2r17 Citations

Functional architecture of the retromer cargo-recognition complex.

Abstract

The retromer complex is required for the sorting of acid hydrolases to lysosomes, transcytosis of the polymeric immunoglobulin receptor, Wnt gradient formation, iron transporter recycling and processing of the amyloid precursor protein. Human retromer consists of two smaller complexes: the cargo recognition VPS26-VPS29-VPS35 heterotrimer and a membrane-targeting heterodimer or homodimer of SNX1 and/or SNX2 (ref. 13). Here we report the crystal structure of a VPS29-VPS35 subcomplex showing how the metallophosphoesterase-fold subunit VPS29 (refs 14, 15) acts as a scaffold for the carboxy-terminal half of VPS35. VPS35 forms a horseshoe-shaped, right-handed, alpha-helical solenoid, the concave face of which completely covers the metal-binding site of VPS29, whereas the convex face exposes a series of hydrophobic interhelical grooves. Electron microscopy shows that the intact VPS26-VPS29-VPS35 complex is a stick-shaped, flexible structure, approximately 21 nm long. A hybrid structural model derived from crystal structures, electron microscopy, interaction studies and bioinformatics shows that the alpha-solenoid fold extends the full length of VPS35, and that VPS26 is bound at the opposite end from VPS29. This extended structure presents multiple binding sites for the SNX complex and receptor cargo, and appears capable of flexing to conform to curved vesicular membranes.

Reviews - 2r17 mentioned but not cited (1)

  1. From the baker to the bedside: yeast models of Parkinson's disease. Menezes R, Tenreiro S, Macedo D, Santos CN, Outeiro TF. Microb Cell 2 262-279 (2015)


Reviews citing this publication (32)

  1. Systems-wide Studies Uncover Commander, a Multiprotein Complex Essential to Human Development. Mallam AL, Marcotte EM. Cell Syst 4 483-494 (2017)
  2. Updated Insight into the Physiological and Pathological Roles of the Retromer Complex. Abubakar YS, Zheng W, Olsson S, Zhou J. Int J Mol Sci 18 (2017)
  3. Multiple Roles of the Small GTPase Rab7. Guerra F, Bucci C. Cells 5 (2016)
  4. Defects in trafficking bridge Parkinson's disease pathology and genetics. Abeliovich A, Gitler AD. Nature 539 207-216 (2016)
  5. The life cycle of phagosomes: formation, maturation, and resolution. Levin R, Grinstein S, Canton J. Immunol. Rev. 273 156-179 (2016)
  6. The role of the retromer complex in aging-related neurodegeneration: a molecular and genomic review. Reitz C. Mol. Genet. Genomics 290 413-427 (2015)
  7. Retromer: Structure, function, and roles in mammalian disease. Trousdale C, Kim K. Eur. J. Cell Biol. 94 513-521 (2015)
  8. Retromer-Mediated Trafficking of Transmembrane Receptors and Transporters. Klinger SC, Siupka P, Nielsen MS. Membranes (Basel) 5 288-306 (2015)
  9. Retromer-mediated endosomal protein sorting: The role of unstructured domains. Mukadam AS, Seaman MN. FEBS Lett. 589 2620-2626 (2015)
  10. Biogenesis of endosome-derived transport carriers. Chi RJ, Harrison MS, Burd CG. Cell. Mol. Life Sci. 72 3441-3455 (2015)
  11. Molecular dynamics at the endocytic portal and regulations of endocytic and recycling traffics. McDermott H, Kim K. Eur. J. Cell Biol. 94 235-248 (2015)
  12. International Union of Basic and Clinical Pharmacology. XCIII. The parathyroid hormone receptors--family B G protein-coupled receptors. Gardella TJ, Vilardaga JP. Pharmacol. Rev. 67 310-337 (2015)
  13. Progress in unraveling the genetic etiology of Parkinson disease in a genomic era. Verstraeten A, Theuns J, Van Broeckhoven C. Trends Genet. 31 140-149 (2015)
  14. Retromer and sorting nexins in endosomal sorting. Gallon M, Cullen PJ. Biochem. Soc. Trans. 43 33-47 (2015)
  15. Retromer: a master conductor of endosome sorting. Burd C, Cullen PJ. Cold Spring Harb Perspect Biol 6 (2014)
  16. Endosomal generation of cAMP in GPCR signaling. Vilardaga JP, Jean-Alphonse FG, Gardella TJ. Nat. Chem. Biol. 10 700-706 (2014)
  17. Membrane-associated cargo recycling by tubule-based endosomal sorting. van Weering JR, Cullen PJ. Semin. Cell Dev. Biol. 31 40-47 (2014)
  18. The VPS35 gene and Parkinson's disease. Deng H, Gao K, Jankovic J. Mov. Disord. 28 569-575 (2013)
  19. A cost-benefit analysis of the physical mechanisms of membrane curvature. Stachowiak JC, Brodsky FM, Miller EA. Nat. Cell Biol. 15 1019-1027 (2013)
  20. Phosphoinositides in the mammalian endo-lysosomal network. Cullen PJ, Carlton JG. Subcell. Biochem. 59 65-110 (2012)
  21. Hereditary spastic paraplegias: membrane traffic and the motor pathway. Blackstone C, O'Kane CJ, Reid E. Nat. Rev. Neurosci. 12 31-42 (2011)
  22. Sorting nexins provide diversity for retromer-dependent trafficking events. Cullen PJ, Korswagen HC. Nat. Cell Biol. 14 29-37 (2011)
  23. Recent advances in retromer biology. McGough IJ, Cullen PJ. Traffic 12 963-971 (2011)
  24. Evolution of specificity in the eukaryotic endomembrane system. Dacks JB, Peden AA, Field MC. Int. J. Biochem. Cell Biol. 41 330-340 (2009)
  25. First and last ancestors: reconstructing evolution of the endomembrane system with ESCRTs, vesicle coat proteins, and nuclear pore complexes. Field MC, Dacks JB. Curr. Opin. Cell Biol. 21 4-13 (2009)
  26. Retromer. Bonifacino JS, Hurley JH. Curr. Opin. Cell Biol. 20 427-436 (2008)
  27. Multivesicular bodies: co-ordinated progression to maturity. Woodman PG, Futter CE. Curr. Opin. Cell Biol. 20 408-414 (2008)
  28. Endosomal sorting and signalling: an emerging role for sorting nexins. Cullen PJ. Nat. Rev. Mol. Cell Biol. 9 574-582 (2008)
  29. The structure and function of the retromer protein complex. Collins BM. Traffic 9 1811-1822 (2008)
  30. Endosomal functions in plants. Otegui MS, Spitzer C. Traffic 9 1589-1598 (2008)
  31. Tracing the retrograde route in protein trafficking. Johannes L, Popoff V. Cell 135 1175-1187 (2008)
  32. Cell polarity signaling: focus on polar auxin transport. Gao X, Nagawa S, Wang G, Yang Z. Mol Plant 1 899-909 (2008)

Articles citing this publication (83)

  1. An in vivo map of the yeast protein interactome. Tarassov K, Messier V, Landry CR, Radinovic S, Serna Molina MM, Shames I, Malitskaya Y, Vogel J, Bussey H, Michnick SW. Science 320 1465-1470 (2008)
  2. A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. Zimprich A, Benet-Pagès A, Struhal W, Graf E, Eck SH, Offman MN, Haubenberger D, Spielberger S, Schulte EC, Lichtner P, Rossle SC, Klopp N, Wolf E, Seppi K, Pirker W, Presslauer S, Mollenhauer B, Katzenschlager R, Foki T, Hotzy C, Reinthaler E, Harutyunyan A, Kralovics R, Peters A, Zimprich F, Brücke T, Poewe W, Auff E, Trenkwalder C, Rost B, Ransmayr G, Winkelmann J, Meitinger T, Strom TM. Am. J. Hum. Genet. 89 168-175 (2011)
  3. VPS35 mutations in Parkinson disease. Vilariño-Güell C, Wider C, Ross OA, Dachsel JC, Kachergus JM, Lincoln SJ, Soto-Ortolaza AI, Cobb SA, Wilhoite GJ, Bacon JA, Behrouz B, Melrose HL, Hentati E, Puschmann A, Evans DM, Conibear E, Wasserman WW, Aasly JO, Burkhard PR, Djaldetti R, Ghika J, Hentati F, Krygowska-Wajs A, Lynch T, Melamed E, Rajput A, Rajput AH, Solida A, Wu RM, Uitti RJ, Wszolek ZK, Vingerhoets F, Farrer MJ. Am. J. Hum. Genet. 89 162-167 (2011)
  4. Regulation of retromer recruitment to endosomes by sequential action of Rab5 and Rab7. Rojas R, van Vlijmen T, Mardones GA, Prabhu Y, Rojas AL, Mohammed S, Heck AJ, Raposo G, van der Sluijs P, Bonifacino JS. J. Cell Biol. 183 513-526 (2008)
  5. Membrane recruitment of the cargo-selective retromer subcomplex is catalysed by the small GTPase Rab7 and inhibited by the Rab-GAP TBC1D5. Seaman MN, Harbour ME, Tattersall D, Read E, Bright N. J. Cell. Sci. 122 2371-2382 (2009)
  6. Mutation in VPS35 associated with Parkinson's disease impairs WASH complex association and inhibits autophagy. Zavodszky E, Seaman MN, Moreau K, Jimenez-Sanchez M, Breusegem SY, Harbour ME, Rubinsztein DC. Nat Commun 5 3828 (2014)
  7. Retromer terminates the generation of cAMP by internalized PTH receptors. Feinstein TN, Wehbi VL, Ardura JA, Wheeler DS, Ferrandon S, Gardella TJ, Vilardaga JP. Nat. Chem. Biol. 7 278-284 (2011)
  8. Recruitment of the endosomal WASH complex is mediated by the extended 'tail' of Fam21 binding to the retromer protein Vps35. Harbour ME, Breusegem SY, Seaman MN. Biochem. J. 442 209-220 (2012)
  9. Rab GTPase-activating proteins in autophagy: regulation of endocytic and autophagy pathways by direct binding to human ATG8 modifiers. Popovic D, Akutsu M, Novak I, Harper JW, Behrends C, Dikic I. Mol. Cell. Biol. 32 1733-1744 (2012)
  10. Analysis of articulation between clathrin and retromer in retrograde sorting on early endosomes. Popoff V, Mardones GA, Bai SK, Chambon V, Tenza D, Burgos PV, Shi A, Benaroch P, Urbé S, Lamaze C, Grant BD, Raposo G, Johannes L. Traffic 10 1868-1880 (2009)
  11. EHD3 regulates early-endosome-to-Golgi transport and preserves Golgi morphology. Naslavsky N, McKenzie J, Altan-Bonnet N, Sheff D, Caplan S. J. Cell. Sci. 122 389-400 (2009)
  12. Structure of Vps26B and mapping of its interaction with the retromer protein complex. Collins BM, Norwood SJ, Kerr MC, Mahony D, Seaman MN, Teasdale RD, Owen DJ. Traffic 9 366-379 (2008)
  13. Multiple repeat elements within the FAM21 tail link the WASH actin regulatory complex to the retromer. Jia D, Gomez TS, Billadeau DD, Rosen MK. Mol. Biol. Cell 23 2352-2361 (2012)
  14. The Vps35 D620N mutation linked to Parkinson's disease disrupts the cargo sorting function of retromer. Follett J, Norwood SJ, Hamilton NA, Mohan M, Kovtun O, Tay S, Zhe Y, Wood SA, Mellick GD, Silburn PA, Collins BM, Bugarcic A, Teasdale RD. Traffic 15 230-244 (2014)
  15. Molecular basis for SNX-BAR-mediated assembly of distinct endosomal sorting tubules. van Weering JR, Sessions RB, Traer CJ, Kloer DP, Bhatia VK, Stamou D, Carlsson SR, Hurley JH, Cullen PJ. EMBO J. 31 4466-4480 (2012)
  16. Evolutionary reconstruction of the retromer complex and its function in Trypanosoma brucei. Koumandou VL, Klute MJ, Herman EK, Nunez-Miguel R, Dacks JB, Field MC. J. Cell. Sci. 124 1496-1509 (2011)
  17. Palmitoylation controls recycling in lysosomal sorting and trafficking. McCormick PJ, Dumaresq-Doiron K, Pluviose AS, Pichette V, Tosato G, Lefrancois S. Traffic 9 1984-1997 (2008)
  18. Pharmacological chaperones stabilize retromer to limit APP processing. Mecozzi VJ, Berman DE, Simoes S, Vetanovetz C, Awal MR, Patel VM, Schneider RT, Petsko GA, Ringe D, Small SA. Nat. Chem. Biol. 10 443-449 (2014)
  19. Parkinson's disease-linked mutations in VPS35 induce dopaminergic neurodegeneration. Tsika E, Glauser L, Moser R, Fiser A, Daniel G, Sheerin UM, Lees A, Troncoso JC, Lewis PA, Bandopadhyay R, Schneider BL, Moore DJ. Hum. Mol. Genet. 23 4621-4638 (2014)
  20. DNAJC6 is responsible for juvenile parkinsonism with phenotypic variability. Köroğlu Ç, Baysal L, Cetinkaya M, Karasoy H, Tolun A. Parkinsonism Relat. Disord. 19 320-324 (2013)
  21. Rab GTPase regulation of retromer-mediated cargo export during endosome maturation. Liu TT, Gomez TS, Sackey BK, Billadeau DD, Burd CG. Mol. Biol. Cell 23 2505-2515 (2012)
  22. Retromer recycles vacuolar sorting receptors from the trans-Golgi network. Niemes S, Langhans M, Viotti C, Scheuring D, San Wan Yan M, Jiang L, Hillmer S, Robinson DG, Pimpl P. Plant J. 61 107-121 (2010)
  23. VPS35 dysfunction impairs lysosomal degradation of α-synuclein and exacerbates neurotoxicity in a Drosophila model of Parkinson's disease. Miura E, Hasegawa T, Konno M, Suzuki M, Sugeno N, Fujikake N, Geisler S, Tabuchi M, Oshima R, Kikuchi A, Baba T, Wada K, Nagai Y, Takeda A, Aoki M. Neurobiol. Dis. 71 1-13 (2014)
  24. Retromer disruption promotes amyloidogenic APP processing. Sullivan CP, Jay AG, Stack EC, Pakaluk M, Wadlinger E, Fine RE, Wells JM, Morin PJ. Neurobiol. Dis. 43 338-345 (2011)
  25. A mechanism for retromer endosomal coat complex assembly with cargo. Harrison MS, Hung CS, Liu TT, Christiano R, Walther TC, Burd CG. Proc. Natl. Acad. Sci. U.S.A. 111 267-272 (2014)
  26. Opposing activities of the Snx3-retromer complex and ESCRT proteins mediate regulated cargo sorting at a common endosome. Strochlic TI, Schmiedekamp BC, Lee J, Katzmann DJ, Burd CG. Mol. Biol. Cell 19 4694-4706 (2008)
  27. Assembly and solution structure of the core retromer protein complex. Norwood SJ, Shaw DJ, Cowieson NP, Owen DJ, Teasdale RD, Collins BM. Traffic 12 56-71 (2011)
  28. An unusual hydrophobic core confers extreme flexibility to HEAT repeat proteins. Kappel C, Zachariae U, Dölker N, Grubmüller H. Biophys. J. 99 1596-1603 (2010)
  29. The arrestin fold: variations on a theme. Aubry L, Guetta D, Klein G. Curr. Genomics 10 133-142 (2009)
  30. A mycobacterial cyclic AMP phosphodiesterase that moonlights as a modifier of cell wall permeability. Podobnik M, Tyagi R, Matange N, Dermol U, Gupta AK, Mattoo R, Seshadri K, Visweswariah SS. J. Biol. Chem. 284 32846-32857 (2009)
  31. Endosomal recruitment of the WASH complex: active sequences and mutations impairing interaction with the retromer. Helfer E, Harbour ME, Henriot V, Lakisic G, Sousa-Blin C, Volceanov L, Seaman MNJ, Gautreau A. Biol. Cell 105 191-207 (2013)
  32. Retromer-dependent neurotransmitter receptor trafficking to synapses is altered by the Parkinson's disease VPS35 mutation p.D620N. Munsie LN, Milnerwood AJ, Seibler P, Beccano-Kelly DA, Tatarnikov I, Khinda J, Volta M, Kadgien C, Cao LP, Tapia L, Klein C, Farrer MJ. Hum. Mol. Genet. 24 1691-1703 (2015)
  33. Electron microscopic evidence in support of alpha-solenoid models of proteasomal subunits Rpn1 and Rpn2. Effantin G, Rosenzweig R, Glickman MH, Steven AC. J. Mol. Biol. 386 1204-1211 (2009)
  34. Rab9 and retromer regulate retrograde trafficking of luminal protein required for epithelial tube length control. Dong B, Kakihara K, Otani T, Wada H, Hayashi S. Nat Commun 4 1358 (2013)
  35. Vps26A and Vps26B subunits define distinct retromer complexes. Bugarcic A, Zhe Y, Kerr MC, Griffin J, Collins BM, Teasdale RD. Traffic 12 1759-1773 (2011)
  36. A unique PDZ domain and arrestin-like fold interaction reveals mechanistic details of endocytic recycling by SNX27-retromer. Gallon M, Clairfeuille T, Steinberg F, Mas C, Ghai R, Sessions RB, Teasdale RD, Collins BM, Cullen PJ. Proc. Natl. Acad. Sci. U.S.A. 111 E3604-13 (2014)
  37. Poliovirus 2C protein forms homo-oligomeric structures required for ATPase activity. Adams P, Kandiah E, Effantin G, Steven AC, Ehrenfeld E. J. Biol. Chem. 284 22012-22021 (2009)
  38. VPS29 is not an active metallo-phosphatase but is a rigid scaffold required for retromer interaction with accessory proteins. Swarbrick JD, Shaw DJ, Chhabra S, Ghai R, Valkov E, Norwood SJ, Seaman MN, Collins BM. PLoS ONE 6 e20420 (2011)
  39. ESCRT-III CHMP2A and CHMP3 form variable helical polymers in vitro and act synergistically during HIV-1 budding. Effantin G, Dordor A, Sandrin V, Martinelli N, Sundquist WI, Schoehn G, Weissenhorn W. Cell. Microbiol. 15 213-226 (2013)
  40. Binding of the ClpA unfoldase opens the axial gate of ClpP peptidase. Effantin G, Maurizi MR, Steven AC. J. Biol. Chem. 285 14834-14840 (2010)
  41. Endosome-ER Contacts Control Actin Nucleation and Retromer Function through VAP-Dependent Regulation of PI4P. Dong R, Saheki Y, Swarup S, Lucast L, Harper JW, De Camilli P. Cell 166 408-423 (2016)
  42. The phox domain of sorting nexin 5 lacks phosphatidylinositol 3-phosphate (PtdIns(3)P) specificity and preferentially binds to phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). Koharudin LM, Furey W, Liu H, Liu YJ, Gronenborn AM. J. Biol. Chem. 284 23697-23707 (2009)
  43. Mechanisms governing the endosomal membrane recruitment of the core retromer in Arabidopsis. Zelazny E, Santambrogio M, Pourcher M, Chambrier P, Berne-Dedieu A, Fobis-Loisy I, Miège C, Jaillais Y, Gaude T. J. Biol. Chem. 288 8815-8825 (2013)
  44. Inhibition of retromer activity by herpesvirus saimiri tip leads to CD4 downregulation and efficient T cell transformation. Kingston D, Chang H, Ensser A, Lee HR, Lee J, Lee SH, Jung JU, Cho NH. J. Virol. 85 10627-10638 (2011)
  45. Molecular insights into Rab7-mediated endosomal recruitment of core retromer: deciphering the role of Vps26 and Vps35. Priya A, Kalaidzidis IV, Kalaidzidis Y, Lambright D, Datta S. Traffic 16 68-84 (2015)
  46. Rabankyrin-5 interacts with EHD1 and Vps26 to regulate endocytic trafficking and retromer function. Zhang J, Reiling C, Reinecke JB, Prislan I, Marky LA, Sorgen PL, Naslavsky N, Caplan S. Traffic 13 745-757 (2012)
  47. The structure of Get4 reveals an alpha-solenoid fold adapted for multiple interactions in tail-anchored protein biogenesis. Bozkurt G, Wild K, Amlacher S, Hurt E, Dobberstein B, Sinning I. FEBS Lett. 584 1509-1514 (2010)
  48. Parkinson Disease-linked Vps35 R524W Mutation Impairs the Endosomal Association of Retromer and Induces α-Synuclein Aggregation. Follett J, Bugarcic A, Yang Z, Ariotti N, Norwood SJ, Collins BM, Parton RG, Teasdale RD. J. Biol. Chem. 291 18283-18298 (2016)
  49. Characterizing the normal proteome of human ciliary body. Goel R, Murthy KR, Srikanth SM, Pinto SM, Bhattacharjee M, Kelkar DS, Madugundu AK, Dey G, Mohan SS, Krishna V, Prasad TK, Chakravarti S, Harsha HC, Pandey A. Clin Proteomics 10 9 (2013)
  50. In vivo evidence of pathogenicity of VPS35 mutations in the Drosophila. Wang HS, Toh J, Ho P, Tio M, Zhao Y, Tan EK. Mol Brain 7 73 (2014)
  51. Crystal structure of the EndoG/EndoGI complex: mechanism of EndoG inhibition. Loll B, Gebhardt M, Wahle E, Meinhart A. Nucleic Acids Res. 37 7312-7320 (2009)
  52. Receptor-mediated transport of vacuolar proteins: a critical analysis and a new model. Robinson DG, Pimpl P. Protoplasma 251 247-264 (2014)
  53. Novel ethyl methanesulfonate (EMS)-induced null alleles of the Drosophila homolog of LRRK2 reveal a crucial role in endolysosomal functions and autophagy in vivo. Dodson MW, Leung LK, Lone M, Lizzio MA, Guo M. Dis Model Mech 7 1351-1363 (2014)
  54. Vacuolar protein sorting 35 Asp620Asn mutation is rare in the ethnic Chinese population with Parkinson's disease. Zhang Y, Chen S, Xiao Q, Cao L, Liu J, Rong TY, Ma JF, Wang G, Wang Y, Chen SD. Parkinsonism Relat. Disord. 18 638-640 (2012)
  55. The hypoxic regulator of sterol synthesis nro1 is a nuclear import adaptor. Yeh TL, Lee CY, Amzel LM, Espenshade PJ, Bianchet MA. Structure 19 503-514 (2011)
  56. Inhibition of late endosomal maturation restores Wnt secretion in Caenorhabditis elegans vps-29 retromer mutants. Lorenowicz MJ, Macurkova M, Harterink M, Middelkoop TC, de Groot R, Betist MC, Korswagen HC. Cell. Signal. 26 19-31 (2014)
  57. Retromer maintains basolateral distribution of the type II TGF-β receptor via the recycling endosome. Yin X, Murphy SJ, Wilkes MC, Ji Y, Leof EB. Mol. Biol. Cell 24 2285-2298 (2013)
  58. Sorting nexin 1 loss results in D5 dopamine receptor dysfunction in human renal proximal tubule cells and hypertension in mice. Villar VA, Jones JE, Armando I, Asico LD, Escano CS, Lee H, Wang X, Yang Y, Pascua-Crusan AM, Palmes-Saloma CP, Felder RA, Jose PA. J. Biol. Chem. 288 152-163 (2013)
  59. The exomer cargo adaptor features a flexible hinge domain. Richardson BC, Fromme JC. Structure 21 486-492 (2013)
  60. Structural Mechanism for Cargo Recognition by the Retromer Complex. Lucas M, Gershlick DC, Vidaurrazaga A, Rojas AL, Bonifacino JS, Hierro A. Cell 167 1623-1635.e14 (2016)
  61. Genetic variability of the retromer cargo recognition complex in parkinsonism. Gustavsson EK, Guella I, Trinh J, Szu-Tu C, Rajput A, Rajput AH, Steele JC, McKeown M, Jeon BS, Aasly JO, Farrer MJ. Mov. Disord. 30 580-584 (2015)
  62. Unique utilization of a phosphoprotein phosphatase fold by a mammalian phosphodiesterase associated with WAGR syndrome. Dermol U, Janardan V, Tyagi R, Visweswariah SS, Podobnik M. J. Mol. Biol. 412 481-494 (2011)
  63. Evidence for a Golgi-to-endosome protein sorting pathway in Plasmodium falciparum. Krai P, Dalal S, Klemba M. PLoS ONE 9 e89771 (2014)
  64. Evolutionary variations of VPS29, and their implications for the heteropentameric model of retromer. Harbour ME, Seaman MN. Commun Integr Biol 4 619-622 (2011)
  65. Subcellular localisation of retromer in post-endocytic pathways of polarised Madin-Darby canine kidney cells. Mellado M, Cuartero Y, Brugada R, Verges M. Biol. Cell 106 377-393 (2014)
  66. EHDs meet the retromer: Complex regulation of retrograde transport. Zhang J, Naslavsky N, Caplan S. Cell Logist 2 161-165 (2012)
  67. The purification of the Chlamydomonas reinhardtii chloroplast ClpP complex: additional subunits and structural features. Derrien B, Majeran W, Effantin G, Ebenezer J, Friso G, van Wijk KJ, Steven AC, Maurizi MR, Vallon O. Plant Mol. Biol. 80 189-202 (2012)
  68. VPS29-VPS35 intermediate of retromer is stable and may be involved in the retromer complex assembly process. Fuse A, Furuya N, Kakuta S, Inose A, Sato M, Koike M, Saiki S, Hattori N. FEBS Lett. 589 1430-1436 (2015)
  69. env1 Mutant of VPS35 gene exhibits unique protein localization and processing phenotype at Golgi and lysosomal vacuole in Saccharomyces cerevisiae. Gharakhanian E, Chima-Okereke O, Olson DK, Frost C, Kathleen Takahashi M. Mol. Cell. Biochem. 346 187-195 (2011)
  70. VPS35, the Retromer Complex and Parkinson's Disease. Williams ET, Chen X, Moore DJ. J Parkinsons Dis 7 219-233 (2017)
  71. SNX-1 and RME-8 oppose the assembly of HGRS-1/ESCRT-0 degradative microdomains on endosomes. Norris A, Tammineni P, Wang S, Gerdes J, Murr A, Kwan KY, Cai Q, Grant BD. Proc. Natl. Acad. Sci. U.S.A. 114 E307-E316 (2017)
  72. Structural and mechanistic insights into regulation of the retromer coat by TBC1d5. Jia D, Zhang JS, Li F, Wang J, Deng Z, White MA, Osborne DG, Phillips-Krawczak C, Gomez TS, Li H, Singla A, Burstein E, Billadeau DD, Rosen MK. Nat Commun 7 13305 (2016)
  73. Vps35-dependent recycling of Trem2 regulates microglial function. Yin J, Liu X, He Q, Zhou L, Yuan Z, Zhao S. Traffic 17 1286-1296 (2016)
  74. VPS35 binds farnesylated N-Ras in the cytosol to regulate N-Ras trafficking. Zhou M, Wiener H, Su W, Zhou Y, Liot C, Ahearn I, Hancock JF, Philips MR. J. Cell Biol. 214 445-458 (2016)
  75. CLIC4 regulates apical exocytosis and renal tube luminogenesis through retromer- and actin-mediated endocytic trafficking. Chou SY, Hsu KS, Otsu W, Hsu YC, Luo YC, Yeh C, Shehab SS, Chen J, Shieh V, He GA, Marean MB, Felsen D, Ding A, Poppas DP, Chuang JZ, Sung CH. Nat Commun 7 10412 (2016)
  76. VPS35 and DNAJC13 disease-causing variants in essential tremor. Rajput A, Ross JP, Bernales CQ, Rayaprolu S, Soto-Ortolaza AI, Ross OA, van Gerpen J, Uitti RJ, Wszolek ZK, Rajput AH, Vilariño-Güell C. Eur. J. Hum. Genet. 23 887-888 (2015)
  77. The giardial VPS35 retromer subunit is necessary for multimeric complex assembly and interaction with the vacuolar protein sorting receptor. Miras SL, Merino MC, Gottig N, Rópolo AS, Touz MC. Biochim. Biophys. Acta 1833 2628-2638 (2013)
  78. Structure of the hypothetical protein Ton1535 from Thermococcus onnurineus NA1 reveals unique structural properties by a left-handed helical turn in normal α-solenoid protein. Jeong JH, Kim YS, Rojvirija C, Cha HJ, Kim YG, Ha SC. Proteins 82 1072-1078 (2014)
  79. A CDC25 family protein phosphatase gates cargo recognition by the Vps26 retromer subunit. Cui TZ, Peterson TA, Burd CG. Elife 6 (2017)
  80. Retromer-driven membrane tubulation separates endosomal recycling from Rab7/Ypt7-dependent fusion. Purushothaman LK, Arlt H, Kuhlee A, Raunser S, Ungermann C. Mol. Biol. Cell 28 783-791 (2017)
  81. Retromer vesicles interact with RNA granules in haploid male germ cells. Da Ros M, Hirvonen N, Olotu O, Toppari J, Kotaja N. Mol. Cell. Endocrinol. 401 73-83 (2015)
  82. Quantitative analysis of retromer complex-related genes during embryo development in the mouse. Park SJ, Huh JW, Kim YH, Kim JS, Song BS, Lee SR, Kim SU, Kim HS, Imakawa K, Chang KT. Mol. Cells 31 431-436 (2011)
  83. Leishmania donovani-specific Ub-related modifier-1: an early endosome-associated ubiquitin-like conjugation in Leishmania donovani. Sharma V, Sharma P, Selvapandiyan A, Salotra P. Mol. Microbiol. 99 597-610 (2016)