2rve Citations

The crystal structure of EcoRV endonuclease and of its complexes with cognate and non-cognate DNA fragments.

EMBO J 12 1781-95 (1993)
Related entries: 1rve, 4rve

Cited: 282 times
EuropePMC logo PMID: 8491171

Abstract

The crystal structure of EcoRV endonuclease has been determined at 2.5 A resolution and that of its complexes with the cognate DNA decamer GGGATATCCC (recognition sequence underlined) and the non-cognate DNA octamer CGAGCTCG at 3.0 A resolution. Two octamer duplexes of the non-cognate DNA, stacked end-to-end, are bound to the dimeric enzyme in B-DNA-like conformations. The protein--DNA interactions of this complex are prototypic for non-specific DNA binding. In contrast, only one cognate decamer duplex is bound and deviates considerably from canonical B-form DNA. Most notably, a kink of approximately 50 degrees is observed at the central TA step with a concomitant compression of the major groove. Base-specific hydrogen bonds between the enzyme and the recognition base pairs occur exclusively in the major groove. These interactions appear highly co-operative as they are all made through one short surface loop comprising residues 182-186. Numerous contacts with the sugar phosphate backbone extending beyond the recognition sequence are observed in both types of complex. However, the total surface area buried on complex formation is > 1800 A2 larger in the case of cognate DNA binding. Two acidic side chains, Asp74 and Asp90, are close to the reactive phosphodiester group in the cognate complex and most probably provide oxygen ligands for binding the essential cofactor Mg2+. An important role is also indicated for Lys92, which together with the two acidic functions appears to be conserved in the otherwise unrelated structure of EcoRI endonuclease. The structural results give new insight into the physical basis of the remarkable sequence specificity of this enzyme.

Reviews - 2rve mentioned but not cited (2)

  1. Structure and function of type II restriction endonucleases. Pingoud A, Jeltsch A. Nucleic Acids Res. 29 3705-3727 (2001)
  2. The structural basis of damaged DNA recognition and endonucleolytic cleavage for very short patch repair endonuclease. Tsutakawa SE, Morikawa K. Nucleic Acids Res. 29 3775-3783 (2001)

Articles - 2rve mentioned but not cited (4)

  1. Side-chain conformational entropy at protein-protein interfaces. Cole C, Warwicker J. Protein Sci 11 2860-2870 (2002)
  2. The energetic contribution of induced electrostatic asymmetry to DNA bending by a site-specific protein. Hancock SP, Hiller DA, Perona JJ, Jen-Jacobson L. J. Mol. Biol. 406 285-312 (2011)
  3. Protein stability indicates divergent evolution of PD-(D/E)XK type II restriction endonucleases. Fuxreiter M, Simon I. Protein Sci. 11 1978-1983 (2002)
  4. On the Possibility of Facilitated Diffusion of Dendrimers Along DNA. Ficici E, Andricioaei I. J Phys Chem B 119 6894-6904 (2015)


Reviews citing this publication (30)

  1. How do site-specific DNA-binding proteins find their targets? Halford SE, Marko JF. Nucleic Acids Res. 32 3040-3052 (2004)
  2. Homing endonucleases: keeping the house in order. Belfort M, Roberts RJ. Nucleic Acids Res. 25 3379-3388 (1997)
  3. Theory, practice, and applications of paramagnetic relaxation enhancement for the characterization of transient low-population states of biological macromolecules and their complexes. Clore GM, Iwahara J. Chem. Rev. 109 4108-4139 (2009)
  4. Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility. Chevalier BS, Stoddard BL. Nucleic Acids Res. 29 3757-3774 (2001)
  5. Base flipping. Roberts RJ, Cheng X. Annu. Rev. Biochem. 67 181-198 (1998)
  6. Recognition and cleavage of DNA by type-II restriction endonucleases. Pingoud A, Jeltsch A. Eur. J. Biochem. 246 1-22 (1997)
  7. Nucleases: diversity of structure, function and mechanism. Yang W. Q. Rev. Biophys. 44 1-93 (2011)
  8. Protein-DNA recognition complexes: conservation of structure and binding energy in the transition state. Jen-Jacobson L. Biopolymers 44 153-180 (1997)
  9. Structure and function of restriction endonucleases. Aggarwal AK. Curr. Opin. Struct. Biol. 5 11-19 (1995)
  10. Protein-DNA recognition patterns and predictions. Sarai A, Kono H. Annu Rev Biophys Biomol Struct 34 379-398 (2005)
  11. Recognition between flexible protein molecules: induced and assisted folding. Demchenko AP. J. Mol. Recognit. 14 42-61 (2001)
  12. Type II restriction endonucleases: structural, functional and evolutionary relationships. Kovall RA, Matthews BW. Curr Opin Chem Biol 3 578-583 (1999)
  13. Type II restriction endonucleases--a historical perspective and more. Pingoud A, Wilson GG, Wende W. Nucleic Acids Res. 42 7489-7527 (2014)
  14. A framework for the DNA-protein recognition code of the probe helix in transcription factors: the chemical and stereochemical rules. Suzuki M. Structure 2 317-326 (1994)
  15. DNA recognition by DNase I. Suck D. J. Mol. Recognit. 7 65-70 (1994)
  16. The DNA trackwalkers: principles of lesion search and recognition by DNA glycosylases. Zharkov DO, Grollman AP. Mutat. Res. 577 24-54 (2005)
  17. Design of novel sequence-specific DNA-binding proteins. Segal DJ, Barbas CF. Curr Opin Chem Biol 4 34-39 (2000)
  18. DNA recognition and bending. Allemann RK, Egli M. Chem. Biol. 4 643-650 (1997)
  19. Type II restriction endonucleases. Perona JJ. Methods 28 353-364 (2002)
  20. Probing enzyme phosphoester interactions by combining mutagenesis and chemical modification of phosphate ester oxygens. Stivers JT, Nagarajan R. Chem. Rev. 106 3443-3467 (2006)
  21. Structure-function correlation for the EcoRV restriction enzyme: from non-specific binding to specific DNA cleavage. Vipond IB, Halford SE. Mol. Microbiol. 9 225-231 (1993)
  22. DNA-binding proteins as site-specific nucleases. Pan CQ, Landgraf R, Sigman DS. Mol. Microbiol. 12 335-342 (1994)
  23. Electrostatic Interactions in Protein Structure, Folding, Binding, and Condensation. Zhou HX, Pang X. Chem. Rev. 118 1691-1741 (2018)
  24. BglII and MunI: what a difference a base makes. Lukacs CM, Aggarwal AK. Curr. Opin. Struct. Biol. 11 14-18 (2001)
  25. DNA totally flipped-out by methylase. Winkler FK. Structure 2 79-83 (1994)
  26. Recombination. Pieces of the site-specific recombination puzzle. Oram M, Szczelkun MD, Halford SE. Curr. Biol. 5 1106-1109 (1995)
  27. Structural and mechanistic studies on repair of 8-oxoguanine in mammalian cells. Bruner SD, Norman DP, Fromme JC, Verdine GL. Cold Spring Harb. Symp. Quant. Biol. 65 103-111 (2000)
  28. DNA-protein interactions. Flip out and modify. Suck D. Curr. Biol. 4 252-255 (1994)
  29. Categoric prediction of metal ion mechanisms in the active sites of 17 select type II restriction endonucleases. Advani S, Mishra P, Dubey S, Thakur S. Biochem. Biophys. Res. Commun. 402 177-179 (2010)
  30. Proteins Recognizing DNA: Structural Uniqueness and Versatility of DNA-Binding Domains in Stem Cell Transcription Factors. Yesudhas D, Batool M, Anwar MA, Panneerselvam S, Choi S. Genes (Basel) 8 (2017)

Articles citing this publication (246)

  1. Structure of NF-kappa B p50 homodimer bound to a kappa B site. Ghosh G, van Duyne G, Ghosh S, Sigler PB. Nature 373 303-310 (1995)
  2. Kinetics of protein-DNA interaction: facilitated target location in sequence-dependent potential. Slutsky M, Mirny LA. Biophys. J. 87 4021-4035 (2004)
  3. Protein-DNA interactions: A structural analysis. Jones S, van Heyningen P, Berman HM, Thornton JM. J. Mol. Biol. 287 877-896 (1999)
  4. DNA bending: the prevalence of kinkiness and the virtues of normality. Dickerson RE. Nucleic Acids Res. 26 1906-1926 (1998)
  5. SURVEY AND SUMMARY: holliday junction resolvases and related nucleases: identification of new families, phyletic distribution and evolutionary trajectories. Aravind L, Makarova KS, Koonin EV. Nucleic Acids Res. 28 3417-3432 (2000)
  6. A-form conformational motifs in ligand-bound DNA structures. Lu XJ, Shakked Z, Olson WK. J. Mol. Biol. 300 819-840 (2000)
  7. Sequence-dependent bending propensity of DNA as revealed by DNase I: parameters for trinucleotides. Brukner I, Sánchez R, Suck D, Pongor S. EMBO J. 14 1812-1818 (1995)
  8. Crystal structure of a human TATA box-binding protein/TATA element complex. Nikolov DB, Chen H, Halay ED, Hoffman A, Roeder RG, Burley SK. Proc. Natl. Acad. Sci. U.S.A. 93 4862-4867 (1996)
  9. Common physical properties of DNA affecting target site selection of sleeping beauty and other Tc1/mariner transposable elements. Vigdal TJ, Kaufman CD, Izsvák Z, Voytas DF, Ivics Z. J. Mol. Biol. 323 441-452 (2002)
  10. Atomic model of a pyrimidine dimer excision repair enzyme complexed with a DNA substrate: structural basis for damaged DNA recognition. Vassylyev DG, Kashiwagi T, Mikami Y, Ariyoshi M, Iwai S, Ohtsuka E, Morikawa K. Cell 83 773-782 (1995)
  11. Crystal structure of the DNA modifying enzyme beta-glucosyltransferase in the presence and absence of the substrate uridine diphosphoglucose. Vrielink A, Rüger W, Driessen HP, Freemont PS. EMBO J. 13 3413-3422 (1994)
  12. DNA bending creates favored sites for retroviral integration: an explanation for preferred insertion sites in nucleosomes. Müller HP, Varmus HE. EMBO J. 13 4704-4714 (1994)
  13. Structural basis for MutH activation in E.coli mismatch repair and relationship of MutH to restriction endonucleases. Ban C, Yang W. EMBO J. 17 1526-1534 (1998)
  14. Structure of FokI has implications for DNA cleavage. Wah DA, Bitinaite J, Schildkraut I, Aggarwal AK. Proc. Natl. Acad. Sci. U.S.A. 95 10564-10569 (1998)
  15. 1.9 A resolution refined structure of TBP recognizing the minor groove of TATAAAAG. Kim JL, Burley SK. Nat. Struct. Biol. 1 638-653 (1994)
  16. Quantifying DNA-protein interactions by double-stranded DNA arrays. Bulyk ML, Gentalen E, Lockhart DJ, Church GM. Nat. Biotechnol. 17 573-577 (1999)
  17. Thermodynamics of T cell receptor binding to peptide-MHC: evidence for a general mechanism of molecular scanning. Boniface JJ, Reich Z, Lyons DS, Davis MM. Proc. Natl. Acad. Sci. U.S.A. 96 11446-11451 (1999)
  18. Structure of PvuII endonuclease with cognate DNA. Cheng X, Balendiran K, Schildkraut I, Anderson JE. EMBO J. 13 3927-3935 (1994)
  19. NMR structural and kinetic characterization of a homeodomain diffusing and hopping on nonspecific DNA. Iwahara J, Zweckstetter M, Clore GM. Proc. Natl. Acad. Sci. U.S.A. 103 15062-15067 (2006)
  20. One- and three-dimensional pathways for proteins to reach specific DNA sites. Stanford NP, Szczelkun MD, Marko JF, Halford SE. EMBO J. 19 6546-6557 (2000)
  21. Solution structure of the HMG protein NHP6A and its interaction with DNA reveals the structural determinants for non-sequence-specific binding. Allain FH, Yen YM, Masse JE, Schultze P, Dieckmann T, Johnson RC, Feigon J. EMBO J. 18 2563-2579 (1999)
  22. Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes. Reinhard BM, Sheikholeslami S, Mastroianni A, Alivisatos AP, Liphardt J. Proc. Natl. Acad. Sci. U.S.A. 104 2667-2672 (2007)
  23. Structure of restriction endonuclease BamHI and its relationship to EcoRI. Newman M, Strzelecka T, Dorner LF, Schildkraut I, Aggarwal AK. Nature 368 660-664 (1994)
  24. Sliding and jumping of single EcoRV restriction enzymes on non-cognate DNA. Bonnet I, Biebricher A, Porté PL, Loverdo C, Bénichou O, Voituriez R, Escudé C, Wende W, Pingoud A, Desbiolles P. Nucleic Acids Res. 36 4118-4127 (2008)
  25. Protein sliding along DNA: dynamics and structural characterization. Givaty O, Levy Y. J. Mol. Biol. 385 1087-1097 (2009)
  26. Structure of BamHI bound to nonspecific DNA: a model for DNA sliding. Viadiu H, Aggarwal AK. Mol. Cell 5 889-895 (2000)
  27. 2-Aminopurine as a fluorescent probe for DNA base flipping by methyltransferases. Holz B, Klimasauskas S, Serva S, Weinhold E. Nucleic Acids Res. 26 1076-1083 (1998)
  28. Probing allostery through DNA. Kim S, Broströmer E, Xing D, Jin J, Chong S, Ge H, Wang S, Gu C, Yang L, Gao YQ, Su XD, Sun Y, Xie XS. Science 339 816-819 (2013)
  29. Alpha plus beta folds revisited: some favoured motifs. Orengo CA, Thornton JM. Structure 1 105-120 (1993)
  30. Identification of the endonuclease domain encoded by R2 and other site-specific, non-long terminal repeat retrotransposable elements. Yang J, Malik HS, Eickbush TH. Proc. Natl. Acad. Sci. U.S.A. 96 7847-7852 (1999)
  31. Elusive affinities. Janin J. Proteins 21 30-39 (1995)
  32. Atomic-resolution crystal structures of B-DNA reveal specific influences of divalent metal ions on conformation and packing. Minasov G, Tereshko V, Egli M. J. Mol. Biol. 291 83-99 (1999)
  33. Horizontal gene transfer contributes to the wide distribution and evolution of type II restriction-modification systems. Jeltsch A, Pingoud A. J. Mol. Evol. 42 91-96 (1996)
  34. Crystal structure of restriction endonuclease BglI bound to its interrupted DNA recognition sequence. Newman M, Lunnen K, Wilson G, Greci J, Schildkraut I, Phillips SE. EMBO J. 17 5466-5476 (1998)
  35. Highlights of the DNA cutters: a short history of the restriction enzymes. Loenen WA, Dryden DT, Raleigh EA, Wilson GG, Murray NE. Nucleic Acids Res. 42 3-19 (2014)
  36. Protein motion from non-specific to specific DNA by three-dimensional routes aided by supercoiling. Gowers DM, Halford SE. EMBO J. 22 1410-1418 (2003)
  37. The role of metals in catalysis by the restriction endonuclease BamHI. Viadiu H, Aggarwal AK. Nat. Struct. Biol. 5 910-916 (1998)
  38. Helix bending as a factor in protein/DNA recognition. Dickerson RE, Chiu TK. Biopolymers 44 361-403 (1997)
  39. Intermolecular and intramolecular readout mechanisms in protein-DNA recognition. Michael Gromiha M, Siebers JG, Selvaraj S, Kono H, Sarai A. J. Mol. Biol. 337 285-294 (2004)
  40. Uracil DNA glycosylase uses DNA hopping and short-range sliding to trap extrahelical uracils. Porecha RH, Stivers JT. Proc. Natl. Acad. Sci. U.S.A. 105 10791-10796 (2008)
  41. DNA conformations and their sequence preferences. Svozil D, Kalina J, Omelka M, Schneider B. Nucleic Acids Res. 36 3690-3706 (2008)
  42. Structural and evolutionary classification of Type II restriction enzymes based on theoretical and experimental analyses. Orlowski J, Bujnicki JM. Nucleic Acids Res. 36 3552-3569 (2008)
  43. Identification of the nuclease active site in the multifunctional RecBCD enzyme by creation of a chimeric enzyme. Yu M, Souaya J, Julin DA. J. Mol. Biol. 283 797-808 (1998)
  44. Unexpected structural diversity in DNA recombination: the restriction endonuclease connection. Hickman AB, Li Y, Mathew SV, May EW, Craig NL, Dyda F. Mol. Cell 5 1025-1034 (2000)
  45. Analysis of local helix bending in crystal structures of DNA oligonucleotides and DNA-protein complexes. Young MA, Ravishanker G, Beveridge DL, Berman HM. Biophys. J. 68 2454-2468 (1995)
  46. Crowding effects on EcoRV kinetics and binding. Wenner JR, Bloomfield VA. Biophys. J. 77 3234-3241 (1999)
  47. Substrate-assisted catalysis in the cleavage of DNA by the EcoRI and EcoRV restriction enzymes. Jeltsch A, Alves J, Wolfes H, Maass G, Pingoud A. Proc. Natl. Acad. Sci. U.S.A. 90 8499-8503 (1993)
  48. Recognition of nucleic acid bases and base-pairs by hydrogen bonding to amino acid side-chains. Cheng AC, Chen WW, Fuhrmann CN, Frankel AD. J. Mol. Biol. 327 781-796 (2003)
  49. The Cfr10I restriction enzyme is functional as a tetramer. Siksnys V, Skirgaila R, Sasnauskas G, Urbanke C, Cherny D, Grazulis S, Huber R. J. Mol. Biol. 291 1105-1118 (1999)
  50. Crystal structure of PvuII endonuclease reveals extensive structural homologies to EcoRV. Athanasiadis A, Vlassi M, Kotsifaki D, Tucker PA, Wilson KS, Kokkinidis M. Nat. Struct. Biol. 1 469-475 (1994)
  51. Linear diffusion of the restriction endonuclease EcoRV on DNA is essential for the in vivo function of the enzyme. Jeltsch A, Wenz C, Stahl F, Pingoud A. EMBO J. 15 5104-5111 (1996)
  52. Metal ion-mediated substrate-assisted catalysis in type II restriction endonucleases. Horton NC, Newberry KJ, Perona JJ. Proc. Natl. Acad. Sci. U.S.A. 95 13489-13494 (1998)
  53. Specific binding by EcoRV endonuclease to its DNA recognition site GATATC. Engler LE, Welch KK, Jen-Jacobson L. J. Mol. Biol. 269 82-101 (1997)
  54. The RuvC protein dimer resolves Holliday junctions by a dual incision mechanism that involves base-specific contacts. Shah R, Cosstick R, West SC. EMBO J. 16 1464-1472 (1997)
  55. An induced fit mechanism regulates p53 DNA binding kinetics to confer sequence specificity. Petty TJ, Emamzadah S, Costantino L, Petkova I, Stavridi ES, Saven JG, Vauthey E, Halazonetis TD. EMBO J. 30 2167-2176 (2011)
  56. Frustration in protein-DNA binding influences conformational switching and target search kinetics. Marcovitz A, Levy Y. Proc. Natl. Acad. Sci. U.S.A. 108 17957-17962 (2011)
  57. Crystallographic and functional studies of very short patch repair endonuclease. Tsutakawa SE, Muto T, Kawate T, Jingami H, Kunishima N, Ariyoshi M, Kohda D, Nakagawa M, Morikawa K. Mol. Cell 3 621-628 (1999)
  58. Resolving the relationships of resolving enzymes. Lilley DM, White MF. Proc. Natl. Acad. Sci. U.S.A. 97 9351-9353 (2000)
  59. Sequence, structure and functional diversity of PD-(D/E)XK phosphodiesterase superfamily. Steczkiewicz K, Muszewska A, Knizewski L, Rychlewski L, Ginalski K. Nucleic Acids Res. 40 7016-7045 (2012)
  60. Structural, functional, and evolutionary relationships between lambda-exonuclease and the type II restriction endonucleases. Kovall RA, Matthews BW. Proc. Natl. Acad. Sci. U.S.A. 95 7893-7897 (1998)
  61. A view of consecutive binding events from structures of tetrameric endonuclease SfiI bound to DNA. Vanamee ES, Viadiu H, Kucera R, Dorner L, Picone S, Schildkraut I, Aggarwal AK. EMBO J. 24 4198-4208 (2005)
  62. DNA excision by the Sfi I restriction endonuclease. Nobbs TJ, Szczelkun MD, Wentzell LM, Halford SE. J. Mol. Biol. 281 419-432 (1998)
  63. DNA-tension dependence of restriction enzyme activity reveals mechanochemical properties of the reaction pathway. van den Broek B, Noom MC, Wuite GJ. Nucleic Acids Res. 33 2676-2684 (2005)
  64. Defining the enzyme binding domain of a ribonuclease III processing signal. Ethylation interference and hydroxyl radical footprinting using catalytically inactive RNase III mutants. Li H, Nicholson AW. EMBO J. 15 1421-1433 (1996)
  65. Five-stranded beta-sheet sandwiched with two alpha-helices: a structural link between restriction endonucleases EcoRI and EcoRV. Venclovas C, Timinskas A, Siksnys V. Proteins 20 279-282 (1994)
  66. MutH complexed with hemi- and unmethylated DNAs: coupling base recognition and DNA cleavage. Lee JY, Chang J, Joseph N, Ghirlando R, Rao DN, Yang W. Mol. Cell 20 155-166 (2005)
  67. PvuII endonuclease contains two calcium ions in active sites. Horton JR, Cheng X. J. Mol. Biol. 300 1049-1056 (2000)
  68. Crystal structure of NaeI-an evolutionary bridge between DNA endonuclease and topoisomerase. Huai Q, Colandene JD, Chen Y, Luo F, Zhao Y, Topal MD, Ke H. EMBO J. 19 3110-3118 (2000)
  69. Crystal structure of the Bse634I restriction endonuclease: comparison of two enzymes recognizing the same DNA sequence. Grazulis S, Deibert M, Rimseliene R, Skirgaila R, Sasnauskas G, Lagunavicius A, Repin V, Urbanke C, Huber R, Siksnys V. Nucleic Acids Res. 30 876-885 (2002)
  70. Calculation of weak protein-protein interactions: the pH dependence of the second virial coefficient. Elcock AH, McCammon JA. Biophys. J. 80 613-625 (2001)
  71. Conformational transitions and structural deformability of EcoRV endonuclease revealed by crystallographic analysis. Perona JJ, Martin AM. J. Mol. Biol. 273 207-225 (1997)
  72. DNA cleavage by the EcoRV restriction endonuclease: roles of divalent metal ions in specificity and catalysis. Baldwin GS, Sessions RB, Erskine SG, Halford SE. J. Mol. Biol. 288 87-103 (1999)
  73. Catalytic and DNA binding properties of PvuII restriction endonuclease mutants. Nastri HG, Evans PD, Walker IH, Riggs PD. J. Biol. Chem. 272 25761-25767 (1997)
  74. NeSL-1, an ancient lineage of site-specific non-LTR retrotransposons from Caenorhabditis elegans. Malik HS, Eickbush TH. Genetics 154 193-203 (2000)
  75. Specificity of protein-DNA recognition revealed by structure-based potentials: symmetric/asymmetric and cognate/non-cognate binding. Selvaraj S, Kono H, Sarai A. J. Mol. Biol. 322 907-915 (2002)
  76. Heterogeneity in molecular recognition by restriction endonucleases: osmotic and hydrostatic pressure effects on BamHI, Pvu II, and EcoRV specificity. Robinson CR, Sligar SG. Proc. Natl. Acad. Sci. U.S.A. 92 3444-3448 (1995)
  77. Crystal structure of the beta beta alpha-Me type II restriction endonuclease Hpy99I with target DNA. Sokolowska M, Czapinska H, Bochtler M. Nucleic Acids Res. 37 3799-3810 (2009)
  78. Modifying the helical structure of DNA by design: recruitment of an architecture-specific protein to an enforced DNA bend. Wolfe SA, Ferentz AE, Grantcharova V, Churchill ME, Verdine GL. Chem. Biol. 2 213-221 (1995)
  79. Structure of restriction endonuclease bamhi phased at 1.95 A resolution by MAD analysis. Newman M, Strzelecka T, Dorner LF, Schildkraut I, Aggarwal AK. Structure 2 439-452 (1994)
  80. A bridge crosses the active-site canyon of the Epstein-Barr virus nuclease with DNase and RNase activities. Buisson M, Géoui T, Flot D, Tarbouriech N, Ressing ME, Wiertz EJ, Burmeister WP. J. Mol. Biol. 391 717-728 (2009)
  81. Target DNA bending is an important specificity determinant in target site selection in Tn10 transposition. Pribil PA, Haniford DB. J. Mol. Biol. 330 247-259 (2003)
  82. Baculovirus alkaline nuclease possesses a 5'-->3' exonuclease activity and associates with the DNA-binding protein LEF-3. Mikhailov VS, Okano K, Rohrmann GF. J. Virol. 77 2436-2444 (2003)
  83. Evidence for an evolutionary relationship among type-II restriction endonucleases. Jeltsch A, Kröger M, Pingoud A. Gene 160 7-16 (1995)
  84. Interaction of the intron-encoded mobility endonuclease I-PpoI with its target site. Ellison EL, Vogt VM. Mol. Cell. Biol. 13 7531-7539 (1993)
  85. Introduction of asymmetry in the naturally symmetric restriction endonuclease EcoRV to investigate intersubunit communication in the homodimeric protein. Stahl F, Wende W, Jeltsch A, Pingoud A. Proc. Natl. Acad. Sci. U.S.A. 93 6175-6180 (1996)
  86. Direct observation of DNA bending/unbending kinetics in complex with DNA-bending protein IHF. Kuznetsov SV, Sugimura S, Vivas P, Crothers DM, Ansari A. Proc. Natl. Acad. Sci. U.S.A. 103 18515-18520 (2006)
  87. How NF-kappaB can be attracted by its cognate DNA. Tisné C, Delepierre M, Hartmann B. J. Mol. Biol. 293 139-150 (1999)
  88. Modelling repressor proteins docking to DNA. Aloy P, Moont G, Gabb HA, Querol E, Aviles FX, Sternberg MJ. Proteins 33 535-549 (1998)
  89. Restriction enzyme BsoBI-DNA complex: a tunnel for recognition of degenerate DNA sequences and potential histidine catalysis. van der Woerd MJ, Pelletier JJ, Xu S, Friedman AM. Structure 9 133-144 (2001)
  90. Binding, bending and cleavage of DNA substrates by the homing endonuclease Pl-SceI. Wende W, Grindl W, Christ F, Pingoud A, Pingoud V. Nucleic Acids Res. 24 4123-4132 (1996)
  91. Reactions of the eco RV restriction endonuclease with fluorescent oligodeoxynucleotides: identical equilibrium constants for binding to specific and non-specific DNA. Erskine SG, Halford SE. J. Mol. Biol. 275 759-772 (1998)
  92. Sequence-specific recognition and cleavage of telomeric repeat (TTAGG)(n) by endonuclease of non-long terminal repeat retrotransposon TRAS1. Anzai T, Takahashi H, Fujiwara H. Mol. Cell. Biol. 21 100-108 (2001)
  93. Thermodynamics of sequence-specific protein-DNA interactions. Härd T, Lundbäck T. Biophys. Chem. 62 121-139 (1996)
  94. Crystallographic snapshots along a protein-induced DNA-bending pathway. Horton NC, Perona JJ. Proc. Natl. Acad. Sci. U.S.A. 97 5729-5734 (2000)
  95. Oligomerization of DNMT3A controls the mechanism of de novo DNA methylation. Holz-Schietinger C, Matje DM, Harrison MF, Reich NO. J. Biol. Chem. 286 41479-41488 (2011)
  96. Substrate DNA and cofactor regulate the activities of a multi-functional restriction-modification enzyme, BcgI. Kong H, Smith CL. Nucleic Acids Res. 25 3687-3692 (1997)
  97. Role of protein-induced bending in the specificity of DNA recognition: crystal structure of EcoRV endonuclease complexed with d(AAAGAT) + d(ATCTT). Horton NC, Perona JJ. J. Mol. Biol. 277 779-787 (1998)
  98. Sequence-specific recognition of cytosine C5 and adenine N6 DNA methyltransferases requires different deformations of DNA. Garcia RA, Bustamante CJ, Reich NO. Proc. Natl. Acad. Sci. U.S.A. 93 7618-7622 (1996)
  99. DNA cleavage by the EcoRV restriction endonuclease: pH dependence and proton transfers in catalysis. Stanford NP, Halford SE, Baldwin GS. J. Mol. Biol. 288 105-116 (1999)
  100. Direct selection of binding proficient/catalytic deficient variants of BamHI endonuclease. Dorner LF, Schildkraut I. Nucleic Acids Res. 22 1068-1074 (1994)
  101. Tension-dependent DNA cleavage by restriction endonucleases: two-site enzymes are "switched off" at low force. Gemmen GJ, Millin R, Smith DE. Proc. Natl. Acad. Sci. U.S.A. 103 11555-11560 (2006)
  102. The conserved asparagine in the HNH motif serves an important structural role in metal finger endonucleases. Huang H, Yuan HS. J. Mol. Biol. 368 812-821 (2007)
  103. Assessment of the optimization of affinity and specificity at protein-DNA interfaces. Ashworth J, Baker D. Nucleic Acids Res. 37 e73 (2009)
  104. Mammalian retroposons integrate at kinkable DNA sites. Jurka J, Klonowski P, Trifonov EN. J Biomol Struct Dyn 15 717-721 (1998)
  105. Site-directed mutagenesis in the catalytic center of the restriction endonuclease EcoRI. Grabowski G, Jeltsch A, Wolfes H, Maass G, Alves J. Gene 157 113-118 (1995)
  106. Structural basis for human PRDM9 action at recombination hot spots. Patel A, Horton JR, Wilson GG, Zhang X, Cheng X. Genes Dev. 30 257-265 (2016)
  107. Crystal structure of an engineered Cro monomer bound nonspecifically to DNA: possible implications for nonspecific binding by the wild-type protein. Albright RA, Mossing MC, Matthews BW. Protein Sci. 7 1485-1494 (1998)
  108. Diffusion of the restriction nuclease EcoRI along DNA. Rau DC, Sidorova NY. J. Mol. Biol. 395 408-416 (2010)
  109. Structural basis for sequence-dependent DNA cleavage by nonspecific endonucleases. Wang YT, Yang WJ, Li CL, Doudeva LG, Yuan HS. Nucleic Acids Res. 35 584-594 (2007)
  110. Structure of HinP1I endonuclease reveals a striking similarity to the monomeric restriction enzyme MspI. Yang Z, Horton JR, Maunus R, Wilson GG, Roberts RJ, Cheng X. Nucleic Acids Res. 33 1892-1901 (2005)
  111. The active site of the junction-resolving enzyme T7 endonuclease I. Déclais AC, Hadden J, Phillips SE, Lilley DM. J. Mol. Biol. 307 1145-1158 (2001)
  112. Steric mechanism of auto-inhibitory regulation of specific and non-specific DNA binding by the ETS transcriptional repressor ETV6. De S, Chan AC, Coyne HJ, Bhachech N, Hermsdorf U, Okon M, Murphy ME, Graves BJ, McIntosh LP. J. Mol. Biol. 426 1390-1406 (2014)
  113. DNA looping by two-site restriction endonucleases: heterogeneous probability distributions for loop size and unbinding force. Gemmen GJ, Millin R, Smith DE. Nucleic Acids Res. 34 2864-2877 (2006)
  114. Identification of single Mn(2+) binding sites required for activation of the mutant proteins of E.coli RNase HI at Glu48 and/or Asp134 by X-ray crystallography. Tsunaka Y, Takano K, Matsumura H, Yamagata Y, Kanaya S. J. Mol. Biol. 345 1171-1183 (2005)
  115. Substrate recognition and induced DNA deformation by transposase at the target-capture stage of Tn10 transposition. Pribil PA, Haniford DB. J. Mol. Biol. 303 145-159 (2000)
  116. Analyzing the functional organization of a novel restriction modification system, the BcgI system. Kong H. J. Mol. Biol. 279 823-832 (1998)
  117. From nonspecific DNA-protein encounter complexes to the prediction of DNA-protein interactions. Gao M, Skolnick J. PLoS Comput. Biol. 5 e1000341 (2009)
  118. Asp34 of PvuII endonuclease is directly involved in DNA minor groove recognition and indirectly involved in catalysis. Horton JR, Nastri HG, Riggs PD, Cheng X. J. Mol. Biol. 284 1491-1504 (1998)
  119. Defining the DNA substrate binding sites on HIV-1 integrase. Dolan J, Chen A, Weber IT, Harrison RW, Leis J. J. Mol. Biol. 385 568-579 (2009)
  120. Enforced presentation of an extrahelical guanine to the lesion recognition pocket of human 8-oxoguanine glycosylase, hOGG1. Crenshaw CM, Nam K, Oo K, Kutchukian PS, Bowman BR, Karplus M, Verdine GL. J. Biol. Chem. 287 24916-24928 (2012)
  121. Evidence for substrate-assisted catalysis in the DNA cleavage of several restriction endonucleases. Jeltsch A, Pleckaityte M, Selent U, Wolfes H, Siksnys V, Pingoud A. Gene 157 157-162 (1995)
  122. Multiple roles for divalent metal ions in DNA transposition: distinct stages of Tn10 transposition have different Mg2+ requirements. Junop MS, Haniford DB. EMBO J. 15 2547-2555 (1996)
  123. The crystal structure of the rare-cutting restriction enzyme SdaI reveals unexpected domain architecture. Tamulaitiene G, Jakubauskas A, Urbanke C, Huber R, Grazulis S, Siksnys V. Structure 14 1389-1400 (2006)
  124. Crystal structure and nucleic acid-binding activity of the CRISPR-associated protein Csx1 of Pyrococcus furiosus. Kim YK, Kim YG, Oh BH. Proteins 81 261-270 (2013)
  125. Dramatic changes in DNA-binding specificity caused by single residue substitutions in an Arc/Mnt hybrid repressor. Raumann BE, Knight KL, Sauer RT. Nat. Struct. Biol. 2 1115-1122 (1995)
  126. Towards the design of rare cutting restriction endonucleases: using directed evolution to generate variants of EcoRV differing in their substrate specificity by two orders of magnitude. Lanio T, Jeltsch A, Pingoud A. J. Mol. Biol. 283 59-69 (1998)
  127. BstYI bound to noncognate DNA reveals a "hemispecific" complex: implications for DNA scanning. Townson SA, Samuelson JC, Bao Y, Xu SY, Aggarwal AK. Structure 15 449-459 (2007)
  128. Early interrogation and recognition of DNA sequence by indirect readout. Little EJ, Babic AC, Horton NC. Structure 16 1828-1837 (2008)
  129. The specificity of sty SKI, a type I restriction enzyme, implies a structure with rotational symmetry. Thorpe PH, Ternent D, Murray NE. Nucleic Acids Res. 25 1694-1700 (1997)
  130. Tyrosine 27 of the specificity polypeptide of EcoKI can be UV crosslinked to a bromodeoxyuridine-substituted DNA target sequence. Chen A, Powell LM, Dryden DT, Murray NE, Brown T. Nucleic Acids Res. 23 1177-1183 (1995)
  131. A homology model of restriction endonuclease SfiI in complex with DNA. Chmiel AA, Bujnicki JM, Skowronek KJ. BMC Struct. Biol. 5 2 (2005)
  132. A switch in the mechanism of communication between the two DNA-binding sites in the SfiI restriction endonuclease. Bellamy SR, Milsom SE, Kovacheva YS, Sessions RB, Halford SE. J. Mol. Biol. 373 1169-1183 (2007)
  133. Backbone dynamics of sequence specific recognition and binding by the yeast Pho4 bHLH domain probed by NMR. Cave JW, Kremer W, Wemmer DE. Protein Sci. 9 2354-2365 (2000)
  134. Conformational changes and cleavage by the homing endonuclease I-PpoI: a critical role for a leucine residue in the active site. Galburt EA, Chadsey MS, Jurica MS, Chevalier BS, Erho D, Tang W, Monnat RJ, Stoddard BL. J. Mol. Biol. 300 877-887 (2000)
  135. Cross-linking of SsoII restriction endonuclease to cognate and non-cognate DNAs. Sheflyan GYa, Kubareva EA, Kuznetsova SA, Karyagina AS, Nikolskaya II, Gromova ES, Shabarova ZA. FEBS Lett. 390 307-310 (1996)
  136. Interfacial water as a "hydration fingerprint" in the noncognate complex of BamHI. Fuxreiter M, Mezei M, Simon I, Osman R. Biophys. J. 89 903-911 (2005)
  137. Structure of 5-hydroxymethylcytosine-specific restriction enzyme, AbaSI, in complex with DNA. Horton JR, Borgaro JG, Griggs RM, Quimby A, Guan S, Zhang X, Wilson GG, Zheng Y, Zhu Z, Cheng X. Nucleic Acids Res. 42 7947-7959 (2014)
  138. Crystallographic studies of DNA helix structure. Heinemann U, Alings C, Hahn M. Biophys. Chem. 50 157-167 (1994)
  139. DNA concentration-dependent dissociation of EcoRI: direct transfer or reaction during hopping. Sidorova NY, Scott T, Rau DC. Biophys. J. 104 1296-1303 (2013)
  140. Energetic and structural considerations for the mechanism of protein sliding along DNA in the nonspecific BamHI-DNA complex. Sun J, Viadiu H, Aggarwal AK, Weinstein H. Biophys. J. 84 3317-3325 (2003)
  141. Kinetic analyses of divalent cation-dependent EcoRV digestions on a DNA-immobilized quartz crystal microbalance. Takahashi S, Matsuno H, Furusawa H, Okahata Y. Anal. Biochem. 361 210-217 (2007)
  142. Mapping the transition state for DNA bending by IHF. Vivas P, Velmurugu Y, Kuznetsov SV, Rice PA, Ansari A. J. Mol. Biol. 418 300-315 (2012)
  143. PI-PfuI and PI-PfuII, intein-coded homing endonucleases from Pyrococcus furiosus. II. Characterization Of the binding and cleavage abilities by site-directed mutagenesis. Komori K, Ichiyanagi K, Morikawa K, Ishino Y. Nucleic Acids Res. 27 4175-4182 (1999)
  144. SfiI endonuclease activity is strongly influenced by the non-specific sequence in the middle of its recognition site. Williams SA, Halford SE. Nucleic Acids Res. 29 1476-1483 (2001)
  145. Changes in DNA bending and flexing due to tethered cations detected by fluorescence resonance energy transfer. Williams SL, Parkhurst LK, Parkhurst LJ. Nucleic Acids Res. 34 1028-1035 (2006)
  146. Dynamic conformational change regulates the protein-DNA recognition: an investigation on binding of a Y-family polymerase to its target DNA. Chu X, Liu F, Maxwell BA, Wang Y, Suo Z, Wang H, Han W, Wang J. PLoS Comput. Biol. 10 e1003804 (2014)
  147. Effects of divalent metal ions on the activity and conformation of native and 3-fluorotyrosine-PvuII endonucleases. Dupureur CM, Hallman LM. Eur. J. Biochem. 261 261-268 (1999)
  148. Functional analysis of MmeI from methanol utilizer Methylophilus methylotrophus, a subtype IIC restriction-modification enzyme related to type I enzymes. Nakonieczna J, Kaczorowski T, Obarska-Kosinska A, Bujnicki JM. Appl. Environ. Microbiol. 75 212-223 (2009)
  149. The transcriptional activity of a muscle-specific promoter depends critically on the structure of the TATA element and its binding protein. Diagana TT, North DL, Jabet C, Fiszman MY, Takeda S, Whalen RG. J. Mol. Biol. 265 480-493 (1997)
  150. Cloning, expression, and purification of a thermostable nonhomodimeric restriction enzyme, BslI. Hsieh PC, Xiao JP, O'loane D, Xu SY. J. Bacteriol. 182 949-955 (2000)
  151. High affinity binding of MEF-2C correlates with DNA bending. Meierhans D, Sieber M, Allemann RK. Nucleic Acids Res. 25 4537-4544 (1997)
  152. Sequence-dependent enhancement of hydrolytic deamination of cytosines in DNA by the restriction enzyme PspGI. Carpenter M, Divvela P, Pingoud V, Bujnicki J, Bhagwat AS. Nucleic Acids Res. 34 3762-3770 (2006)
  153. Transcription factor-dependent DNA bending governs promoter recognition by the mitochondrial RNA polymerase. Tang GQ, Deshpande AP, Patel SS. J. Biol. Chem. 286 38805-38813 (2011)
  154. Two crystal forms of the restriction enzyme MspI-DNA complex show the same novel structure. Xu QS, Roberts RJ, Guo HC. Protein Sci. 14 2590-2600 (2005)
  155. DNABind: a hybrid algorithm for structure-based prediction of DNA-binding residues by combining machine learning- and template-based approaches. Liu R, Hu J. Proteins 81 1885-1899 (2013)
  156. Expression, purification, and crystallization of restriction endonuclease PvuII with DNA containing its recognition site. Balendiran K, Bonventre J, Knott R, Jack W, Benner J, Schildkraut I, Anderson JE. Proteins 19 77-79 (1994)
  157. Implications for switching restriction enzyme specificities from the structure of BstYI bound to a BglII DNA sequence. Townson SA, Samuelson JC, Xu SY, Aggarwal AK. Structure 13 791-801 (2005)
  158. Insights into RNA/DNA hybrid recognition and processing by RNase H from the crystal structure of a non-specific enzyme-dsDNA complex. Pallan PS, Egli M. Cell Cycle 7 2562-2569 (2008)
  159. Non-cognate enzyme-DNA complex: structural and kinetic analysis of EcoRV endonuclease bound to the EcoRI recognition site GAATTC. Hiller DA, Rodriguez AM, Perona JJ. J. Mol. Biol. 354 121-136 (2005)
  160. Recognition of native DNA methylation by the PvuII restriction endonuclease. Rice MR, Blumenthal RM. Nucleic Acids Res. 28 3143-3150 (2000)
  161. Site-directed mutagenesis of the yeast resolving enzyme Cce1 reveals catalytic residues and relationship with the intron-splicing factor Mrs1. Wardleworth BN, Kvaratskhelia M, White MF. J. Biol. Chem. 275 23725-23728 (2000)
  162. Structural analysis of a mutational hot-spot in the EcoRV restriction endonuclease: a catalytic role for a main chain carbonyl group. Thomas MP, Brady RL, Halford SE, Sessions RB, Baldwin GS. Nucleic Acids Res. 27 3438-3445 (1999)
  163. Synthesis and properties of oligodeoxynucleotides containing the analogue 2'-deoxy-4'-thiothymidine. Hancox EL, Connolly BA, Walker RT. Nucleic Acids Res. 21 3485-3491 (1993)
  164. Thermodynamic and kinetic basis for the relaxed DNA sequence specificity of "promiscuous" mutant EcoRI endonucleases. Sapienza PJ, Dela Torre CA, McCoy WH, Jana SV, Jen-Jacobson L. J. Mol. Biol. 348 307-324 (2005)
  165. A theoretical model of restriction endonuclease NlaIV in complex with DNA, predicted by fold recognition and validated by site-directed mutagenesis and circular dichroism spectroscopy. Chmiel AA, Radlinska M, Pawlak SD, Krowarsch D, Bujnicki JM, Skowronek KJ. Protein Eng. Des. Sel. 18 181-189 (2005)
  166. Catalytic efficiency and sequence selectivity of a restriction endonuclease modulated by a distal manganese ion binding site. Sam MD, Horton NC, Nissan TA, Perona JJ. J. Mol. Biol. 306 851-861 (2001)
  167. Cloning and sequence comparison of AvaI and BsoBI restriction-modification systems. Ruan H, Lunnen KD, Scott ME, Moran LS, Slatko BE, Pelletier JJ, Hess EJ, Benner J, Wilson GG, Xu SY. Mol. Gen. Genet. 252 695-699 (1996)
  168. DNA recognition by the EcoRV restriction endonuclease probed using base analogues. Parry D, Moon SA, Liu HH, Heslop P, Connolly BA. J. Mol. Biol. 331 1005-1016 (2003)
  169. Modulation of Escherichia coli DNA methyltransferase activity by biologically derived GATC-flanking sequences. Coffin SR, Reich NO. J. Biol. Chem. 283 20106-20116 (2008)
  170. The crystal structure analysis of d(CGCGAASSCGCG)2, a synthetic DNA dodecamer duplex containing four 4'-thio-2'-deoxythymidine nucleotides. Boggon TJ, Hancox EL, McAuley-Hecht KE, Connolly BA, Hunter WN, Brown T, Walker RT, Leonard GA. Nucleic Acids Res. 24 951-961 (1996)
  171. Tyr212: a key residue involved in strand discrimination by the DNA mismatch repair endonuclease MutH. Friedhoff P, Thomas E, Pingoud A. J. Mol. Biol. 325 285-297 (2003)
  172. Crosslinking the EcoRV restriction endonuclease across the DNA-binding site reveals transient intermediates and conformational changes of the enzyme during DNA binding and catalytic turnover. Schulze C, Jeltsch A, Franke I, Urbanke C, Pingoud A. EMBO J. 17 6757-6766 (1998)
  173. Insights into nonspecific binding of homeodomains from a structure of MATalpha2 bound to DNA. Aishima J, Wolberger C. Proteins 51 544-551 (2003)
  174. Involvement of conserved histidine, lysine and tyrosine residues in the mechanism of DNA cleavage by the caspase-3 activated DNase CAD. Korn C, Scholz SR, Gimadutdinow O, Pingoud A, Meiss G. Nucleic Acids Res. 30 1325-1332 (2002)
  175. Methyl-dependent and spatial-specific DNA recognition by the orthologous transcription factors human AP-1 and Epstein-Barr virus Zta. Hong S, Wang D, Horton JR, Zhang X, Speck SH, Blumenthal RM, Cheng X. Nucleic Acids Res. 45 2503-2515 (2017)
  176. The M.EcoRV DNA-(adenine N6)-methyltransferase uses DNA bending for recognition of an expanded EcoDam recognition site. Jurkowski TP, Anspach N, Kulishova L, Nellen W, Jeltsch A. J Biol Chem 282 36942-36952 (2007)
  177. Comment A sliding restriction enzyme pauses. Pingoud A, Wende W. Structure 15 391-393 (2007)
  178. Bioinformatic analysis of the protein/DNA interface. Schneider B, Cerný J, Svozil D, Cech P, Gelly JC, de Brevern AG. Nucleic Acids Res. 42 3381-3394 (2014)
  179. Cleavage of mispaired heteroduplex DNA substrates by numerous restriction enzymes. Langhans MT, Palladino MJ. Curr Issues Mol Biol 11 1-12 (2009)
  180. Letter Different enzymes with similar structures involved in Mg(2+)-mediated polynucleotidyl transfer. Venclovas C, Siksnys V. Nat. Struct. Biol. 2 838-841 (1995)
  181. Mechanism of DNA recognition by the restriction enzyme EcoRV. Zahran M, Daidone I, Smith JC, Imhof P. J. Mol. Biol. 401 415-432 (2010)
  182. Tn10 transposase mutants with altered transpososome unfolding properties are defective in hairpin formation. Humayun S, Wardle SJ, Shilton BH, Pribil PA, Liburd J, Haniford DB. J. Mol. Biol. 346 703-716 (2005)
  183. Unexpected A-form formation of 4'-thioDNA in solution, revealed by NMR, and the implications as to the mechanism of nuclease resistance. Matsugami A, Ohyama T, Inada M, Inoue N, Minakawa N, Matsuda A, Katahira M. Nucleic Acids Res. 36 1805-1812 (2008)
  184. News A recipe for specificity. Arbuckle ND, Luisi B. Nat. Struct. Biol. 2 341-346 (1995)
  185. Asp-59 is not important for the catalytic activity of the restriction endonuclease EcoRI. Grabowski G, Maass G, Alves J. FEBS Lett. 381 106-110 (1996)
  186. Automatic workflow for the classification of local DNA conformations. Čech P, Kukal J, Černý J, Schneider B, Svozil D. BMC Bioinformatics 14 205 (2013)
  187. Common patterns in type II restriction enzyme binding sites. Nikolajewa S, Beyer A, Friedel M, Hollunder J, Wilhelm T. Nucleic Acids Res. 33 2726-2733 (2005)
  188. Dynamics of single DNA looping and cleavage by Sau3AI and effect of tension applied to the DNA. Gemmen GJ, Millin R, Smith DE. Biophys. J. 91 4154-4165 (2006)
  189. Mycobacterium tuberculosis RecA intein, a LAGLIDADG homing endonuclease, displays Mn(2+) and DNA-dependent ATPase activity. Guhan N, Muniyappa K. Nucleic Acids Res. 31 4184-4191 (2003)
  190. Restriction enzymes increase efficiencies of illegitimate DNA integration but decrease homologous integration in mammalian cells. Manivasakam P, Aubrecht J, Sidhom S, Schiestl RH. Nucleic Acids Res. 29 4826-4833 (2001)
  191. Solution parameters modulating DNA binding specificity of the restriction endonuclease EcoRV. Sidorova NY, Muradymov S, Rau DC. FEBS J. 278 2713-2727 (2011)
  192. Asn141 is essential for DNA recognition by EcoRI restriction endonuclease. Fritz A, Küster W, Alves J. FEBS Lett. 438 66-70 (1998)
  193. Assaying multiple restriction endonucleases functionalities and inhibitions on DNA microarray with multifunctional gold nanoparticle probes. Ma L, Zhu Z, Li T, Wang Z. Biosens Bioelectron 52 118-123 (2014)
  194. Cloning and thermostability of TaqI endonuclease isoschizomers from Thermus species SM32 and Thermus filiformis Tok6A1. Cao W, Lu J, Welch SG, Williams RA, Barany F. Biochem. J. 333 ( Pt 2) 425-431 (1998)
  195. Crystal structure of the PvuII restriction endonuclease. Cheng X, Balendiran K, Schildkraut I, Anderson JE. Gene 157 139-140 (1995)
  196. DNA determinants in sequence-specific recognition by XmaI endonuclease. Withers BE, Dunbar JC. Nucleic Acids Res. 23 3571-3577 (1995)
  197. DNA intercalation without flipping in the specific ThaI-DNA complex. Firczuk M, Wojciechowski M, Czapinska H, Bochtler M. Nucleic Acids Res. 39 744-754 (2011)
  198. Integration of bioinformatics and computational biology to understand protein-DNA recognition mechanism. Sarai A, Siebers J, Selvaraj S, Gromiha MM, Kono H. J Bioinform Comput Biol 3 169-183 (2005)
  199. NMR analysis of duplex d(CGCGATCGCG)2 modified by Lambda- and Delta-[Ru(bpy)2(m-GHK)]Cl2 and DNA photocleavage study. Myari A, Hadjiliadis N, Garoufis A, Malina J, Brabec V. J. Biol. Inorg. Chem. 12 279-292 (2007)
  200. Organization and sequence of the SalI restriction-modification system. Rodicio MR, Quinton-Jager T, Moran LS, Slatko BE, Wilson GG. Gene 151 167-172 (1994)
  201. Structure, mechanics, and binding mode heterogeneity of LEDGF/p75-DNA nucleoprotein complexes revealed by scanning force microscopy. Vanderlinden W, Lipfert J, Demeulemeester J, Debyser Z, De Feyter S. Nanoscale 6 4611-4619 (2014)
  202. BspRI restriction endonuclease: cloning, expression in Escherichia coli and sequential cleavage mechanism. Raskó T, Dér A, Klement E, Slaska-Kiss K, Pósfai E, Medzihradszky KF, Marshak DR, Roberts RJ, Kiss A. Nucleic Acids Res. 38 7155-7166 (2010)
  203. Efficient methodology for the cyclization of linear peptide libraries via intramolecular S-alkylation using Multipin solid phase peptide synthesis. Roberts KD, Lambert JN, Ede NJ, Bray AM. J. Pept. Sci. 12 525-532 (2006)
  204. Factors influencing resistance of UV-irradiated DNA to the restriction endonuclease cleavage. Kejnovský E, Nejedlý K, Kypr J. Int. J. Biol. Macromol. 34 213-222 (2004)
  205. Identification of a base-specific contact between the restriction endonuclease SsoII and its recognition sequence by photocross-linking. Kubareva EA, Thole H, Karyagina AS, Oretskaya TS, Pingoud A, Pingoud V. Nucleic Acids Res. 28 1085-1091 (2000)
  206. Influence of divalent cations on inner-arm mutants of restriction endonuclease EcoRI. Windolph S, Alves J. Eur. J. Biochem. 244 134-139 (1997)
  207. Optical mapping of DNA polymerase I action and products. Hu X, Aston C, Schwartz DC. Biochem. Biophys. Res. Commun. 254 466-473 (1999)
  208. Positively charged C-terminal subdomains of EcoRV endonuclease: contributions to DNA binding, bending, and cleavage. Hiller DA, Perona JJ. Biochemistry 45 11453-11463 (2006)
  209. Spurring on transcription? Travers AA, Schwabe JW. Curr. Biol. 3 898-900 (1993)
  210. Theoretical model of restriction endonuclease HpaI in complex with DNA, predicted by fold recognition and validated by site-directed mutagenesis. Skowronek KJ, Kosinski J, Bujnicki JM. Proteins 63 1059-1068 (2006)
  211. Asymmetric DNA recognition by the OkrAI endonuclease, an isoschizomer of BamHI. Vanamee ES, Viadiu H, Chan SH, Ummat A, Hartline AM, Xu SY, Aggarwal AK. Nucleic Acids Res. 39 712-719 (2011)
  212. Contributions of the histidine side chain and the N-terminal alpha-amino group to the binding thermodynamics of oligopeptides to nucleic acids as a function of pH. Ballin JD, Prevas JP, Ross CR, Toth EA, Wilson GM, Record MT. Biochemistry 49 2018-2030 (2010)
  213. Crystal structure solution of a ParB-like nuclease at atomic resolution. Shaw N, Tempel W, Chang J, Yang H, Cheng C, Ng J, Rose J, Rao Z, Wang BC, Liu ZJ. Proteins 70 263-267 (2008)
  214. Interactions of the EcoRV restriction endonuclease with fluorescent oligodeoxynucleotides. Erskine SG, Halford SE. Gene 157 153-156 (1995)
  215. PvuII-endonuclease induces structural alterations at the scissile phosphate group of its cognate DNA. Rauch C, Trieb M, Flader W, Wellenzohn B, Winger RH, Mayer E, Hallbrucker A, Liedl KR. J. Mol. Biol. 324 491-500 (2002)
  216. The elastic network model reveals a consistent picture on intrinsic functional dynamics of type II restriction endonucleases. Uyar A, Kurkcuoglu O, Nilsson L, Doruker P. Phys Biol 8 056001 (2011)
  217. A human transcription factor in search mode. Hauser K, Essuman B, He Y, Coutsias E, Garcia-Diaz M, Simmerling C. Nucleic Acids Res. 44 63-74 (2016)
  218. DNA interaction of the CcrM DNA methyltransferase: a mutational and modeling study. Albu RF, Zacharias M, Jurkowski TP, Jeltsch A. Chembiochem 13 1304-1311 (2012)
  219. Magnesium ions enhance the transfer of human papillomavirus E2 protein from non-specific to specific binding sites. Lewis H, Gaston K. J. Mol. Biol. 294 885-896 (1999)
  220. Role of magnesium ions in DNA recognition by the EcoRV restriction endonuclease. Zahran M, Berezniak T, Imhof P, Smith JC. FEBS Lett. 585 2739-2743 (2011)
  221. News A gripping end to NF-kappa B. Aggarwal AK. Nat. Struct. Biol. 2 184-186 (1995)
  222. Crystal packing interaction that blocks crystallization of a site-specific DNA binding protein-DNA complex. Littlefield O, Nelson HC. Proteins 45 219-228 (2001)
  223. DNA recognition by the SwaI restriction endonuclease involves unusual distortion of an 8 base pair A:T-rich target. Shen BW, Heiter DF, Lunnen KD, Wilson GG, Stoddard BL. Nucleic Acids Res. 45 1516-1528 (2017)
  224. DNA-induced conformational changes in type II restriction endonucleases: the structure of unliganded HincII. Little EJ, Horton NC. J. Mol. Biol. 351 76-88 (2005)
  225. Identification of protein structural elements responsible for the diversity of sequence preferences among Mini-III RNases. Głów D, Kurkowska M, Czarnecka J, Szczepaniak K, Pianka D, Kappert V, Bujnicki JM, Skowronek KJ. Sci Rep 6 38612 (2016)
  226. No limits on restriction. Riddihough G. Nature 370 78 (1994)
  227. Properties and secondary structure analysis of BanI endonuclease: identification of putative active site. Advani S, Roy KB. Biochem. Biophys. Res. Commun. 279 11-16 (2000)
  228. The amino acidic substitution of cysteine 167 by serine (C167S) in BstVI restriction endonuclease of Bacillus stearothermophilus V affects its conformation and thermostability. Loyola C, Saavedra C, Gómez I, Vásquez C. Biochimie 81 261-266 (1999)
  229. Distortion of double-stranded DNA structure by the binding of the restriction DNA glycosylase R.PabI. Miyazono KI, Wang D, Ito T, Tanokura M. Nucleic Acids Res 48 5106-5118 (2020)
  230. Investigating the effect of charged amino acids on DNA conformation in EcoRI-DNA complex: a molecular dynamics simulation study. Ramachandrakurup S, Ammapalli S, Ramakrishnan V. J. Biomol. Struct. Dyn. 35 3540-3554 (2017)
  231. Metal Ion Binding at the Catalytic Site Induces Widely Distributed Changes in a Sequence Specific Protein-DNA Complex. Sinha K, Sangani SS, Kehr AD, Rule GS, Jen-Jacobson L. Biochemistry 55 6115-6132 (2016)
  232. Molecular dynamics simulation of a 13-mer duplex DNA: a PvuII substrate. Kolaskar AS, Joshi RR. J. Biomol. Struct. Dyn. 15 1155-1165 (1998)
  233. Protein interfacial pocket engineering via coupled computational filtering and biological focusing criterion. Reza F, Zuo P, Tian J. Ann Biomed Eng 35 1026-1036 (2007)
  234. A spectroscopic method to determine the activity of the restriction endonuclease EcoRV that involves a single reaction. Huang Q, Quiñones E. Anal. Biochem. 497 103-105 (2016)
  235. B-to-A transition in target DNA during retroviral integration. Jóźwik IK, Li W, Zhang DW, Wong D, Grawenhoff J, Ballandras-Colas A, Aiyer S, Cherepanov P, Engelman AN, Lyumkis D. Nucleic Acids Res 50 8898-8918 (2022)
  236. Conformational Change of Transcription Factors from Search to Specific Binding: A lac Repressor Case Study. Lüking M, Elf J, Levy Y. J Phys Chem B 126 9971-9984 (2022)
  237. Crystal structure and DNA cleavage mechanism of the restriction DNA glycosylase R.CcoLI from Campylobacter coli. Miyazono KI, Wang D, Ito T, Tanokura M. Sci Rep 11 859 (2021)
  238. In situ monitoring of a trace intermediate during DNA phosphorylation by T4 polynucleotide kinase for transient kinetic studies. Furusawa H, Uemura K, Yoshimine H, Okahata Y. Analyst 137 1334-1337 (2012)
  239. In-depth study of DNA binding of Cys2His2 finger domains in testis zinc-finger protein. Chou CC, Wei SY, Lou YC, Chen C. PLoS ONE 12 e0175051 (2017)
  240. Restriction endonucleases that cleave RNA/DNA heteroduplexes bind dsDNA in A-like conformation. Kisiala M, Kowalska M, Pastor M, Korza HJ, Czapinska H, Bochtler M. Nucleic Acids Res 48 6954-6969 (2020)
  241. Sequence-dependent cleavage of mismatched DNA by Ban I restriction endonuclease. Gao W, Zhu D, Keohavong P. J. Mol. Recognit. 30 (2017)
  242. Structural basis for substrate discrimination by E. coli repair enzyme, AlkB. Jayanth N, Ogirala N, Yadav A, Puranik M. RSC Adv 8 1281-1291 (2018)
  243. Structure of HhaI endonuclease with cognate DNA at an atomic resolution of 1.0 Å. Horton JR, Yang J, Zhang X, Petronzio T, Fomenkov A, Wilson GG, Roberts RJ, Cheng X. Nucleic Acids Res 48 1466-1478 (2020)
  244. Tetrameric structure of the restriction DNA glycosylase R.PabI in complex with nonspecific double-stranded DNA. Wang D, Miyazono KI, Tanokura M. Sci Rep 6 35197 (2016)
  245. Unique 31P spectral response to the formation of a specific restriction enzyme-DNA complex. Dupureur CM. Nucleosides Nucleotides Nucleic Acids 25 747-764 (2006)
  246. Using single-turnover kinetics with osmotic stress to characterize the EcoRV cleavage reaction. Ferrandino R, Sidorova N, Rau D. Biochemistry 53 235-246 (2014)


Related citations provided by authors (1)

  1. Crystallization of Complexes of EcoRV Endonuclease with Cognate and Non-Cognate DNA Fragments. Winkler FK, D'Arcy A, Bloecker H, Frank R, Van Boom JH J. Mol. Biol. 217 235-238 (1991)