 268 66-73 (2015)
  53. Therapeutic Targeting of Oncogenic Tyrosine Phosphatases. Frankson R, Yu ZH, Bai Y, Li Q, Zhang RY, Zhang ZY. Cancer Res 77 5701-5705 (2017)
  54. Targeting PTPs with small molecule inhibitors in cancer treatment. Jiang ZX, Zhang ZY. Cancer Metastasis Rev 27 263-272 (2008)
  55. Protein tyrosine phosphatases: structure, function, and implication in human disease. Tautz L, Critton DA, Grotegut S. Methods Mol Biol 1053 179-221 (2013)
  56. Molecular mechanisms of SH2- and PTB-domain-containing proteins in receptor tyrosine kinase signaling. Wagner MJ, Stacey MM, Liu BA, Pawson T. Cold Spring Harb Perspect Biol 5 a008987 (2013)
  57. Small molecule tools for functional interrogation of protein tyrosine phosphatases. He R, Zeng LF, He Y, Zhang S, Zhang ZY. FEBS J 280 731-750 (2013)
  58. The language of SH2 domain interactions defines phosphotyrosine-mediated signal transduction. Liu BA, Engelmann BW, Nash PD. FEBS Lett 586 2597-2605 (2012)
  59. B cell inhibitory receptors and autoimmunity. Pritchard NR, Smith KG. Immunology 108 263-273 (2003)
  60. Helicobacter pylori CagA -- a bacterial intruder conspiring gastric carcinogenesis. Hatakeyama M. Int J Cancer 119 1217-1223 (2006)
  61. Cytoplasmic protein tyrosine phosphatases SHP-1 and SHP-2: regulators of B cell signal transduction. Tamir I, Dal Porto JM, Cambier JC. Curr Opin Immunol 12 307-315 (2000)
  62. Noonan, Costello and cardio-facio-cutaneous syndromes: dysregulation of the Ras-MAPK pathway. Tidyman WE, Rauen KA. Expert Rev Mol Med 10 e37 (2008)
  63. Early signaling via inhibitory and activating NK receptors. Bléry M, Olcese L, Vivier E. Hum Immunol 61 51-64 (2000)
  64. Protein tyrosine phosphatase variants in human hereditary disorders and disease susceptibilities. Hendriks WJ, Pulido R. Biochim Biophys Acta 1832 1673-1696 (2013)
  65. RAS diseases in children. Niemeyer CM. Haematologica 99 1653-1662 (2014)
  66. SHP-2 and myeloid malignancies. Tartaglia M, Niemeyer CM, Shannon KM, Loh ML. Curr Opin Hematol 11 44-50 (2004)
  67. Form, function, and regulation of protein tyrosine phosphatases and their involvement in human diseases. Li L, Dixon JE. Semin Immunol 12 75-84 (2000)
  68. SHPS-1, a multifunctional transmembrane glycoprotein. Oshima K, Ruhul Amin AR, Suzuki A, Hamaguchi M, Matsuda S. FEBS Lett 519 1-7 (2002)
  69. Autoinhibition and adapter function of Syk. Kulathu Y, Grothe G, Reth M. Immunol Rev 232 286-299 (2009)
  70. Bedside to bench in juvenile myelomonocytic leukemia: insights into leukemogenesis from a rare pediatric leukemia. Chang TY, Dvorak CC, Loh ML. Blood 124 2487-2497 (2014)
  71. Feedback regulation of lymphocyte signalling. Reth M, Brummer T. Nat Rev Immunol 4 269-277 (2004)
  72. Helicobacter pylori CagA--a potential bacterial oncoprotein that functionally mimics the mammalian Gab family of adaptor proteins. Hatakeyama M. Microbes Infect 5 143-150 (2003)
  73. Regulation of TCR signalling by tyrosine phosphatases: from immune homeostasis to autoimmunity. Stanford SM, Rapini N, Bottini N. Immunology 137 1-19 (2012)
  74. Shp2-mediated molecular signaling in control of embryonic stem cell self-renewal and differentiation. Feng GS. Cell Res 17 37-41 (2007)
  75. Regulatory Mechanisms and Novel Therapeutic Targeting Strategies for Protein Tyrosine Phosphatases. Yu ZH, Zhang ZY. Chem Rev 118 1069-1091 (2018)
  76. Nuclear redox signaling. Lukosz M, Jakob S, Büchner N, Zschauer TC, Altschmied J, Haendeler J. Antioxid Redox Signal 12 713-742 (2010)
  77. Protein tyrosine phosphatases: counting the trees in the forest. Hooft van Huijsduijnen R. Gene 225 1-8 (1998)
  78. The role of Helicobacter pylori CagA in gastric carcinogenesis. Hatakeyama M. Int J Hematol 84 301-308 (2006)
  79. Protein-tyrosine phosphatases in development. den Hertog J. Mech Dev 85 3-14 (1999)
  80. Designing cell-permeant phosphopeptides to modulate intracellular signaling pathways. Dunican DJ, Doherty P. Biopolymers 60 45-60 (2001)
  81. Enzymatic Noncovalent Synthesis. He H, Tan W, Guo J, Yi M, Shy AN, Xu B. Chem Rev 120 9994-10078 (2020)
  82. Noonan syndrome-causing genes: Molecular update and an assessment of the mutation rate. El Bouchikhi I, Belhassan K, Moufid FZ, Iraqui Houssaini M, Bouguenouch L, Samri I, Atmani S, Ouldim K. Int J Pediatr Adolesc Med 3 133-142 (2016)
  83. Dual faces of SH2-containing protein-tyrosine phosphatase Shp2/PTPN11 in tumorigenesis. Li S, Hsu DD, Wang H, Feng GS. Front Med 6 275-279 (2012)
  84. Intracellular signaling by the killer immunoglobulin-like receptors and Ly49. McVicar DW, Burshtyn DN. Sci STKE 2001 re1 (2001)
  85. Receptor tyrosine kinase signaling: a view from quantitative proteomics. Dengjel J, Kratchmarova I, Blagoev B. Mol Biosyst 5 1112-1121 (2009)
  86. Targeting protein tyrosine phosphatase SHP2 for therapeutic intervention. Butterworth S, Overduin M, Barr AJ. Future Med Chem 6 1423-1437 (2014)
  87. Shp2 as a therapeutic target for leptin resistance and obesity. Feng GS. Expert Opin Ther Targets 10 135-142 (2006)
  88. Interaction of the Hippo Pathway and Phosphatases in Tumorigenesis. Sarmasti Emami S, Zhang D, Yang X. Cancers (Basel) 12 E2438 (2020)
  89. The role of the protein tyrosine phosphatase SHP2 in cardiac development and disease. Lauriol J, Jaffré F, Kontaridis MI. Semin Cell Dev Biol 37 73-81 (2015)
  90. Modulation of TCR Signaling by Tyrosine Phosphatases: From Autoimmunity to Immunotherapy. Castro-Sanchez P, Teagle AR, Prade S, Zamoyska R. Front Cell Dev Biol 8 608747 (2020)
  91. A comprehensive review of SHP2 and its role in cancer. Asmamaw MD, Shi XJ, Zhang LR, Liu HM. Cell Oncol (Dordr) 45 729-753 (2022)
  92. SHP-2 in Lymphocytes' Cytokine and Inhibitory Receptor Signaling. Niogret C, Birchmeier W, Guarda G. Front Immunol 10 2468 (2019)
  93. PTPN11-associated mutations in the heart: has LEOPARD changed Its RASpots? Lauriol J, Kontaridis MI. Trends Cardiovasc Med 21 97-104 (2011)
  94. Phosphoinositide 3-kinase inhibition in cancer treatment. Berrie CP. Expert Opin Investig Drugs 10 1085-1098 (2001)
  95. Ras-related signaling pathways in valve development: ebb and flow. Yutzey KE, Colbert M, Robbins J. Physiology (Bethesda) 20 390-397 (2005)
  96. A structural perspective on targeting the RTK/Ras/MAP kinase pathway in cancer. Heppner DE, Eck MJ. Protein Sci 30 1535-1553 (2021)
  97. Juvenile myelomonocytic leukemia: epidemiology, etiopathogenesis, diagnosis, and management considerations. Yoshimi A, Kojima S, Hirano N. Paediatr Drugs 12 11-21 (2010)
  98. Novel regulation of Ras proteins by direct tyrosine phosphorylation and dephosphorylation. Buday L, Vas V. Cancer Metastasis Rev 39 1067-1073 (2020)
  99. The next wave: protein tyrosine phosphatases enter T cell antigen receptor signalling. Mustelin T, Brockdorff J, Rudbeck L, Gjörloff-Wingren A, Han S, Wang X, Tailor P, Saxena M. Cell Signal 11 637-650 (1999)
  100. Protein Tyrosine Phosphatases: Mechanisms in Cancer. Sivaganesh V, Sivaganesh V, Scanlon C, Iskander A, Maher S, Lê T, Peethambaran B. Int J Mol Sci 22 12865 (2021)
  101. Regulation of T-Cell Signaling by Post-Translational Modifications in Autoimmune Disease. Kuwabara T, Matsui Y, Ishikawa F, Kondo M. Int J Mol Sci 19 E819 (2018)
  102. The conundrum of inhibitory signaling by ITAM-containing immunoreceptors: potential molecular mechanisms. Waterman PM, Cambier JC. FEBS Lett 584 4878-4882 (2010)
  103. Biology, pathology, and therapeutic targeting of RAS. Rhett JM, Khan I, O'Bryan JP. Adv Cancer Res 148 69-146 (2020)
  104. Phosphatase regulation of intercellular junctions. McCole DF. Tissue Barriers 1 e26713 (2013)
  105. Protein tyrosine phosphatases: promising targets in pancreatic ductal adenocarcinoma. Ruckert MT, de Andrade PV, Santos VS, Silveira VS. Cell Mol Life Sci 76 2571-2592 (2019)
  106. Current management of juvenile myelomonocytic leukemia and the impact of RAS mutations. Yoshida N, Doisaki S, Kojima S. Paediatr Drugs 14 157-163 (2012)
  107. New and Unexpected Biological Functions for the Src-Homology 2 Domain-Containing Phosphatase SHP-2 in the Gastrointestinal Tract. Coulombe G, Rivard N. Cell Mol Gastroenterol Hepatol 2 11-21 (2016)
  108. Phosphatases: counterregulatory role in inflammatory cell signaling. Shanley TP. Crit Care Med 30 S80-8 (2002)
  109. The structural basis of dynamic cell adhesion: heads, tails, and allostery. Liddington RC, Bankston LA. Exp Cell Res 261 37-43 (2000)
  110. Design principles of protein switches. Alberstein RG, Guo AB, Kortemme T. Curr Opin Struct Biol 72 71-78 (2022)
  111. Post-Receptor Inhibitors of the GHR-JAK2-STAT Pathway in the Growth Hormone Signal Transduction. Wójcik M, Krawczyńska A, Antushevich H, Herman AP. Int J Mol Sci 19 E1843 (2018)
  112. Regulating naïve and memory CD8 T cell homeostasis--a role for protein tyrosine phosphatases. Pike KA, Tremblay ML. FEBS J 280 432-444 (2013)
  113. Targeting protein phosphatases in cancer immunotherapy and autoimmune disorders. Stanford SM, Bottini N. Nat Rev Drug Discov 22 273-294 (2023)
  114. Functional interrogation and therapeutic targeting of protein tyrosine phosphatases. Krabill AD, Zhang ZY. Biochem Soc Trans 49 1723-1734 (2021)
  115. Sequence Polymorphism and Intrinsic Structural Disorder as Related to Pathobiological Performance of the Helicobacter pylori CagA Oncoprotein. Nishikawa H, Hatakeyama M. Toxins (Basel) 9 E136 (2017)
  116. The regulation of male fertility by the PTPN11 tyrosine phosphatase. Puri P, Walker WH. Semin Cell Dev Biol 59 27-34 (2016)
  117. Targeting SHP2 phosphatase in hematological malignancies. Kanumuri R, Kumar Pasupuleti S, Burns SS, Ramdas B, Kapur R. Expert Opin Ther Targets 26 319-332 (2022)
  118. Genomic and Epigenomic Landscape of Juvenile Myelomonocytic Leukemia. Fiñana C, Gómez-Molina N, Alonso-Moreno S, Belver L. Cancers (Basel) 14 1335 (2022)
  119. Oncogenic Tyrosine Phosphatases: Novel Therapeutic Targets for Melanoma Treatment. Pardella E, Pranzini E, Leo A, Taddei ML, Paoli P, Raugei G. Cancers (Basel) 12 E2799 (2020)
  120. A PTPN11 mutation in a woman with Noonan syndrome and protein-losing enteropathy. Wang N, Shi W, Jiao Y. BMC Gastroenterol 20 34 (2020)
  121. Protein tyrosine phosphatases in cardiac physiology and pathophysiology. Wade F, Belhaj K, Poizat C. Heart Fail Rev 23 261-272 (2018)
  122. The impact of structural biology in medicine illustrated with four case studies. Hu T, Sprague ER, Fodor M, Stams T, Clark KL, Cowan-Jacob SW. J Mol Med (Berl) 96 9-19 (2018)
  123. An Assessment of the Therapeutic Landscape for the Treatment of Heart Disease in the RASopathies. Yi JS, Perla S, Bennett AM. Cardiovasc Drugs Ther 37 1193-1204 (2023)
  124. How to extinguish lymphocyte activation, immunotyrosine-based inhibition motif (ITIM)-bearing molecules a solution? Blery M, Vivier E. Clin Chem Lab Med 37 187-191 (1999)
  125. The development of protein tyrosine phosphatase1B inhibitors defined by binding sites in crystalline complexes. Zhang Y, Du Y. Future Med Chem 10 2345-2367 (2018)
  126. Connecting the dots between SHP2 and glutamate receptors. Ryu HH, Kim SY, Lee YS. Korean J Physiol Pharmacol 24 129-135 (2020)
  127. From Stem to Sternum: The Role of Shp2 in the Skeleton. Jensen NR, Kelly RR, Kelly KD, Khoo SK, Sidles SJ, LaRue AC. Calcif Tissue Int 112 403-421 (2023)
  128. New insights into the important roles of phase seperation in the targeted therapy of lung cancer. Zou Y, Zheng H, Ning Y, Yang Y, Wen Q, Fan S. Cell Biosci 13 150 (2023)
  129. SHP2: A Pleiotropic Target at the Interface of Cancer and Its Microenvironment. Sodir NM, Pathria G, Adamkewicz JI, Kelley EH, Sudhamsu J, Merchant M, Chiarle R, Maddalo D. Cancer Discov 13 2339-2355 (2023)
  130. X-ray crystallography and NMR as tools for the study of protein tyrosine phosphatases. Gulerez IE, Gehring K. Methods 65 175-183 (2014)
  131. [New molecular mechanisms of growth hormone insensitivity]. Edouard T, Raynal P, Yart A, Conte-Auriol F, Salles JP, Tauber M. Arch Pediatr 15 179-188 (2008)
  132. From bench to bedside: current development and emerging trend of KRAS-targeted therapy. Chen Y, Liu QP, Xie H, Ding J. Acta Pharmacol Sin 45 686-703 (2024)
  133. Overcoming Immune Checkpoint Therapy Resistance with SHP2 Inhibition in Cancer and Immune Cells: A Review of the Literature and Novel Combinatorial Approaches. Tojjari A, Saeed A, Sadeghipour A, Kurzrock R, Cavalcante L. Cancers (Basel) 15 5384 (2023)
  134. Setting sail: Maneuvering SHP2 activity and its effects in cancer. Welsh CL, Allen S, Madan LK. Adv Cancer Res 160 17-60 (2023)
  135. Small molecule inhibitors for cancer immunotherapy and associated biomarkers - the current status. Schlicher L, Green LG, Romagnani A, Renner F. Front Immunol 14 1297175 (2023)

Articles citing this publication (338)

  1. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Tartaglia M, Mehler EL, Goldberg R, Zampino G, Brunner HG, Kremer H, van der Burgt I, Crosby AH, Ion A, Jeffery S, Kalidas K, Patton MA, Kucherlapati RS, Gelb BD. Nat Genet 29 465-468 (2001)
  2. Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Meng TC, Fukada T, Tonks NK. Mol Cell 9 387-399 (2002)
  3. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Tartaglia M, Niemeyer CM, Fragale A, Song X, Buechner J, Jung A, Hählen K, Hasle H, Licht JD, Gelb BD. Nat Genet 34 148-150 (2003)
  4. The molecular basis for phosphodependent substrate targeting and regulation of Plks by the Polo-box domain. Elia AE, Rellos P, Haire LF, Chao JW, Ivins FJ, Hoepker K, Mohammad D, Cantley LC, Smerdon SJ, Yaffe MB. Cell 115 83-95 (2003)
  5. PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3zeta signalosome and downstream signaling to PKCtheta. Sheppard KA, Fitz LJ, Lee JM, Benander C, George JA, Wooters J, Qiu Y, Jussif JM, Carter LL, Wood CR, Chaudhary D. FEBS Lett 574 37-41 (2004)
  6. PTPN11 mutations in Noonan syndrome: molecular spectrum, genotype-phenotype correlation, and phenotypic heterogeneity. Tartaglia M, Kalidas K, Shaw A, Song X, Musat DL, van der Burgt I, Brunner HG, Bertola DR, Crosby A, Ion A, Kucherlapati RS, Jeffery S, Patton MA, Gelb BD. Am J Hum Genet 70 1555-1563 (2002)
  7. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Chen YN, LaMarche MJ, Chan HM, Fekkes P, Garcia-Fortanet J, Acker MG, Antonakos B, Chen CH, Chen Z, Cooke VG, Dobson JR, Deng Z, Fei F, Firestone B, Fodor M, Fridrich C, Gao H, Grunenfelder D, Hao HX, Jacob J, Ho S, Hsiao K, Kang ZB, Karki R, Kato M, Larrow J, La Bonte LR, Lenoir F, Liu G, Liu S, Majumdar D, Meyer MJ, Palermo M, Perez L, Pu M, Price E, Quinn C, Shakya S, Shultz MD, Slisz J, Venkatesan K, Wang P, Warmuth M, Williams S, Yang G, Yuan J, Zhang JH, Zhu P, Ramsey T, Keen NJ, Sellers WR, Stams T, Fortin PD. Nature 535 148-152 (2016)
  8. Biological activity of the Helicobacter pylori virulence factor CagA is determined by variation in the tyrosine phosphorylation sites. Higashi H, Tsutsumi R, Fujita A, Yamazaki S, Asaka M, Azuma T, Hatakeyama M. Proc Natl Acad Sci U S A 99 14428-14433 (2002)
  9. Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis. Matoba Y, Kumagai T, Yamamoto A, Yoshitsu H, Sugiyama M. J Biol Chem 281 8981-8990 (2006)
  10. Mouse model of Noonan syndrome reveals cell type- and gene dosage-dependent effects of Ptpn11 mutation. Araki T, Mohi MG, Ismat FA, Bronson RT, Williams IR, Kutok JL, Yang W, Pao LI, Gilliland DG, Epstein JA, Neel BG. Nat Med 10 849-857 (2004)
  11. Shp-2 tyrosine phosphatase functions as a negative regulator of the interferon-stimulated Jak/STAT pathway. You M, Yu DH, Feng GS. Mol Cell Biol 19 2416-2424 (1999)
  12. PTPN11 is the first identified proto-oncogene that encodes a tyrosine phosphatase. Chan RJ, Feng GS. Blood 109 862-867 (2007)
  13. Prognostic, therapeutic, and mechanistic implications of a mouse model of leukemia evoked by Shp2 (PTPN11) mutations. Mohi MG, Williams IR, Dearolf CR, Chan G, Kutok JL, Cohen S, Morgan K, Boulton C, Shigematsu H, Keilhack H, Akashi K, Gilliland DG, Neel BG. Cancer Cell 7 179-191 (2005)
  14. The human and mouse complement of SH2 domain proteins-establishing the boundaries of phosphotyrosine signaling. Liu BA, Jablonowski K, Raina M, Arcé M, Pawson T, Nash PD. Mol Cell 22 851-868 (2006)
  15. Angiotensin-(1-7) counterregulates angiotensin II signaling in human endothelial cells. Sampaio WO, Henrique de Castro C, Santos RA, Schiffrin EL, Touyz RM. Hypertension 50 1093-1098 (2007)
  16. SAP couples Fyn to SLAM immune receptors. Chan B, Lanyi A, Song HK, Griesbach J, Simarro-Grande M, Poy F, Howie D, Sumegi J, Terhorst C, Eck MJ. Nat Cell Biol 5 155-160 (2003)
  17. Site-specific incorporation of a phosphotyrosine mimetic reveals a role for tyrosine phosphorylation of SHP-2 in cell signaling. Lu W, Gong D, Bar-Sagi D, Cole PA. Mol Cell 8 759-769 (2001)
  18. Discovery of a novel shp2 protein tyrosine phosphatase inhibitor. Chen L, Sung SS, Yip ML, Lawrence HR, Ren Y, Guida WC, Sebti SM, Lawrence NJ, Wu J. Mol Pharmacol 70 562-570 (2006)
  19. Curcumin suppresses Janus kinase-STAT inflammatory signaling through activation of Src homology 2 domain-containing tyrosine phosphatase 2 in brain microglia. Kim HY, Park EJ, Joe EH, Jou I. J Immunol 171 6072-6079 (2003)
  20. An Shp2/SFK/Ras/Erk signaling pathway controls trophoblast stem cell survival. Yang W, Klaman LD, Chen B, Araki T, Harada H, Thomas SM, George EL, Neel BG. Dev Cell 10 317-327 (2006)
  21. Rapamycin reverses hypertrophic cardiomyopathy in a mouse model of LEOPARD syndrome-associated PTPN11 mutation. Marin TM, Keith K, Davies B, Conner DA, Guha P, Kalaitzidis D, Wu X, Lauriol J, Wang B, Bauer M, Bronson R, Franchini KG, Neel BG, Kontaridis MI. J Clin Invest 121 1026-1043 (2011)
  22. Switched at birth: a new family for PECAM-1. Newman PJ. J Clin Invest 103 5-9 (1999)
  23. Defining the specificity space of the human SRC homology 2 domain. Huang H, Li L, Wu C, Schibli D, Colwill K, Ma S, Li C, Roy P, Ho K, Songyang Z, Pawson T, Gao Y, Li SS. Mol Cell Proteomics 7 768-784 (2008)
  24. Phosphorylation meets nuclear import: a review. Nardozzi JD, Lott K, Cingolani G. Cell Commun Signal 8 32 (2010)
  25. The mutational spectrum of PTPN11 in juvenile myelomonocytic leukemia and Noonan syndrome/myeloproliferative disease. Kratz CP, Niemeyer CM, Castleberry RP, Cetin M, Bergsträsser E, Emanuel PD, Hasle H, Kardos G, Klein C, Kojima S, Stary J, Trebo M, Zecca M, Gelb BD, Tartaglia M, Loh ML. Blood 106 2183-2185 (2005)
  26. Noonan syndrome-associated SHP2/PTPN11 mutants cause EGF-dependent prolonged GAB1 binding and sustained ERK2/MAPK1 activation. Fragale A, Tartaglia M, Wu J, Gelb BD. Hum Mutat 23 267-277 (2004)
  27. Molecular basis for TPR domain-mediated regulation of protein phosphatase 5. Yang J, Roe SM, Cliff MJ, Williams MA, Ladbury JE, Cohen PT, Barford D. EMBO J 24 1-10 (2005)
  28. Noonan syndrome: clinical aspects and molecular pathogenesis. Tartaglia M, Zampino G, Gelb BD. Mol Syndromol 1 2-26 (2010)
  29. Structural basis for Syk tyrosine kinase ubiquity in signal transduction pathways revealed by the crystal structure of its regulatory SH2 domains bound to a dually phosphorylated ITAM peptide. Fütterer K, Wong J, Grucza RA, Chan AC, Waksman G. J Mol Biol 281 523-537 (1998)
  30. Characterization of TCR-induced receptor-proximal signaling events negatively regulated by the protein tyrosine phosphatase PEP. Gjörloff-Wingren A, Saxena M, Williams S, Hammi D, Mustelin T. Eur J Immunol 29 3845-3854 (1999)
  31. Active site-directed protein regulation. Kobe B, Kemp BE. Nature 402 373-376 (1999)
  32. Specific inhibitors of the protein tyrosine phosphatase Shp2 identified by high-throughput docking. Hellmuth K, Grosskopf S, Lum CT, Würtele M, Röder N, von Kries JP, Rosario M, Rademann J, Birchmeier W. Proc Natl Acad Sci U S A 105 7275-7280 (2008)
  33. Leptin receptor activation of SH2 domain containing protein tyrosine phosphatase 2 modulates Ob receptor signal transduction. Li C, Friedman JM. Proc Natl Acad Sci U S A 96 9677-9682 (1999)
  34. The generation of new protein functions by the combination of domains. Bashton M, Chothia C. Structure 15 85-99 (2007)
  35. Characterization of phosphotyrosine binding motifs in the cytoplasmic domain of B and T lymphocyte attenuator required for association with protein tyrosine phosphatases SHP-1 and SHP-2. Gavrieli M, Watanabe N, Loftin SK, Murphy TL, Murphy KM. Biochem Biophys Res Commun 312 1236-1243 (2003)
  36. Human somatic PTPN11 mutations induce hematopoietic-cell hypersensitivity to granulocyte-macrophage colony-stimulating factor. Chan RJ, Leedy MB, Munugalavadla V, Voorhorst CS, Li Y, Yu M, Kapur R. Blood 105 3737-3742 (2005)
  37. Crystal structure of the tandem phosphatase domains of RPTP LAR. Nam HJ, Poy F, Krueger NX, Saito H, Frederick CA. Cell 97 449-457 (1999)
  38. Functional analysis of leukemia-associated PTPN11 mutations in primary hematopoietic cells. Schubbert S, Lieuw K, Rowe SL, Lee CM, Li X, Loh ML, Clapp DW, Shannon KM. Blood 106 311-317 (2005)
  39. SHP-2 is a dual-specificity phosphatase involved in Stat1 dephosphorylation at both tyrosine and serine residues in nuclei. Wu TR, Hong YK, Wang XD, Ling MY, Dragoi AM, Chung AS, Campbell AG, Han ZY, Feng GS, Chin YE. J Biol Chem 277 47572-47580 (2002)
  40. Molecular and functional characterization of IRp60, a member of the immunoglobulin superfamily that functions as an inhibitory receptor in human NK cells. Cantoni C, Bottino C, Augugliaro R, Morelli L, Marcenaro E, Castriconi R, Vitale M, Pende D, Sivori S, Millo R, Biassoni R, Moretta L, Moretta A. Eur J Immunol 29 3148-3159 (1999)
  41. Dual signaling role of the protein tyrosine phosphatase SHP-2 in regulating expression of acute-phase plasma proteins by interleukin-6 cytokine receptors in hepatic cells. Kim H, Baumann H. Mol Cell Biol 19 5326-5338 (1999)
  42. Leishmania-induced increases in activation of macrophage SHP-1 tyrosine phosphatase are associated with impaired IFN-gamma-triggered JAK2 activation. Blanchette J, Racette N, Faure R, Siminovitch KA, Olivier M. Eur J Immunol 29 3737-3744 (1999)
  43. SHP2 inhibition diminishes KRASG12C cycling and promotes tumor microenvironment remodeling. Fedele C, Li S, Teng KW, Foster CJR, Peng D, Ran H, Mita P, Geer MJ, Hattori T, Koide A, Wang Y, Tang KH, Leinwand J, Wang W, Diskin B, Deng J, Chen T, Chen T, Dolgalev I, Ozerdem U, Miller G, Koide S, Wong KK, Neel BG. J Exp Med 218 e20201414 (2021)
  44. Leukemogenic Ptpn11 causes fatal myeloproliferative disorder via cell-autonomous effects on multiple stages of hematopoiesis. Chan G, Kalaitzidis D, Usenko T, Kutok JL, Yang W, Mohi MG, Neel BG. Blood 113 4414-4424 (2009)
  45. Phase Separation of Disease-Associated SHP2 Mutants Underlies MAPK Hyperactivation. Zhu G, Xie J, Kong W, Xie J, Li Y, Du L, Zheng Q, Sun L, Guan M, Li H, Zhu T, He H, Liu Z, Xia X, Kan C, Tao Y, Shen HC, Li D, Wang S, Yu Y, Yu ZH, Zhang ZY, Liu C, Zhu J. Cell 183 490-502.e18 (2020)
  46. Solution structure of ERK2 binding domain of MAPK phosphatase MKP-3: structural insights into MKP-3 activation by ERK2. Farooq A, Chaturvedi G, Mujtaba S, Plotnikova O, Zeng L, Dhalluin C, Ashton R, Zhou MM. Mol Cell 7 387-399 (2001)
  47. Structure determination of T cell protein-tyrosine phosphatase. Iversen LF, Moller KB, Pedersen AK, Peters GH, Petersen AS, Andersen HS, Branner S, Mortensen SB, Moller NP. J Biol Chem 277 19982-19990 (2002)
  48. The SH2 tyrosine phosphatase shp2 is required for mammalian limb development. Saxton TM, Ciruna BG, Holmyard D, Kulkarni S, Harpal K, Rossant J, Pawson T. Nat Genet 24 420-423 (2000)
  49. PTPN11 mutations in pediatric patients with acute myeloid leukemia: results from the Children's Cancer Group. Loh ML, Reynolds MG, Vattikuti S, Gerbing RB, Alonzo TA, Carlson E, Cheng JW, Lee CM, Lange BJ, Meshinchi S, Children's Cancer Group. Leukemia 18 1831-1834 (2004)
  50. SHP2 inhibition triggers anti-tumor immunity and synergizes with PD-1 blockade. Zhao M, Guo W, Wu Y, Yang C, Zhong L, Deng G, Zhu Y, Liu W, Gu Y, Lu Y, Kong L, Meng X, Xu Q, Sun Y. Acta Pharm Sin B 9 304-315 (2019)
  51. Molecular basis of signaling specificity of insulin and IGF receptors: neglected corners and recent advances. Siddle K. Front Endocrinol (Lausanne) 3 34 (2012)
  52. Non-lineage/stage-restricted effects of a gain-of-function mutation in tyrosine phosphatase Ptpn11 (Shp2) on malignant transformation of hematopoietic cells. Xu D, Liu X, Yu WM, Meyerson HJ, Guo C, Gerson SL, Qu CK. J Exp Med 208 1977-1988 (2011)
  53. Spectrum of mutations in PTPN11 and genotype-phenotype correlation in 96 patients with Noonan syndrome and five patients with cardio-facio-cutaneous syndrome. Musante L, Kehl HG, Majewski F, Meinecke P, Schweiger S, Gillessen-Kaesbach G, Wieczorek D, Hinkel GK, Tinschert S, Hoeltzenbein M, Ropers HH, Kalscheuer VM. Eur J Hum Genet 11 201-206 (2003)
  54. The sialoadhesin CD33 is a myeloid-specific inhibitory receptor. Ulyanova T, Blasioli J, Woodford-Thomas TA, Thomas ML. Eur J Immunol 29 3440-3449 (1999)
  55. RAS signaling dysregulation in human embryonal Rhabdomyosarcoma. Martinelli S, McDowell HP, Vigne SD, Kokai G, Uccini S, Tartaglia M, Dominici C. Genes Chromosomes Cancer 48 975-982 (2009)
  56. Phosphatase-dependent and -independent functions of Shp2 in neural crest cells underlie LEOPARD syndrome pathogenesis. Stewart RA, Sanda T, Widlund HR, Zhu S, Swanson KD, Hurley AD, Bentires-Alj M, Fisher DE, Kontaridis MI, Look AT, Neel BG. Dev Cell 18 750-762 (2010)
  57. Global impact of oncogenic Src on a phosphotyrosine proteome. Luo W, Slebos RJ, Hill S, Li M, Brábek J, Amanchy R, Chaerkady R, Pandey A, Ham AJ, Hanks SK. J Proteome Res 7 3447-3460 (2008)
  58. An increased level of IL-6 suppresses NK cell activity in peritoneal fluid of patients with endometriosis via regulation of SHP-2 expression. Kang YJ, Jeung IC, Park A, Park YJ, Jung H, Kim TD, Lee HG, Choi I, Yoon SR. Hum Reprod 29 2176-2189 (2014)
  59. Functional analysis of PTPN11/SHP-2 mutants identified in Noonan syndrome and childhood leukemia. Niihori T, Aoki Y, Ohashi H, Kurosawa K, Kondoh T, Ishikiriyama S, Kawame H, Kamasaki H, Yamanaka T, Takada F, Nishio K, Sakurai M, Tamai H, Nagashima T, Suzuki Y, Kure S, Fujii K, Imaizumi M, Matsubara Y. J Hum Genet 50 192-202 (2005)
  60. Reduced phosphatase activity of SHP-2 in LEOPARD syndrome: consequences for PI3K binding on Gab1. Hanna N, Montagner A, Lee WH, Miteva M, Vidal M, Vidaud M, Parfait B, Raynal P. FEBS Lett 580 2477-2482 (2006)
  61. Genotypic and phenotypic characterization of Noonan syndrome: new data and review of the literature. Jongmans M, Sistermans EA, Rikken A, Nillesen WM, Tamminga R, Patton M, Maier EM, Tartaglia M, Noordam K, van der Burgt I. Am J Med Genet A 134A 165-170 (2005)
  62. Mechanism of phosphorylation-induced activation of phospholipase C-gamma isozymes. Gresset A, Hicks SN, Harden TK, Sondek J. J Biol Chem 285 35836-35847 (2010)
  63. Morphogenetic movements at gastrulation require the SH2 tyrosine phosphatase Shp2. Saxton TM, Pawson T. Proc Natl Acad Sci U S A 96 3790-3795 (1999)
  64. Structure and mechanism of the RNA triphosphatase component of mammalian mRNA capping enzyme. Changela A, Ho CK, Martins A, Shuman S, Mondragón A. EMBO J 20 2575-2586 (2001)
  65. The Tudor tandem of 53BP1: a new structural motif involved in DNA and RG-rich peptide binding. Charier G, Couprie J, Alpha-Bazin B, Meyer V, Quéméneur E, Guérois R, Callebaut I, Gilquin B, Zinn-Justin S. Structure 12 1551-1562 (2004)
  66. Opposing actions of CSW and RasGAP modulate the strength of Torso RTK signaling in the Drosophila terminal pathway. Cleghon V, Feldmann P, Ghiglione C, Copeland TD, Perrimon N, Hughes DA, Morrison DK. Mol Cell 2 719-727 (1998)
  67. Pathogenetics of the RASopathies. Tidyman WE, Rauen KA. Hum Mol Genet 25 R123-R132 (2016)
  68. Specific SHP-2 partitioning in raft domains triggers integrin-mediated signaling via Rho activation. Lacalle RA, Mira E, Gomez-Mouton C, Jimenez-Baranda S, Martinez-A C, Manes S. J Cell Biol 157 277-289 (2002)
  69. Inhibition of SHP2 leads to mesenchymal to epithelial transition in breast cancer cells. Zhou XD, Agazie YM. Cell Death Differ 15 988-996 (2008)
  70. Phosphatase-defective LEOPARD syndrome mutations in PTPN11 gene have gain-of-function effects during Drosophila development. Oishi K, Zhang H, Gault WJ, Wang CJ, Tan CC, Kim IK, Ying H, Rahman T, Pica N, Tartaglia M, Mlodzik M, Gelb BD. Hum Mol Genet 18 193-201 (2009)
  71. Structural and functional integration of the PLCγ interaction domains critical for regulatory mechanisms and signaling deregulation. Bunney TD, Esposito D, Mas-Droux C, Lamber E, Baxendale RW, Martins M, Cole A, Svergun D, Driscoll PC, Katan M. Structure 20 2062-2075 (2012)
  72. Substrate specificity of protein tyrosine phosphatases 1B, RPTPα, SHP-1, and SHP-2. Ren L, Chen X, Luechapanichkul R, Selner NG, Meyer TM, Wavreille AS, Chan R, Iorio C, Zhou X, Neel BG, Pei D. Biochemistry 50 2339-2356 (2011)
  73. The Shb adaptor protein binds to tyrosine 766 in the FGFR-1 and regulates the Ras/MEK/MAPK pathway via FRS2 phosphorylation in endothelial cells. Cross MJ, Lu L, Magnusson P, Nyqvist D, Holmqvist K, Welsh M, Claesson-Welsh L. Mol Biol Cell 13 2881-2893 (2002)
  74. Loops govern SH2 domain specificity by controlling access to binding pockets. Kaneko T, Huang H, Zhao B, Li L, Liu H, Voss CK, Wu C, Schiller MR, Li SS. Sci Signal 3 ra34 (2010)
  75. Src homology region 2-containing protein tyrosine phosphatase-2 (SHP-2) can play a direct role in the inhibitory function of killer cell Ig-like receptors in human NK cells. Yusa S, Campbell KS. J Immunol 170 4539-4547 (2003)
  76. The novel Syk inhibitor R406 reveals mechanistic differences in the initiation of GPVI and CLEC-2 signaling in platelets. Spalton JC, Mori J, Pollitt AY, Hughes CE, Eble JA, Watson SP. J Thromb Haemost 7 1192-1199 (2009)
  77. Diverse driving forces underlie the invariant occurrence of the T42A, E139D, I282V and T468M SHP2 amino acid substitutions causing Noonan and LEOPARD syndromes. Martinelli S, Torreri P, Tinti M, Stella L, Bocchinfuso G, Flex E, Grottesi A, Ceccarini M, Palleschi A, Cesareni G, Castagnoli L, Petrucci TC, Gelb BD, Tartaglia M. Hum Mol Genet 17 2018-2029 (2008)
  78. Interaction of SHP-2 SH2 domains with PD-1 ITSM induces PD-1 dimerization and SHP-2 activation. Patsoukis N, Duke-Cohan JS, Chaudhri A, Aksoylar HI, Wang Q, Council A, Berg A, Freeman GJ, Boussiotis VA. Commun Biol 3 128 (2020)
  79. The catalytic region and PEST domain of PTPN18 distinctly regulate the HER2 phosphorylation and ubiquitination barcodes. Wang HM, Xu YF, Ning SL, Yang DX, Li Y, Du YJ, Yang F, Zhang Y, Liang N, Yao W, Zhang LL, Gu LC, Gao CJ, Pang Q, Chen YX, Xiao KH, Ma R, Yu X, Sun JP. Cell Res 24 1067-1090 (2014)
  80. The tyrosine phosphatase SHP2 controls TGFβ-induced STAT3 signaling to regulate fibroblast activation and fibrosis. Zehender A, Huang J, Györfi AH, Matei AE, Trinh-Minh T, Xu X, Li YN, Chen CW, Lin J, Dees C, Beyer C, Gelse K, Zhang ZY, Bergmann C, Ramming A, Birchmeier W, Distler O, Schett G, Distler JHW. Nat Commun 9 3259 (2018)
  81. CD22 ligand-binding and signaling domains reciprocally regulate B-cell Ca2+ signaling. Müller J, Obermeier I, Wöhner M, Brandl C, Mrotzek S, Angermüller S, Maity PC, Reth M, Nitschke L. Proc Natl Acad Sci U S A 110 12402-12407 (2013)
  82. Dimerization of receptor protein-tyrosine phosphatase alpha in living cells. Tertoolen LG, Blanchetot C, Jiang G, Overvoorde J, Gadella TW, Hunter T, den Hertog J. BMC Cell Biol 2 8 (2001)
  83. Crystal structure of human protein tyrosine phosphatase SHP-1 in the open conformation. Wang W, Liu L, Song X, Mo Y, Komma C, Bellamy HD, Zhao ZJ, Zhou GW. J Cell Biochem 112 2062-2071 (2011)
  84. Tandem PDZ repeats in glutamate receptor-interacting proteins have a novel mode of PDZ domain-mediated target binding. Feng W, Shi Y, Li M, Zhang M. Nat Struct Biol 10 972-978 (2003)
  85. Gain-of-function/Noonan syndrome SHP-2/Ptpn11 mutants enhance calcium oscillations and impair NFAT signaling. Uhlén P, Burch PM, Zito CI, Estrada M, Ehrlich BE, Bennett AM. Proc Natl Acad Sci U S A 103 2160-2165 (2006)
  86. PTPN11 mutations in Noonan syndrome type I: detection of recurrent mutations in exons 3 and 13. Maheshwari M, Belmont J, Fernbach S, Ho T, Molinari L, Yakub I, Yu F, Combes A, Towbin J, Craigen WJ, Gibbs R. Hum Mutat 20 298-304 (2002)
  87. Role of ERK1/2 signaling in congenital valve malformations in Noonan syndrome. Krenz M, Gulick J, Osinska HE, Colbert MC, Molkentin JD, Robbins J. Proc Natl Acad Sci U S A 105 18930-18935 (2008)
  88. SHP2-interacting transmembrane adaptor protein (SIT), a novel disulfide-linked dimer regulating human T cell activation. Marie-Cardine A, Kirchgessner H, Bruyns E, Shevchenko A, Mann M, Autschbach F, Ratnofsky S, Meuer S, Schraven B. J Exp Med 189 1181-1194 (1999)
  89. Critical role of Src and SHP-2 in sst2 somatostatin receptor-mediated activation of SHP-1 and inhibition of cell proliferation. Ferjoux G, Lopez F, Esteve JP, Ferrand A, Vivier E, Vely F, Saint-Laurent N, Pradayrol L, Buscail L, Susini C. Mol Biol Cell 14 3911-3928 (2003)
  90. Dephosphorylation of ZAP-70 and inhibition of T cell activation by activated SHP1. Brockdorff J, Williams S, Couture C, Mustelin T. Eur J Immunol 29 2539-2550 (1999)
  91. Somatic PTPN11 mutations in childhood acute myeloid leukaemia. Tartaglia M, Martinelli S, Iavarone I, Cazzaniga G, Spinelli M, Giarin E, Petrangeli V, Carta C, Masetti R, Aricò M, Locatelli F, Basso G, Sorcini M, Pession A, Biondi A. Br J Haematol 129 333-339 (2005)
  92. Kinase activation through dimerization by human SH2-B. Nishi M, Werner ED, Oh BC, Frantz JD, Dhe-Paganon S, Hansen L, Lee J, Shoelson SE. Mol Cell Biol 25 2607-2621 (2005)
  93. Mutations of the PTPN11 and RAS genes in rhabdomyosarcoma and pediatric hematological malignancies. Chen Y, Takita J, Hiwatari M, Igarashi T, Hanada R, Kikuchi A, Hongo T, Taki T, Ogasawara M, Shimada A, Hayashi Y. Genes Chromosomes Cancer 45 583-591 (2006)
  94. The tyrosine phosphatase SHP2 regulates focal adhesion kinase to promote EGF-induced lamellipodia persistence and cell migration. Hartman ZR, Schaller MD, Agazie YM. Mol Cancer Res 11 651-664 (2013)
  95. Isolation of a distinct class of gain-of-function SHP-2 mutants with oncogenic RAS-like transforming activity from solid tumors. Miyamoto D, Miyamoto M, Takahashi A, Yomogita Y, Higashi H, Kondo S, Hatakeyama M. Oncogene 27 3508-3515 (2008)
  96. Megakaryocyte-specific deletion of the protein-tyrosine phosphatases Shp1 and Shp2 causes abnormal megakaryocyte development, platelet production, and function. Mazharian A, Mori J, Wang YJ, Heising S, Neel BG, Watson SP, Senis YA. Blood 121 4205-4220 (2013)
  97. Mechanism of activating mutations and allosteric drug inhibition of the phosphatase SHP2. Pádua RAP, Sun Y, Marko I, Pitsawong W, Stiller JB, Otten R, Kern D. Nat Commun 9 4507 (2018)
  98. Role that each NKG2A immunoreceptor tyrosine-based inhibitory motif plays in mediating the human CD94/NKG2A inhibitory signal. Kabat J, Borrego F, Brooks A, Coligan JE. J Immunol 169 1948-1958 (2002)
  99. The "open" and "closed" structures of the type-C inorganic pyrophosphatases from Bacillus subtilis and Streptococcus gordonii. Ahn S, Milner AJ, Fütterer K, Konopka M, Ilias M, Young TW, White SA. J Mol Biol 313 797-811 (2001)
  100. Development of an efficient "substrate-trapping" mutant of Src homology phosphotyrosine phosphatase 2 and identification of the epidermal growth factor receptor, Gab1, and three other proteins as target substrates. Agazie YM, Hayman MJ. J Biol Chem 278 13952-13958 (2003)
  101. Grb2 controls phosphorylation of FGFR2 by inhibiting receptor kinase and Shp2 phosphatase activity. Ahmed Z, Lin CC, Suen KM, Melo FA, Levitt JA, Suhling K, Ladbury JE. J Cell Biol 200 493-504 (2013)
  102. LEOPARD Syndrome: Clinical Features and Gene Mutations. Martínez-Quintana E, Rodríguez-González F. Mol Syndromol 3 145-157 (2012)
  103. Requirement of Tyr-992 and Tyr-1173 in phosphorylation of the epidermal growth factor receptor by ionizing radiation and modulation by SHP2. Sturla LM, Amorino G, Alexander MS, Mikkelsen RB, Valerie K, Schmidt-Ullrichr RK. J Biol Chem 280 14597-14604 (2005)
  104. The Shp-2 tyrosine phosphatase activates the Src tyrosine kinase by a non-enzymatic mechanism. Walter AO, Peng ZY, Cartwright CA. Oncogene 18 1911-1920 (1999)
  105. Transgenic Drosophila models of Noonan syndrome causing PTPN11 gain-of-function mutations. Oishi K, Gaengel K, Krishnamoorthy S, Kamiya K, Kim IK, Ying H, Weber U, Perkins LA, Tartaglia M, Mlodzik M, Pick L, Gelb BD. Hum Mol Genet 15 543-553 (2006)
  106. A novel protein-protein interaction between a G protein-coupled receptor and the phosphatase SHP-2 is involved in bradykinin-induced inhibition of cell proliferation. Duchene J, Schanstra JP, Pecher C, Pizard A, Susini C, Esteve JP, Bascands JL, Girolami JP. J Biol Chem 277 40375-40383 (2002)
  107. Independent NF1 and PTPN11 mutations in a family with neurofibromatosis-Noonan syndrome. Thiel C, Wilken M, Zenker M, Sticht H, Fahsold R, Gusek-Schneider GC, Rauch A. Am J Med Genet A 149A 1263-1267 (2009)
  108. Inhibition of SHP2 ameliorates the pathogenesis of systemic lupus erythematosus. Wang J, Mizui M, Zeng LF, Bronson R, Finnell M, Terhorst C, Kyttaris VC, Tsokos GC, Zhang ZY, Kontaridis MI. J Clin Invest 126 2077-2092 (2016)
  109. Intramolecular conformational changes optimize protein kinase C signaling. Antal CE, Violin JD, Kunkel MT, Skovsø S, Newton AC. Chem Biol 21 459-469 (2014)
  110. Ligand stimulation of CD155alpha inhibits cell adhesion and enhances cell migration in fibroblasts. Oda T, Ohka S, Nomoto A. Biochem Biophys Res Commun 319 1253-1264 (2004)
  111. Protein tyrosine phosphatase activity in the neural crest is essential for normal heart and skull development. Nakamura T, Gulick J, Colbert MC, Robbins J. Proc Natl Acad Sci U S A 106 11270-11275 (2009)
  112. Specificity and affinity motifs for Grb2 SH2-ligand interactions. Kessels HW, Ward AC, Schumacher TN. Proc Natl Acad Sci U S A 99 8524-8529 (2002)
  113. Molecular basis of gain-of-function LEOPARD syndrome-associated SHP2 mutations. Yu ZH, Zhang RY, Walls CD, Chen L, Zhang S, Wu L, Liu S, Zhang ZY. Biochemistry 53 4136-4151 (2014)
  114. Selective inhibitors of the protein tyrosine phosphatase SHP2 block cellular motility and growth of cancer cells in vitro and in vivo. Grosskopf S, Eckert C, Arkona C, Radetzki S, Böhm K, Heinemann U, Wolber G, von Kries JP, Birchmeier W, Rademann J. ChemMedChem 10 815-826 (2015)
  115. Structural basis for phosphotyrosine recognition by suppressor of cytokine signaling-3. Bergamin E, Wu J, Hubbard SR. Structure 14 1285-1292 (2006)
  116. A yeast two-hybrid study of human p97/Gab2 interactions with its SH2 domain-containing binding partners. Crouin C, Arnaud M, Gesbert F, Camonis J, Bertoglio J. FEBS Lett 495 148-153 (2001)
  117. Mice lacking the ITIM-containing receptor G6b-B exhibit macrothrombocytopenia and aberrant platelet function. Mazharian A, Wang YJ, Mori J, Bem D, Finney B, Heising S, Gissen P, White JG, Berndt MC, Gardiner EE, Nieswandt B, Douglas MR, Campbell RD, Watson SP, Senis YA. Sci Signal 5 ra78 (2012)
  118. Mitotic regulators and the SHP2-MAPK pathway promote IR endocytosis and feedback regulation of insulin signaling. Choi E, Kikuchi S, Gao H, Brodzik K, Nassour I, Yopp A, Singal AG, Zhu H, Yu H. Nat Commun 10 1473 (2019)
  119. Mutated Ptpn11 alters leukemic stem cell frequency and reduces the sensitivity of acute myeloid leukemia cells to Mcl1 inhibition. Chen L, Chen W, Mysliwski M, Serio J, Ropa J, Abulwerdi FA, Chan RJ, Patel JP, Tallman MS, Paietta E, Melnick A, Levine RL, Abdel-Wahab O, Nikolovska-Coleska Z, Muntean AG. Leukemia 29 1290-1300 (2015)
  120. Role of SHP-2 in fibroblast growth factor receptor-mediated suppression of myogenesis in C2C12 myoblasts. Kontaridis MI, Liu X, Zhang L, Bennett AM. Mol Cell Biol 22 3875-3891 (2002)
  121. Genome wide analysis of pathogenic SH2 domain mutations. Lappalainen I, Thusberg J, Shen B, Vihinen M. Proteins 72 779-792 (2008)
  122. Interaction between the Yersinia protein tyrosine phosphatase YopH and eukaryotic Cas/Fyb is an important virulence mechanism. Deleuil F, Mogemark L, Francis MS, Wolf-Watz H, Fällman M. Cell Microbiol 5 53-64 (2003)
  123. Constitutive association of SHP-1 with leukocyte-associated Ig-like receptor-1 in human T cells. Sathish JG, Johnson KG, Fuller KJ, LeRoy FG, Meyaard L, Sims MJ, Matthews RJ. J Immunol 166 1763-1770 (2001)
  124. The low Mr phosphotyrosine protein phosphatase behaves differently when phosphorylated at Tyr131 or Tyr132 by Src kinase. Bucciantini M, Chiarugi P, Cirri P, Taddei L, Stefani M, Raugei G, Nordlund P, Ramponi G. FEBS Lett 456 73-78 (1999)
  125. The protein tyrosine phosphatase SHP-2 is required for EGFRvIII oncogenic transformation in human glioblastoma cells. Zhan Y, Counelis GJ, O'Rourke DM. Exp Cell Res 315 2343-2357 (2009)
  126. Identification of natural ligands for SH2 domains from a phage display cDNA library. Cochrane D, Webster C, Masih G, McCafferty J. J Mol Biol 297 89-97 (2000)
  127. Signal transduction of IL-6, leukemia-inhibitory factor, and oncostatin M: structural receptor requirements for signal attenuation. Anhuf D, Weissenbach M, Schmitz J, Sobota R, Hermanns HM, Radtke S, Linnemann S, Behrmann I, Heinrich PC, Schaper F. J Immunol 165 2535-2543 (2000)
  128. Solution structure of the MAPK phosphatase PAC-1 catalytic domain. Insights into substrate-induced enzymatic activation of MKP. Farooq A, Plotnikova O, Chaturvedi G, Yan S, Zeng L, Zhang Q, Zhou MM. Structure 11 155-164 (2003)
  129. The Skap-hom dimerization and PH domains comprise a 3'-phosphoinositide-gated molecular switch. Swanson KD, Tang Y, Ceccarelli DF, Poy F, Sliwa JP, Neel BG, Eck MJ. Mol Cell 32 564-575 (2008)
  130. Cannabinoid 1 receptor and interleukin-6 receptor together induce integration of protein kinase and transcription factor signaling to trigger neurite outgrowth. Zorina Y, Iyengar R, Bromberg KD. J Biol Chem 285 1358-1370 (2010)
  131. Discovery of a functional immunoreceptor tyrosine-based switch motif in a 7-transmembrane-spanning receptor: role in the orexin receptor OX1R-driven apoptosis. El Firar A, Voisin T, Rouyer-Fessard C, Ostuni MA, Couvineau A, Laburthe M. FASEB J 23 4069-4080 (2009)
  132. SHP2 acts both upstream and downstream of multiple receptor tyrosine kinases to promote basal-like and triple-negative breast cancer. Matalkah F, Martin E, Zhao H, Agazie YM. Breast Cancer Res 18 2 (2016)
  133. The src homology 2 domain-containing tyrosine phosphatase 2 regulates primary T-dependent immune responses and Th cell differentiation. Salmond RJ, Huyer G, Kotsoni A, Clements L, Alexander DR. J Immunol 175 6498-6508 (2005)
  134. Activating PTPN11 mutations play a minor role in pediatric and adult solid tumors. Martinelli S, Carta C, Flex E, Binni F, Cordisco EL, Moretti S, Puxeddu E, Tonacchera M, Pinchera A, McDowell HP, Dominici C, Rosolen A, Di Rocco C, Riccardi R, Celli P, Picardo M, Genuardi M, Grammatico P, Sorcini M, Tartaglia M. Cancer Genet Cytogenet 166 124-129 (2006)
  135. New insights into the catalytic activation of the MAPK phosphatase PAC-1 induced by its substrate MAPK ERK2 binding. Zhang Q, Muller M, Chen CH, Zeng L, Farooq A, Zhou MM. J Mol Biol 354 777-788 (2005)
  136. Comparative study of protein tyrosine phosphatase-epsilon isoforms: membrane localization confers specificity in cellular signalling. Andersen JN, Elson A, Lammers R, Rømer J, Clausen JT, Møller KB, Møller NP. Biochem J 354 581-590 (2001)
  137. Inhibition of the Gab2/PI3K/mTOR signaling ameliorates myeloid malignancy caused by Ptpn11 (Shp2) gain-of-function mutations. Liu W, Yu WM, Zhang J, Chan RJ, Loh ML, Zhang Z, Bunting KD, Qu CK. Leukemia 31 1415-1422 (2017)
  138. Interferon-gamma-dependent tyrosine phosphorylation of MEKK4 via Pyk2 is regulated by annexin II and SHP2 in keratinocytes. Halfter UM, Derbyshire ZE, Vaillancourt RR. Biochem J 388 17-28 (2005)
  139. Mycobacterium tuberculosis protein tyrosine phosphatase PtpB structure reveals a diverged fold and a buried active site. Grundner C, Ng HL, Alber T. Structure 13 1625-1634 (2005)
  140. Structure-based design and discovery of novel inhibitors of protein tyrosine phosphatases. Huang P, Ramphal J, Wei J, Liang C, Jallal B, McMahon G, Tang C. Bioorg Med Chem 11 1835-1849 (2003)
  141. Deletion of SHP-2 in mesenchymal stem cells causes growth retardation, limb and chest deformity, and calvarial defects in mice. Lapinski PE, Meyer MF, Feng GS, Kamiya N, King PD. Dis Model Mech 6 1448-1458 (2013)
  142. Noonan syndrome-associated SHP-2/Ptpn11 mutants enhance SIRPalpha and PZR tyrosyl phosphorylation and promote adhesion-mediated ERK activation. Eminaga S, Bennett AM. J Biol Chem 283 15328-15338 (2008)
  143. Off-target inhibition by active site-targeting SHP2 inhibitors. Tsutsumi R, Ran H, Neel BG. FEBS Open Bio 8 1405-1411 (2018)
  144. Targeting protein tyrosine phosphatase SHP2 for the treatment of PTPN11-associated malignancies. Yu B, Liu W, Yu WM, Loh ML, Alter S, Guvench O, Mackerell AD, Tang LD, Qu CK. Mol Cancer Ther 12 1738-1748 (2013)
  145. Clinical variability in a Noonan syndrome family with a new PTPN11 gene mutation. Bertola DR, Pereira AC, de Oliveira PS, Kim CA, Krieger JE. Am J Med Genet A 130A 378-383 (2004)
  146. Kaempferol suppresses collagen-induced platelet activation by inhibiting NADPH oxidase and protecting SHP-2 from oxidative inactivation. Wang SB, Jang JY, Chae YH, Min JH, Baek JY, Kim M, Park Y, Hwang GS, Ryu JS, Chang TS. Free Radic Biol Med 83 41-53 (2015)
  147. Protein Tyrosine Phosphatase SHP-2 (PTPN11) in Hematopoiesis and Leukemogenesis. Liu X, Qu CK. J Signal Transduct 2011 195239 (2011)
  148. SHP2 positively regulates TGFβ1-induced epithelial-mesenchymal transition modulated by its novel interacting protein Hook1. Li S, Wang L, Zhao Q, Liu Y, He L, Xu Q, Sun X, Teng L, Cheng H, Ke Y. J Biol Chem 289 34152-34160 (2014)
  149. Interaction of the tyrosine phosphatase SHP-2 with Gab2 regulates Rho-dependent activation of the c-fos serum response element by interleukin-2. Arnaud M, Mzali R, Gesbert F, Crouin C, Guenzi C, Vermot-Desroches C, Wijdenes J, Courtois G, Bernard O, Bertoglio J. Biochem J 382 545-556 (2004)
  150. Modulation of alpha-catenin Tyr phosphorylation by SHP2 positively effects cell transformation induced by the constitutively active FGFR3. Burks J, Agazie YM. Oncogene 25 7166-7179 (2006)
  151. Structure of the type III secretion and substrate-binding domain of Yersinia YopH phosphatase. Smith CL, Khandelwal P, Keliikuli K, Zuiderweg ER, Saper MA. Mol Microbiol 42 967-979 (2001)
  152. Targeting a cryptic allosteric site for selective inhibition of the oncogenic protein tyrosine phosphatase Shp2. Chio CM, Lim CS, Bishop AC. Biochemistry 54 497-504 (2015)
  153. The neurite outgrowth multiadaptor RhoGAP, NOMA-GAP, regulates neurite extension through SHP2 and Cdc42. Rosário M, Franke R, Bednarski C, Birchmeier W. J Cell Biol 178 503-516 (2007)
  154. Antagonism or synergism. Role of tyrosine phosphatases SHP-1 and SHP-2 in growth factor signaling. Wang N, Li Z, Ding R, Frank GD, Senbonmatsu T, Landon EJ, Inagami T, Zhao ZJ. J Biol Chem 281 21878-21883 (2006)
  155. Low-dose dasatinib rescues cardiac function in Noonan syndrome. Yi JS, Huang Y, Kwaczala AT, Kuo IY, Ehrlich BE, Campbell SG, Giordano FJ, Bennett AM. JCI Insight 1 e90220 (2016)
  156. Structure-based kinetic models of modular signaling protein function: focus on Shp2. Barua D, Faeder JR, Haugh JM. Biophys J 92 2290-2300 (2007)
  157. Letter Two novel and one recurrent PTPN11 mutations in LEOPARD syndrome. Yoshida R, Nagai T, Hasegawa T, Kinoshita E, Tanaka T, Ogata T. Am J Med Genet A 130A 432-434 (2004)
  158. A novel function for the protein tyrosine phosphatase Shp2 during lung branching morphogenesis. Tefft D, De Langhe SP, Del Moral PM, Sala F, Shi W, Bellusci S, Warburton D. Dev Biol 282 422-431 (2005)
  159. Antagonism between binding site affinity and conformational dynamics tunes alternative cis-interactions within Shp2. Sun J, Lu S, Ouyang M, Lin LJ, Zhuo Y, Liu B, Chien S, Neel BG, Wang Y. Nat Commun 4 2037 (2013)
  160. Analysis of corkscrew signaling in the Drosophila epidermal growth factor receptor pathway during myogenesis. Johnson Hamlet MR, Perkins LA. Genetics 159 1073-1087 (2001)
  161. PTPN11 mutations are not responsible for the Cardiofaciocutaneous (CFC) syndrome. Kavamura MI, Pomponi MG, Zollino M, Lecce R, Murdolo M, Brunoni D, Alchorne MM, Opitz JM, Neri G. Eur J Hum Genet 11 64-68 (2003)
  162. SHP2E76K mutant promotes lung tumorigenesis in transgenic mice. Schneeberger VE, Luetteke N, Ren Y, Berns H, Chen L, Foroutan P, Martinez GV, Haura EB, Chen J, Coppola D, Wu J. Carcinogenesis 35 1717-1725 (2014)
  163. Co-clustering of Fcgamma and B cell receptors induces dephosphorylation of the Grb2-associated binder 1 docking protein. Koncz G, Tóth GK, Bökönyi G, Kéri G, Pecht I, Medgyesi D, Gergely J, Sármay G. Eur J Biochem 268 3898-3906 (2001)
  164. Diverse levels of sequence selectivity and catalytic efficiency of protein-tyrosine phosphatases. Selner NG, Luechapanichkul R, Chen X, Neel BG, Zhang ZY, Knapp S, Bell CE, Pei D. Biochemistry 53 397-412 (2014)
  165. Dramatic increase in SHP2 binding activity of Helicobacter pylori Western CagA by EPIYA-C duplication: its implications in gastric carcinogenesis. Nagase L, Hayashi T, Senda T, Hatakeyama M. Sci Rep 5 15749 (2015)
  166. Identification of the linker-SH2 domain of STAT as the origin of the SH2 domain using two-dimensional structural alignment. Gao Q, Hua J, Kimura R, Headd JJ, Fu XY, Chin YE. Mol Cell Proteomics 3 704-714 (2004)
  167. Isothiazolidinone heterocycles as inhibitors of protein tyrosine phosphatases: synthesis and structure-activity relationships of a peptide scaffold. Yue EW, Wayland B, Douty B, Crawley ML, McLaughlin E, Takvorian A, Wasserman Z, Bower MJ, Wei M, Li Y, Ala PJ, Gonneville L, Wynn R, Burn TC, Liu PC, Combs AP. Bioorg Med Chem 14 5833-5849 (2006)
  168. PZR coordinates Shp2 Noonan and LEOPARD syndrome signaling in zebrafish and mice. Paardekooper Overman J, Yi JS, Bonetti M, Soulsby M, Preisinger C, Stokes MP, Hui L, Silva JC, Overvoorde J, Giansanti P, Heck AJ, Kontaridis MI, den Hertog J, Bennett AM. Mol Cell Biol 34 2874-2889 (2014)
  169. Structural, Functional, and Clinical Characterization of a Novel PTPN11 Mutation Cluster Underlying Noonan Syndrome. Pannone L, Bocchinfuso G, Flex E, Rossi C, Baldassarre G, Lissewski C, Pantaleoni F, Consoli F, Lepri F, Magliozzi M, Anselmi M, Delle Vigne S, Sorge G, Karaer K, Cuturilo G, Sartorio A, Tinschert S, Accadia M, Digilio MC, Zampino G, De Luca A, Cavé H, Zenker M, Gelb BD, Dallapiccola B, Stella L, Ferrero GB, Martinelli S, Tartaglia M. Hum Mutat 38 451-459 (2017)
  170. Two closely spaced tyrosines regulate NFAT signaling in B cells via Syk association with Vav. Chen CH, Martin VA, Gorenstein NM, Geahlen RL, Post CB. Mol Cell Biol 31 2984-2996 (2011)
  171. Induction of a tumor-associated activating mutation in protein tyrosine phosphatase Ptpn11 (Shp2) enhances mitochondrial metabolism, leading to oxidative stress and senescence. Zheng H, Li S, Hsu P, Qu CK. J Biol Chem 288 25727-25738 (2013)
  172. Activating mutations in protein tyrosine phosphatase Ptpn11 (Shp2) enhance reactive oxygen species production that contributes to myeloproliferative disorder. Xu D, Zheng H, Yu WM, Qu CK. PLoS One 8 e63152 (2013)
  173. Alpha7 helix plays an important role in the conformational stability of PTP1B. Olmez EO, Alakent B. J Biomol Struct Dyn 28 675-693 (2011)
  174. Expression and clinical significance of tyrosine phosphatase SHP-2 in colon cancer. Cai P, Guo W, Yuan H, Li Q, Wang W, Sun Y, Li X, Gu Y. Biomed Pharmacother 68 285-290 (2014)
  175. Molecular interactions of SHP1 and SHP2 in IL-3-signalling. Wheadon H, Paling NR, Welham MJ. Cell Signal 14 219-229 (2002)
  176. PTPN11 mutation in a large family with Noonan syndrome and dizygous twinning. Schollen E, Matthijs G, Gewillig M, Fryns JP, Legius E. Eur J Hum Genet 11 85-88 (2003)
  177. PTPN11 mutations play a minor role in isolated congenital heart disease. Weismann CG, Hager A, Kaemmerer H, Maslen CL, Morris CD, Schranz D, Kreuder J, Gelb BD. Am J Med Genet A 136 146-151 (2005)
  178. Protein tyrosine phosphatases: their role in insulin action and potential as drug targets. Evans JL, Jallal B. Expert Opin Investig Drugs 8 139-160 (1999)
  179. Resveratrol inhibits collagen-induced platelet stimulation through suppressing NADPH oxidase and oxidative inactivation of SH2 domain-containing protein tyrosine phosphatase-2. Jang JY, Min JH, Wang SB, Chae YH, Baek JY, Kim M, Ryu JS, Chang TS. Free Radic Biol Med 89 842-851 (2015)
  180. Structural and functional effects of disease-causing amino acid substitutions affecting residues Ala72 and Glu76 of the protein tyrosine phosphatase SHP-2. Bocchinfuso G, Stella L, Martinelli S, Flex E, Carta C, Pantaleoni F, Pispisa B, Venanzi M, Tartaglia M, Palleschi A. Proteins 66 963-974 (2007)
  181. The structure of the inter-SH2 domain of class IA phosphoinositide 3-kinase determined by site-directed spin labeling EPR and homology modeling. Fu Z, Aronoff-Spencer E, Backer JM, Gerfen GJ. Proc Natl Acad Sci U S A 100 3275-3280 (2003)
  182. A 3-bp deletion mutation of PTPN11 in an infant with severe Noonan syndrome including hydrops fetalis and juvenile myelomonocytic leukemia. Yoshida R, Miyata M, Nagai T, Yamazaki T, Ogata T. Am J Med Genet A 128A 63-66 (2004)
  183. Crystal structure of the MAP kinase binding domain and the catalytic domain of human MKP5. Tao X, Tong L. Protein Sci 16 880-886 (2007)
  184. Evaluation of somatic mutations in tibial pseudarthrosis samples in neurofibromatosis type 1. Sant DW, Margraf RL, Stevenson DA, Grossmann AH, Viskochil DH, Hanson H, Everitt MD, Rios JJ, Elefteriou F, Hennessey T, Mao R. J Med Genet 52 256-261 (2015)
  185. Orexins/hypocretins and orexin receptors in apoptosis: a mini-review. Laburthe M, Voisin T, El Firar A. Acta Physiol (Oxf) 198 393-402 (2010)
  186. SHP-2 tyrosine phosphatase in human diseases. Zheng H, Alter S, Qu CK. Int J Clin Exp Med 2 17-25 (2009)
  187. Simultaneous binding of two peptidyl ligands by a SRC homology 2 domain. Zhang Y, Zhang J, Yuan C, Hard RL, Park IH, Li C, Bell C, Pei D. Biochemistry 50 7637-7646 (2011)
  188. Stable interdomain interaction within the cytoplasmic domain of CD45 increases enzyme stability. Felberg J, Johnson P. Biochem Biophys Res Commun 271 292-298 (2000)
  189. Assembly of the Sos1-Grb2-Gab1 ternary signaling complex is under allosteric control. McDonald CB, Seldeen KL, Deegan BJ, Bhat V, Farooq A. Arch Biochem Biophys 494 216-225 (2010)
  190. Oncogenic Shp2 disturbs microtubule regulation to cause HDAC6-dependent ERK hyperactivation. Tien SC, Chang ZF. Oncogene 33 2938-2946 (2014)
  191. The influence of deletion mutations on phospholipase C-gamma 1 activity. Horstman DA, Chattopadhyay A, Carpenter G. Arch Biochem Biophys 361 149-155 (1999)
  192. Uncoupling ITIM receptor G6b-B from tyrosine phosphatases Shp1 and Shp2 disrupts murine platelet homeostasis. Geer MJ, van Geffen JP, Gopalasingam P, Vögtle T, Smith CW, Heising S, Kuijpers MJE, Tullemans BME, Jarvis GE, Eble JA, Jeeves M, Overduin M, Heemskerk JWM, Mazharian A, Senis YA. Blood 132 1413-1425 (2018)
  193. Crystal structure of PTP-SL/PTPBR7 catalytic domain: implications for MAP kinase regulation. Szedlacsek SE, Aricescu AR, Fulga TA, Renault L, Scheidig AJ. J Mol Biol 311 557-568 (2001)
  194. Enzyme kinetic characterization of protein tyrosine phosphatases. Peters GH, Branner S, Møller KB, Andersen JN, Møller NP. Biochimie 85 527-534 (2003)
  195. Molecular features underlying differential SHP1/SHP2 binding of immune checkpoint receptors. Xu X, Masubuchi T, Cai Q, Zhao Y, Hui E. Elife 10 e74276 (2021)
  196. Regulation of interleukin-3-induced substrate phosphorylation and cell survival by SHP-2 (Src-homology protein tyrosine phosphatase 2). Wheadon H, Edmead C, Welham MJ. Biochem J 376 147-157 (2003)
  197. SHP2 is required for BCR-ABL1-induced hematologic neoplasia. Gu S, Sayad A, Chan G, Yang W, Lu Z, Virtanen C, Van Etten RA, Neel BG. Leukemia 32 203-213 (2018)
  198. Specificity and regulation of phosphotyrosine signaling through SH2 domains. Marasco M, Carlomagno T. J Struct Biol X 4 100026 (2020)
  199. Allosteric inhibition reveals SHP2-mediated tumor immunosuppression in colon cancer by single-cell transcriptomics. Gao J, Wu Z, Zhao M, Zhang R, Li M, Sun D, Cheng H, Qi X, Shen Y, Xu Q, Chen H, Chen D, Sun Y. Acta Pharm Sin B 12 149-166 (2022)
  200. Fcgamma receptor-mediated inhibition of human B cell activation: the role of SHP-2 phosphatase. Koncz G, Pecht I, Gergely J, Sármay G. Eur J Immunol 29 1980-1989 (1999)
  201. Purification and characterization of protein tyrosine phosphatase PTP-MEG2. Qi Y, Zhao R, Cao H, Sui X, Krantz SB, Zhao ZJ. J Cell Biochem 86 79-89 (2002)
  202. Thrombin-induced association of SHP-2 with multiple tyrosine-phosphorylated proteins in human platelets. Edmead CE, Crosby DA, Southcott M, Poole AW. FEBS Lett 459 27-32 (1999)
  203. Time-resolved phosphoproteomics reveals scaffolding and catalysis-responsive patterns of SHP2-dependent signaling. Vemulapalli V, Chylek LA, Erickson A, Pfeiffer A, Gabriel KH, LaRochelle J, Subramanian K, Cao R, Stegmaier K, Mohseni M, LaMarche MJ, Acker MG, Sorger PK, Gygi SP, Blacklow SC. Elife 10 e64251 (2021)
  204. Ptpn11 Deletion in CD4+ Cells Does Not Affect T Cell Development and Functions but Causes Cartilage Tumors in a T Cell-Independent Manner. Miah SMS, Jayasuriya CT, Salter AI, Reilly EC, Fugere C, Yang W, Chen Q, Brossay L. Front Immunol 8 1326 (2017)
  205. Crystal structure of the protein histidine phosphatase SixA in the multistep His-Asp phosphorelay. Hamada K, Kato M, Shimizu T, Ihara K, Mizuno T, Hakoshima T. Genes Cells 10 1-11 (2005)
  206. Disrupting phosphatase SHP2 in macrophages protects mice from high-fat diet-induced hepatic steatosis and insulin resistance by elevating IL-18 levels. Liu W, Yin Y, Wang M, Fan T, Zhu Y, Shen L, Peng S, Gao J, Deng G, Meng X, Kong L, Feng GS, Guo W, Xu Q, Sun Y. J Biol Chem 295 10842-10856 (2020)
  207. Dysregulation of janus kinases and signal transducers and activators of transcription in cancer. Costa-Pereira AP, Bonito NA, Seckl MJ. Am J Cancer Res 1 806-816 (2011)
  208. Engineered proteins with sensing and activating modules for automated reprogramming of cellular functions. Sun J, Lei L, Tsai CM, Wang Y, Shi Y, Ouyang M, Lu S, Seong J, Kim TJ, Wang P, Huang M, Xu X, Nizet V, Chien S, Wang Y. Nat Commun 8 477 (2017)
  209. Function and molecular modeling of the interaction between human interleukin 6 and its HNK-1 oligosaccharide ligands. Cebo C, Durier V, Lagant P, Maes E, Florea D, Lefebvre T, Strecker G, Vergoten G, Zanetta JP. J Biol Chem 277 12246-12252 (2002)
  210. Gain-of-function mutations in the gene encoding the tyrosine phosphatase SHP2 induce hydrocephalus in a catalytically dependent manner. Zheng H, Yu WM, Waclaw RR, Kontaridis MI, Neel BG, Qu CK. Sci Signal 11 eaao1591 (2018)
  211. Regulation of the catalytic activity of the human phosphatase PTPN4 by its PDZ domain. Maisonneuve P, Caillet-Saguy C, Raynal B, Gilquin B, Chaffotte A, Pérez J, Zinn-Justin S, Delepierre M, Buc H, Cordier F, Wolff N. FEBS J 281 4852-4865 (2014)
  212. The Inhibitory Receptor Siglec-8 Interacts With FcεRI and Globally Inhibits Intracellular Signaling in Primary Mast Cells Upon Activation. Korver W, Wong A, Gebremeskel S, Negri GL, Schanin J, Chang K, Leung J, Benet Z, Luu T, Brock EC, Luehrsen K, Xu A, Youngblood BA. Front Immunol 13 833728 (2022)
  213. A novel partially open state of SHP2 points to a "multiple gear" regulation mechanism. Tao Y, Xie J, Zhong Q, Wang Y, Zhang S, Luo F, Wen F, Xie J, Zhao J, Sun X, Long H, Ma J, Zhang Q, Long J, Fang X, Lu Y, Li D, Li M, Zhu J, Sun B, Li G, Diao J, Liu C. J Biol Chem 296 100538 (2021)
  214. Altered regulation of SHP-2 and PTP 1B tyrosine phosphatases in cystic kidneys from bcl-2 -/- mice. Sorenson CM, Sheibani N. Am J Physiol Renal Physiol 282 F442-50 (2002)
  215. An allosteric interaction controls the activation mechanism of SHP2 tyrosine phosphatase. Anselmi M, Hub JS. Sci Rep 10 18530 (2020)
  216. Chondroitin sulfatases differentially regulate Wnt signaling in prostate stem cells through effects on SHP2, phospho-ERK1/2, and Dickkopf Wnt signaling pathway inhibitor (DKK3). Bhattacharyya S, Feferman L, Tobacman JK. Oncotarget 8 100242-100260 (2017)
  217. Protein tyrosine phosphatase SHP2/PTPN11 mistargeting as a consequence of SH2-domain point mutations associated with Noonan Syndrome and leukemia. Müller PJ, Rigbolt KT, Paterok D, Piehler J, Vanselow J, Lasonder E, Andersen JS, Schaper F, Sobota RM. J Proteomics 84 132-147 (2013)
  218. Shp2E76K mutant confers cytokine-independent survival of TF-1 myeloid cells by up-regulating Bcl-XL. Ren Y, Chen Z, Chen L, Woods NT, Reuther GW, Cheng JQ, Wang HG, Wu J. J Biol Chem 282 36463-36473 (2007)
  219. Small Molecule Inhibitor that Stabilizes the Autoinhibited Conformation of the Oncogenic Tyrosine Phosphatase SHP2. Wu X, Xu G, Li X, Xu W, Li Q, Liu W, Kirby KA, Loh ML, Li J, Sarafianos SG, Qu CK. J Med Chem 62 1125-1137 (2019)
  220. Src homology domain-containing phosphatase 2 suppresses cellular senescence in glioblastoma. Sturla LM, Zinn PO, Ng K, Nitta M, Kozono D, Chen CC, Kasper EM. Br J Cancer 105 1235-1243 (2011)
  221. The gain-of-function mutation E76K in SHP2 promotes CAC tumorigenesis and induces EMT via the Wnt/β-catenin signaling pathway. Zhang Q, Li Y, Zhao R, Wang X, Fan C, Xu Y, Liu Y, Li J, Wang S. Mol Carcinog 57 619-628 (2018)
  222. Biotinylated phosphoproteins from kinase-catalyzed biotinylation are stable to phosphatases: implications for phosphoproteomics. Senevirathne C, Pflum MK. Chembiochem 14 381-387 (2013)
  223. Molecular, clinical, and prognostic implications of PTPN11 mutations in acute myeloid leukemia. Fobare S, Kohlschmidt J, Ozer HG, Mrózek K, Nicolet D, Mims AS, Garzon R, Blachly JS, Orwick S, Carroll AJ, Stone RM, Wang ES, Kolitz JE, Powell BL, Oakes CC, Eisfeld AK, Hertlein E, Byrd JC. Blood Adv 6 1371-1380 (2022)
  224. Mutation analysis of the genes involved in the Ras-mitogen-activated protein kinase (MAPK) pathway in Korean patients with Noonan syndrome. Lee ST, Ki CS, Lee HJ. Clin Genet 72 150-155 (2007)
  225. Negative regulation of gp130 signalling mediated through tyrosine-757 is not dependent on the recruitment of SHP2. Fairlie WD, De Souza D, Nicola NA, Baca M. Biochem J 372 495-502 (2003)
  226. Pathogenic gene screening in 91 Chinese patients with short stature of unknown etiology with a targeted next-generation sequencing panel. Yang L, Zhang C, Wang W, Wang J, Xiao Y, Lu W, Ma X, Chen L, Ni J, Wang D, Shi J, Dong Z. BMC Med Genet 19 212 (2018)
  227. Potential involvement of FRS2 in insulin signaling. Delahaye L, Rocchi S, Van Obberghen E. Endocrinology 141 621-628 (2000)
  228. Treatment with insulin uncovers the motogenic capacity of nitric oxide in aortic smooth muscle cells: dependence on Gab1 and Gab1-SHP2 association. Dixit M, Zhuang D, Ceacareanu B, Hassid A. Circ Res 93 e113-23 (2003)
  229. Inhibition of a metal-dependent viral RNA triphosphatase by decavanadate. Bougie I, Bisaillon M. Biochem J 398 557-567 (2006)
  230. Organization of cell-regulatory systems through modular-protein-interaction domains. Pawson T. Philos Trans A Math Phys Eng Sci 361 1251-1262 (2003)
  231. Rational design of allosteric-inhibition sites in classical protein tyrosine phosphatases. Chio CM, Yu X, Bishop AC. Bioorg Med Chem 23 2828-2838 (2015)
  232. Relation between the flexibility of the WPD loop and the activity of the catalytic domain of protein tyrosine phosphatase SHP-1. Yang J, Niu T, Zhang A, Mishra AK, Zhao ZJ, Zhou GW. J Cell Biochem 84 47-55 (2001)
  233. Src tyrosine kinase preactivation is associated with platelet hypersensitivity in essential thrombocythemia and polycythemia vera. Randi ML, Brunati AM, Scapin M, Frasson M, Deana R, Magrin E, Fabris F, Donella-Deana A. Blood 115 667-676 (2010)
  234. A cellular target engagement assay for the characterization of SHP2 (PTPN11) phosphatase inhibitors. Romero C, Lambert LJ, Sheffler DJ, De Backer LJS, Raveendra-Panickar D, Celeridad M, Grotegut S, Rodiles S, Holleran J, Sergienko E, Pasquale EB, Cosford NDP, Tautz L. J Biol Chem 295 2601-2613 (2020)
  235. Kinetic comparison of the catalytic domains of SHP-1 and SHP-2. Niu T, Liang X, Yang J, Zhao Z, Zhou GW. J Cell Biochem 72 145-150 (1999)
  236. MAGUK SH3 domains--swapped and stranded by their kinases? Yaffe MB. Structure 10 3-5 (2002)
  237. Noonan syndrome type I with PTPN11 3 bp deletion: structure-function implications. Lee WH, Raas-Rotschild A, Miteva MA, Bolasco G, Rein A, Gillis D, Vidaud D, Vidaud M, Villoutreix BO, Parfait B. Proteins 58 7-13 (2005)
  238. The tyrosine phosphatase SHP-2 regulates differentiation and apoptosis of individual primary T lymphocytes. Hoff H, Brunner-Weinzierl MC. Eur J Immunol 37 1072-1086 (2007)
  239. Gain-Of-Function E76K-Mutant SHP2 Promotes Cell Proliferation, Metastasis, And Tumor Growth In Glioblastoma Through Activation Of The ERK/CREB Pathway. Yang F, Xu M, Wang S, Song L, Yu D, Li Y, Cao R, Xiong Z, Chen Z, Zhang Q, Zhao B, Wang S. Onco Targets Ther 12 9435-9447 (2019)
  240. Mutation of Thr466 in SHP2 abolishes its phosphatase activity, but provides a new substrate-trapping mutant. Merritt R, Hayman MJ, Agazie YM. Biochim Biophys Acta 1763 45-56 (2006)
  241. Mutational analysis of the PTPN11 gene in Egyptian patients with Noonan syndrome. Essawi ML, Ismail MF, Afifi HH, Kobesiy MM, El Kotoury A, Barakat MM. J Formos Med Assoc 112 707-712 (2013)
  242. SHP2 regulates IL-2 induced MAPK activation, but not Stat3 or Stat5 tyrosine phosphorylation, in cutaneous T cell lymphoma cells. Lundin Brockdorff J, Woetmann A, Mustelin T, Kaltoft K, Zhang Q, Wasik MA, Röpke C, Ødum N. Cytokine 20 141-147 (2002)
  243. Discovery of novel furanylbenzamide inhibitors that target oncogenic tyrosine phosphatase SHP2 in leukemia cells. Raveendra-Panickar D, Finlay D, Layng FI, Lambert LJ, Celeridad M, Zhao M, Barbosa K, De Backer LJS, Kwong E, Gosalia P, Rodiles S, Holleran J, Ardecky R, Grotegut S, Olson S, Hutchinson JH, Pasquale EB, Vuori K, Deshpande AJ, Cosford NDP, Tautz L. J Biol Chem 298 101477 (2022)
  244. EGF-stimulation activates the nuclear localization signal of SHP-1. He D, Song X, Liu L, Burk DH, Zhou GW. J Cell Biochem 94 944-953 (2005)
  245. Mechanistic insights explain the transforming potential of the T507K substitution in the protein-tyrosine phosphatase SHP2. Zhang RY, Yu ZH, Chen L, Walls CD, Zhang S, Wu L, Zhang ZY. J Biol Chem 295 6187-6201 (2020)
  246. Molecular targets for the treatment of juvenile myelomonocytic leukemia. Liu X, Sabnis H, Bunting KD, Qu CK. Adv Hematol 2012 308252 (2012)
  247. Occurrence of acute lymphoblastic leukemia and juvenile myelomonocytic leukemia in a patient with Noonan syndrome carrying the germline PTPN11 mutation p.E139D. Pauli S, Steinemann D, Dittmann K, Wienands J, Shoukier M, Möschner M, Burfeind P, Manukjan G, Göhring G, Escherich G. Am J Med Genet A 158A 652-658 (2012)
  248. Reactive oxygen species and epidermal growth factor are antagonistic cues controlling SHP-2 dimerization. Nardozza AP, D'Orazio M, Trapannone R, Corallino S, Filomeni G, Tartaglia M, Battistoni A, Cesareni G, Castagnoli L. Mol Cell Biol 32 1998-2009 (2012)
  249. Role of HLA-G in innate immunity through direct activation of NF-kappaB in natural killer cells. Guillard C, Zidi I, Marcou C, Menier C, Carosella ED, Moreau P. Mol Immunol 45 419-427 (2008)
  250. Tyrosyl phosphorylation of PZR promotes hypertrophic cardiomyopathy in PTPN11-associated Noonan syndrome with multiple lentigines. Yi JS, Perla S, Enyenihi L, Bennett AM. JCI Insight 5 137753 (2020)
  251. Understanding the Mechanism of Recognition of Gab2 by the N-SH2 Domain of SHP2. Visconti L, Malagrinò F, Pagano L, Toto A. Life (Basel) 10 E85 (2020)
  252. Determination of the molecular reach of the protein tyrosine phosphatase SHP-1. Clemens L, Kutuzov M, Bayer KV, Goyette J, Allard J, Dushek O. Biophys J 120 2054-2066 (2021)
  253. Endothelial cell SHP-2 negatively regulates neutrophil adhesion and promotes transmigration by enhancing ICAM-1-VE-cadherin interaction. Yan M, Zhang X, Chen A, Gu W, Liu J, Ren X, Zhang J, Wu X, Place AT, Minshall RD, Liu G. FASEB J 31 4759-4769 (2017)
  254. F604S exchange in FIP1L1-PDGFRA enhances FIP1L1-PDGFRA protein stability via SHP-2 and SRC: a novel mode of kinase inhibitor resistance. Gorantla SP, Zirlik K, Reiter A, Yu C, Illert AL, Von Bubnoff N, Duyster J. Leukemia 29 1763-1770 (2015)
  255. PTPN11 Gene Mutations and Its Association with the Risk of Congenital Heart Disease. Xu ZQ, Chen WC, Li YJ, Suo MJ, Tian GX, Sheng W, Huang GY. Dis Markers 2022 8290779 (2022)
  256. Phosphoproteomics-mediated identification of Fer kinase as a target of mutant Shp2 in Noonan and LEOPARD syndrome. Paardekooper Overman J, Preisinger C, Prummel K, Bonetti M, Giansanti P, Heck A, den Hertog J. PLoS One 9 e106682 (2014)
  257. Profiling Protein Tyrosine Phosphatase Specificity with Self-Assembled Monolayers for Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry and Peptide Arrays. Huang CF, Mrksich M. ACS Comb Sci 21 760-769 (2019)
  258. SHP2-Deficiency in Chondrocytes Deforms Orofacial Cartilage and Ciliogenesis in Mice. Kamiya N, Shen J, Noda K, Kitami M, Feng GS, Chen D, Komatsu Y. J Bone Miner Res 30 2028-2032 (2015)
  259. The tyrosine phosphatase SHP2 associates with CUB domain-containing protein-1 (CDCP1), regulating its expression at the cell surface in a phosphorylation-dependent manner. Gandji LY, Proust R, Larue L, Gesbert F. PLoS One 10 e0123472 (2015)
  260. Tyrosine phosphatases such as SHP-2 act in a balance with Src-family kinases in stabilization of postsynaptic clusters of acetylcholine receptors. Camilleri AA, Willmann R, Sadasivam G, Lin S, Rüegg MA, Gesemann M, Fuhrer C. BMC Neurosci 8 46 (2007)
  261. Unveiling the Molecular Basis of the Noonan Syndrome-Causing Mutation T42A of SHP2. Toto A, Malagrinò F, Visconti L, Troilo F, Gianni S. Int J Mol Sci 21 E461 (2020)
  262. Activating Mutations in PTPN11 and KRAS in Canine Histiocytic Sarcomas. Takada M, Smyth LA, Thaiwong T, Richter M, Corner SM, Schall PZ, Kiupel M, Yuzbasiyan-Gurkan V. Genes (Basel) 10 E505 (2019)
  263. Early fetal death associated with compound heterozygosity for Noonan syndrome-causative PTPN11 mutations. Becker K, Hughes H, Howard K, Armstrong M, Roberts D, Lazda EJ, Short JP, Shaw A, Patton MA, Tartaglia M. Am J Med Genet A 143A 1249-1252 (2007)
  264. Effect of limited proteolysis on phospholipase C-gamma1 kinetics. Jones GA, Wu Y. Arch Biochem Biophys 375 229-239 (2000)
  265. Novel Small-Molecule Inhibitor for the Oncogenic Tyrosine Phosphatase SHP2 with Anti-Breast Cancer Cell Effects. Hartman Z, Geldenhuys WJ, Agazie YM. ACS Omega 5 25113-25124 (2020)
  266. SHP2 Nuclear/Cytoplasmic Trafficking in Granulosa Cells Is Essential for Oocyte Meiotic Resumption and Maturation. Idrees M, Kumar V, Joo MD, Ali N, Lee KW, Kong IK. Front Cell Dev Biol 8 611503 (2020)
  267. Cryptotanshinone inhibits cytotoxin-associated gene A-associated development of gastric cancer and mucosal erosions. Chen ZM, Hu J, Xu YM, He W, Meng L, Huang T, Ying SC, Jiang Z, Xu AM. World J Gastrointest Oncol 13 693-705 (2021)
  268. Involvement of the membrane distal catalytic domain in pervanadate-induced tyrosine phosphorylation of receptor protein-tyrosine phosphatase alpha. Buist A, Blanchetot C, den Hertog J. Biochem Biophys Res Commun 267 96-102 (2000)
  269. Lethal proliferation of erythroid precursors in a neonate with a germline PTPN11 mutation. Kratz CP, Nathrath M, Freisinger P, Dressel P, Assmuss HP, Klein C, Yoshimi A, Burdach S, Niemeyer CM. Eur J Pediatr 165 182-185 (2006)
  270. Phosphorylation of SHP2 at Tyr62 Enables Acquired Resistance to SHP2 Allosteric Inhibitors in FLT3-ITD-Driven AML. Pfeiffer A, Franciosa G, Locard-Paulet M, Piga I, Reckzeh K, Vemulapalli V, Blacklow SC, Theilgaard-Mönch K, Jensen LJ, Olsen JV. Cancer Res 82 2141-2155 (2022)
  271. SHP2 deneddylation mediates tumor immunosuppression in colon cancer via the CD47/SIRPα axis. Li Y, Zhou H, Liu P, Lv D, Shi Y, Tang B, Xu J, Zhong T, Xu W, Zhang J, Zhou J, Ying K, Zhao Y, Sun Y, Jiang Z, Cheng H, Zhang X, Ke Y. J Clin Invest 133 e162870 (2023)
  272. The Shp2-induced epithelial disorganization defect is reversed by HDAC6 inhibition independent of Cdc42. Tien SC, Lee HH, Yang YC, Lin MH, Chen YJ, Chang ZF. Nat Commun 7 10420 (2016)
  273. Analyzing protein tyrosine phosphatases by phosphotyrosine analog integration. Shen K. Methods 42 234-242 (2007)
  274. Exploring the Allosteric Mechanism of Src Homology-2 Domain-Containing Protein Tyrosine Phosphatase 2 (SHP2) by Molecular Dynamics Simulations. Wang Q, Zhao WC, Fu XQ, Zheng QC. Front Chem 8 597495 (2020)
  275. Exploring the effect of E76K mutation on SHP2 cause gain-of-function activity by a molecular dynamics study. Li WY, Wei HY, Sun YZ, Zhou H, Ma Y, Wang RL. J Cell Biochem 119 9941-9956 (2018)
  276. Folding and Binding Mechanisms of the SH2 Domain from Crkl. Nardella C, Toto A, Santorelli D, Pagano L, Diop A, Pennacchietti V, Pietrangeli P, Marcocci L, Malagrinò F, Gianni S. Biomolecules 12 1014 (2022)
  277. Germline selection of PTPN11 (HGNC:9644) variants make a major contribution to both Noonan syndrome's high birth rate and the transmission of sporadic cancer variants resulting in fetal abnormality. Eboreime J, Choi SK, Yoon SR, Sadybekov A, Katritch V, Calabrese P, Arnheim N. Hum Mutat 43 2205-2221 (2022)
  278. Identification of protein tyrosine phosphatase SHP-2 as a new target of perfluoroalkyl acids in HepG2 cells. Yang Y, Lv QY, Guo LH, Wan B, Ren XM, Shi YL, Cai YQ. Arch Toxicol 91 1697-1707 (2017)
  279. Noonan syndrome: prenatal diagnosis in a woman carrying a PTPN11 gene mutation. González-Huerta NC, Valdés-Miranda JM, Pérez-Cabrera A, Pacheco-Cuellar G, González-Huerta LM, Cuevas-Covarrubias SA. J Matern Fetal Neonatal Med 23 688-691 (2010)
  280. SHP family protein tyrosine phosphatases adopt canonical active-site conformations in the apo and phosphate-bound states. Alicea-Velazquez NL, Boggon TJ. Protein Pept Lett 20 1039-1048 (2013)
  281. Shp2-Mitogen-Activated Protein Kinase Signaling Drives Proliferation during Zebrafish Embryo Caudal Fin Fold Regeneration. Hale AJ, den Hertog J. Mol Cell Biol 38 e00515-17 (2018)
  282. The tyrosine phosphatase SHP-2 dephosphorylated by ALV-J via its Env efficiently promotes ALV-J replication. Li T, Xie J, Yao X, Zhang J, Li C, Ren D, Li L, Xie Q, Shao H, Qin A, Ye J. Virulence 12 1721-1731 (2021)
  283. 1H, 13C, 15N chemical shift assignments of SHP2 SH2 domains in complex with PD-1 immune-tyrosine motifs. Marasco M, Kirkpatrick JP, Carlomagno T. Biomol NMR Assign 14 179-188 (2020)
  284. A PTPN11 gene mutation (Y63C) causing Noonan syndrome is not associated with short stature in general population. Takahashi I, Utsunomiya M, Inoue K, Takahashi T, Nozaki J, Wada Y, Takada G, Koizumi A. Tohoku J Exp Med 208 255-259 (2006)
  285. Allosteric modulation of the catalytic VYD loop in Slingshot by its N-terminal domain underlies both Slingshot auto-inhibition and activation. Yang D, Xiao P, Li Q, Fu X, Pan C, Lu D, Wen S, Xia W, He D, Li H, Fang H, Shen Y, Xu Z, Lin A, Wang C, Yu X, Wu J, Sun J. J Biol Chem 293 16226-16241 (2018)
  286. An Integrated Proteomic Strategy to Identify SHP2 Substrates. Zhu P, Wu X, Zhang RY, Hsu CC, Zhang ZY, Tao WA. J Proteome Res 21 2515-2525 (2022)
  287. Comment Arrestin NK cell cytotoxicity. Bryceson YT, Ljunggren HG. Nat Immunol 9 835-836 (2008)
  288. Arsenic exposure increases susceptibility to Ptpn11-induced malignancy in mouse embryonic fibroblasts through mitochondrial hypermetabolism. Yang F, Tan Z, Dai Y, Wang X, Huang Z, Kan C, Wang S. Am J Transl Res 14 4591-4605 (2022)
  289. Case Reports Co-occurrence of hypertrophic cardiomyopathy and juvenile myelomonocytic leukemia in a neonate with Noonan syndrome, leading to premature death. Tamura A, Uemura S, Matsubara K, Kozuki E, Tanaka T, Nino N, Yokoi T, Saito A, Ishida T, Hasegawa D, Umeki I, Niihori T, Nakazawa Y, Koike K, Aoki Y, Kosaka Y. Clin Case Rep 6 1202-1207 (2018)
  290. Computational approaches for evaluating the effect of sequence variations and the intrinsically disordered C-terminal region of the Helicobacter pylori CagA protein on the interaction with tyrosine kinase Src. Delgado P, Peñaranda N, Zamora MA, del Pilar Delgado M, Bohorquez E, Castro H, Barrios AF, Jaramillo C. J Mol Model 20 2406 (2014)
  291. Discovery of a Novel Series of Imidazopyrazine Derivatives as Potent SHP2 Allosteric Inhibitors. Torrente E, Fodale V, Ciammaichella A, Ferrigno F, Ontoria JM, Ponzi S, Rossetti I, Sferrazza A, Amaudrut J, Missineo A, Esposito S, Palombo S, Nibbio M, Cerretani M, Bisbocci M, Cellucci A, di Marco A, Alli C, Pucci V, Toniatti C, Petrocchi A. ACS Med Chem Lett 14 156-162 (2023)
  292. Inhibition of SHP2 and SHP1 Protein Tyrosine Phosphatase Activity by Chemically Induced Dimerization. Buck SJS, Plaman BA, Bishop AC. ACS Omega 7 14180-14188 (2022)
  293. Molecular cloning and characterization of a tyrosine phosphatase from Monosiga brevicollis. Zhao BF, Zhao ZJ. Biochem Biophys Res Commun 453 761-766 (2014)
  294. Nanoscale Colocalization of NK Cell Activating and Inhibitory Receptors Controls Signal Integration. Tomaz D, Pereira PM, Guerra N, Dyson J, Gould K, Henriques R. Front Immunol 13 868496 (2022)
  295. Phosphopeptide ligands of the SHP-1 N-SH2 domain: effects on binding and stimulation of phosphatase activity. Hampel K, Kaufhold I, Zacharias M, Böhmer FD, Imhof D. ChemMedChem 1 869-877 (2006)
  296. Polyphyllin D Shows Anticancer Effect through a Selective Inhibition of Src Homology Region 2-Containing Protein Tyrosine Phosphatase-2 (SHP2). Kwon SJ, Ahn D, Yang HM, Kang HJ, Chung SJ. Molecules 26 848 (2021)
  297. Protein tyrosine phosphatase SHP-1 specifically recognizes C-terminal residues of its substrates via helix alpha0. Yang J, Cheng Z, Niu T, Liang X, Zhao ZJ, Zhou GW. J Cell Biochem 83 14-20 (2001)
  298. Structure based design of selective SHP2 inhibitors by De novo design, synthesis and biological evaluation. Liu WS, Jin WY, Zhou L, Lu XH, Li WY, Ma Y, Wang RL. J Comput Aided Mol Des 33 759-774 (2019)
  299. Targeting a Pathogenic Cysteine Mutation: Discovery of a Specific Inhibitor of Y279C SHP2. Kim JY, Plaman BA, Bishop AC. Biochemistry 59 3498-3507 (2020)
  300. The benzoxathiolone LYR-71 down-regulates interferon-gamma-inducible pro-inflammatory genes by uncoupling tyrosine phosphorylation of STAT-1 in macrophages. Chung EY, Kim BH, Lee IJ, Roh E, Oh SJ, Kwak JA, Lee YR, Ahn B, Nam SY, Han SB, Kim Y. Br J Pharmacol 158 1971-1981 (2009)
  301. Letter αB-Crystallin interacts and attenuates the tyrosine phosphatase activity of Shp2 in cardiomyocytes under mechanical stress. Gonçalves DC, Marin TM, Pereira MB, Santos AM, Paes Leme AF, Franchini KG. FEBS Lett 590 2232-2240 (2016)
  302. A novel stop-gain pathogenic variant in FLT4 and a nonsynonymous pathogenic variant in PTPN11 associated with congenital heart defects. Tabib A, Talebi T, Ghasemi S, Pourirahim M, Naderi N, Maleki M, Kalayinia S. Eur J Med Res 27 286 (2022)
  303. An integrated genetic analysis of epileptogenic brain malformed lesions. Fujita A, Kato M, Sugano H, Iimura Y, Suzuki H, Tohyama J, Fukuda M, Ito Y, Baba S, Okanishi T, Enoki H, Fujimoto A, Yamamoto A, Kawamura K, Kato S, Honda R, Ono T, Shiraishi H, Egawa K, Shirai K, Yamamoto S, Hayakawa I, Kawawaki H, Saida K, Tsuchida N, Uchiyama Y, Hamanaka K, Miyatake S, Mizuguchi T, Nakashima M, Saitsu H, Miyake N, Kakita A, Matsumoto N. Acta Neuropathol Commun 11 33 (2023)
  304. Assessing Cellular Target Engagement by SHP2 (PTPN11) Phosphatase Inhibitors. Lambert LJ, Romero C, Sheffler DJ, Celeridad M, Cosford NDP, Tautz L. J Vis Exp (2020)
  305. Diverse p120RasGAP interactions with doubly phosphorylated partners EphB4, p190RhoGAP, and Dok1. Vish KJ, Stiegler AL, Boggon TJ. J Biol Chem 299 105098 (2023)
  306. Experiment-guided molecular simulations define a heterogeneous structural ensemble for the PTPN11 tandem SH2 domains. Marasco M, Kirkpatrick J, Carlomagno T, Hub JS, Anselmi M. Chem Sci 14 5743-5755 (2023)
  307. Exploration of T cell immune responses by expression of a dominant-negative SHP1 and SHP2. Taylor J, Bulek A, Gannon I, Robson M, Kokalaki E, Grothier T, McKenzie C, El-Kholy M, Stavrou M, Traynor-White C, Lim WC, Panagiotou P, Srivastava S, Baldan V, Sillibourne J, Ferrari M, Pule M, Thomas S. Front Immunol 14 1119350 (2023)
  308. FMRP activity and control of Csw/SHP2 translation regulate MAPK-dependent synaptic transmission. Leahy SN, Song C, Vita DJ, Broadie K. PLoS Biol 21 e3001969 (2023)
  309. Heterogeneous nuclear ribonucleoprotein Q is a novel substrate of SH2 domain-containing phosphatase-2. Watanabe N, Kato T, Fujita H, Kitagawa S. J Biochem 154 475-480 (2013)
  310. Identification of linderalactone as a natural inhibitor of SHP2 to ameliorate CCl4-induced liver fibrosis. Zhang Y, Cai B, Li Y, Xu Y, Wang Y, Zheng L, Zheng X, Yin L, Chen G, Wang Y, Liang G, Chen L. Front Pharmacol 14 1098463 (2023)
  311. Interactions of the protein tyrosine phosphatase PTPN3 with viral and cellular partners through its PDZ domain: insights into structural determinants and phosphatase activity. Genera M, Colcombet-Cazenave B, Croitoru A, Raynal B, Mechaly A, Caillet J, Haouz A, Wolff N, Caillet-Saguy C. Front Mol Biosci 10 1192621 (2023)
  312. Modulation of SHP-1 phosphatase activity by monovalent and bivalent SH2 phosphopeptide ligands. Teichmann K, Kühl T, Könnig I, Wieligmann K, Zacharias M, Imhof D. Biopolymers 93 102-112 (2010)
  313. P0-Related Protein Accelerates Human Mesenchymal Stromal Cell Migration by Modulating VLA-5 Interactions with Fibronectin. Roubelakis MG, Tsaknakis G, Lyu FJ, Trohatou O, Zannettino ACW, Watt SM. Cells 9 E1100 (2020)
  314. The clinical features and prognostic implications of PTPN11 mutation in adult patients with acute myeloid leukemia in China. Yang J, Zhao L, Wu Y, Niu T, Gong Y, Chen X, Huang X, Liu J, Dai Y, Ma H. Cancer Med 12 21111-21117 (2023)
  315. ¹H, ¹³C and ¹⁵N backbone and side-chain chemical shift assignments of the free and bound forms of the human PTPN11 second SH2 domain. Rubio L, Huculeci R, Buts L, Vanwetswinkel S, Lenaerts T, van Nuland NA. Biomol NMR Assign 8 297-301 (2014)
  316. A novel approach of recombinant laterosporulin production using the N-SH2 domain of SHP-2. Salehzadeh S, Tabatabaei M, Derakhshandeh A, Karbalaei-Heidari H, Kazemipour N. BMC Biotechnol 21 60 (2021)
  317. An In Silico Study Investigating Camptothecin-Analog Interaction with Human Protein Tyrosine Phosphatase, SHP2 (PTPN11). Bajia D, Derwich K. Pharmaceuticals (Basel) 16 926 (2023)
  318. Analysis of the clinical characteristics and prognosis of adult de novo acute myeloid leukemia (none APL) with PTPN11 mutations. Sheng L, Liu Y, Zhu Y, Zhou J, Hua H. Open Med (Wars) 18 20230830 (2023)
  319. Atomistic ensemble of active SHP2 phosphatase. Anselmi M, Hub JS. Commun Biol 6 1289 (2023)
  320. Construction and expression of an enzymatically active form of PECAM-1 containing the phosphatase domain of the protein tyrosine phosphatase, SHP-2. Noda M, Paddock C, Newman PJ. Protein Expr Purif 22 113-119 (2001)
  321. Deletion of PDK1 Caused Cardiac Malmorphogenesis and Heart Defects Due to Profound Protein Phosphorylation Changes Mediated by SHP2. Luo H, Yang Z, Li J, Jin H, Jiang M, Shan C. J Cardiovasc Transl Res 16 1220-1231 (2023)
  322. Design, Synthesis, and In Vitro Activity of Pyrazine Compounds. Parsonidis P, Shaik M, Serafeim AP, Vlachou I, Daikopoulou V, Papasotiriou I. Molecules 24 E4389 (2019)
  323. Development and validation of machine learning models for the prediction of SH-2 containing protein tyrosine phosphatase 2 inhibitors. Adhikari N, Ayyannan SR. Mol Divers (2023)
  324. Discovery of a Novel Series of Potent SHP2 Allosteric Inhibitors. Petrocchi A, Grillo A, Ferrante L, Randazzo P, Prandi A, De Matteo M, Iaccarino C, Bisbocci M, Cellucci A, Alli C, Nibbio M, Pucci V, Amaudrut J, Montalbetti C, Toniatti C, Di Fabio R. ACS Med Chem Lett 14 645-651 (2023)
  325. Early Combined SHP2 Targeting Reverses the Therapeutic Resistance of Vemurafenib in Thyroid Cancer. Ma W, Tian M, Hu L, Ruan X, Zhang W, Zheng X, Gao M. J Cancer 14 1592-1604 (2023)
  326. Exploring Allosteric Inhibitors of Protein Tyrosine Phosphatases Through High-Throughput Screening. Hayashi T, Hatakeyama M. Methods Mol Biol 2691 235-245 (2023)
  327. Exploring the dynamic mechanism of allosteric drug SHP099 inhibiting SHP2E69K. Du S, Lu XH, Li WY, Li LP, Ma YC, Zhou L, Wu JW, Ma Y, Wang RL. Mol Divers 25 1873-1887 (2021)
  328. Expression and purification of 15N-labeled 2-SH2 protein domain of SHP-2 from Homo sapiens in Escherichia coli for NMR studies and applications. Wu Y, Guo JF. Int J Biol Macromol 45 1-7 (2009)
  329. Macromolecular crowding amplifies allosteric regulation of T-cell protein tyrosine phosphatase. Tun MT, Yang S, Forti FL, Santelli E, Bottini N. J Biol Chem 298 102655 (2022)
  330. Mapping the Chemical Space of Active-Site Targeted Covalent Ligands for Protein Tyrosine Phosphatases. Hong SH, Xi SY, Johns AC, Tang LC, Li A, Hum MN, Chartier CA, Jovanovic M, Shah NH. Chembiochem 24 e202200706 (2023)
  331. Measuring Protein Tyrosine Phosphatase Activity Dependent on SH2 Domain-Mediated Regulation. Rios P, Kiani A, Köhn M. Methods Mol Biol 2705 351-358 (2023)
  332. NMR Methods to Study the Dynamics of SH2 Domain-Phosphopeptide Complexes. Marasco M, Kirkpatrick JP, Nanna V, Carlomagno T. Methods Mol Biol 2705 25-37 (2023)
  333. PTPN11 variant may be a prognostic indicator of IDH-wildtype glioblastoma in a comprehensive genomic profiling cohort. Otani R, Ikegami M, Yamada R, Yajima H, Kawamura S, Shimizu S, Tanaka S, Takayanagi S, Takami H, Yamaguchi T. J Neurooncol 164 221-229 (2023)
  334. SH2db, an information system for the SH2 domain. Bajusz D, Pándy-Szekeres G, Takács Á, de Araujo ED, Keserű GM. Nucleic Acids Res 51 W542-W552 (2023)
  335. SHP-1 tyrosine phosphatase binding to c-Src kinase phosphor-dependent conformations: A comparative structural framework. Gul M, Navid A, Fakhar M, Rashid S. PLoS One 18 e0278448 (2023)
  336. SHP2: its association and roles in systemic lupus erythematosus. Yang C, Li R, Su LC, Lan YY, Wang YQ, Xu WD, Huang AF. Inflamm Res 72 1501-1512 (2023)
  337. Targeting SHP2 with an Active Site Inhibitor Blocks Signaling and Breast Cancer Cell Phenotypes. Lade DM, Agazie YM. ACS Bio Med Chem Au 3 418-428 (2023)
  338. Tumor Cell-Autonomous SHP2 Contributes to Immune Suppression in Metastatic Breast Cancer. Chen H, Cresswell GM, Libring S, Ayers MG, Miao J, Zhang ZY, Solorio L, Ratliff TL, Wendt MK. Cancer Res Commun 2 1104-1118 (2022)