2pl0 Citations

Classifying protein kinase structures guides use of ligand-selectivity profiles to predict inactive conformations: structure of lck/imatinib complex.

Proteins 70 1451-60 (2008)
Cited: 49 times
EuropePMC logo PMID: 17910071

Abstract

We report a clustering of public human protein kinase structures based on the conformations of two structural elements, the activation segment and the C-helix, revealing three discrete clusters. One cluster includes kinases in catalytically active conformations. Each of the other clusters contains a distinct inactive conformation. Typically, kinases adopt at most one of the inactive conformations in available X-ray structures, implying that one of the conformations is preferred for many kinases. The classification is consistent with selectivity profiles of several well-characterized kinase inhibitors. We show further that inhibitor selectivity profiles guide kinase classification. For example, selective inhibition of lck among src-family kinases by imatinib (Gleevec) suggests that the relative stabilities of inactive conformations of lck are different from other src-family kinases. We report the X-ray structure of the lck/imatinib complex, confirming that the conformation adopted by lck is distinct from other structurally-characterized src-family kinases and instead resembles kinases abl1 and kit in complex with imatinib. Our classification creates new paths for designing small-molecule inhibitors.

Reviews - 2pl0 mentioned but not cited (2)

  1. New horizons in drug discovery of lymphocyte-specific protein tyrosine kinase (Lck) inhibitors: a decade review (2011-2021) focussing on structure-activity relationship (SAR) and docking insights. Elkamhawy A, Ali EMH, Lee K. J Enzyme Inhib Med Chem 36 1574-1602 (2021)
  2. A Novel Biallelic LCK Variant Resulting in Profound T-Cell Immune Deficiency and Review of the Literature. Lanz AL, Erdem S, Ozcan A, Ceylaner G, Cansever M, Ceylaner S, Conca R, Magg T, Acuto O, Latour S, Klein C, Patiroglu T, Unal E, Eken A, Hauck F. J Clin Immunol 44 1 (2023)

Articles - 2pl0 mentioned but not cited (18)

  1. Molecular dynamics simulations show that conformational selection governs the binding preferences of imatinib for several tyrosine kinases. Aleksandrov A, Simonson T. J. Biol. Chem. 285 13807-13815 (2010)
  2. Computational analysis of the binding specificity of Gleevec to Abl, c-Kit, Lck, and c-Src tyrosine kinases. Lin YL, Roux B. J. Am. Chem. Soc. 135 14741-14753 (2013)
  3. Predicting inactive conformations of protein kinases using active structures: conformational selection of type-II inhibitors. Xu M, Yu L, Wan B, Yu L, Huang Q. PLoS ONE 6 e22644 (2011)
  4. Virtual target screening: validation using kinase inhibitors. Santiago DN, Pevzner Y, Durand AA, Tran M, Scheerer RR, Daniel K, Sung SS, Woodcock HL, Guida WC, Brooks WH. J Chem Inf Model 52 2192-2203 (2012)
  5. Combinatorial clustering of residue position subsets predicts inhibitor affinity across the human kinome. Bryant DH, Moll M, Finn PW, Kavraki LE. PLoS Comput. Biol. 9 e1003087 (2013)
  6. Computational Modeling of Kinase Inhibitor Selectivity. Subramanian G, Sud M. ACS Med Chem Lett 1 395-399 (2010)
  7. Identifying three-dimensional structures of autophosphorylation complexes in crystals of protein kinases. Xu Q, Malecka KL, Fink L, Jordan EJ, Duffy E, Kolander S, Peterson JR, Dunbrack RL. Sci Signal 8 rs13 (2015)
  8. Space-related pharma-motifs for fast search of protein binding motifs and polypharmacological targets. Chiu YY, Lin CY, Lin CT, Hsu KC, Chang LZ, Yang JM. BMC Genomics 13 Suppl 7 S21 (2012)
  9. Synthesis, Biological Activities and Docking Studies of Novel 4-(Arylaminomethyl)benzamide Derivatives as Potential Tyrosine Kinase Inhibitors. Kalinichenko E, Faryna A, Kondrateva V, Vlasova A, Shevchenko V, Melnik A, Avdoshko O, Belko A. Molecules 24 E3543 (2019)
  10. A Discovery Strategy for Selective Inhibitors of c-Src in Complex with the Focal Adhesion Kinase SH3/SH2-binding Region. Moroco JA, Baumgartner MP, Rust HL, Choi HG, Hur W, Gray NS, Camacho CJ, Smithgall TE. Chem Biol Drug Des 86 144-155 (2015)
  11. A partial human LCK defect causes a T cell immunodeficiency with intestinal inflammation. Lui VG, Hoenig M, Cabrera-Martinez B, Baxter RM, Garcia-Perez JE, Bailey O, Acharya A, Lundquist K, Capera J, Matusewicz P, Hartl FA, D'Abramo M, Alba J, Jacobsen EM, Niewolik D, Lorenz M, Pannicke U, Schulz AS, Debatin KM, Schamel WW, Minguet S, Gumbart JC, Dustin ML, Cambier JC, Schwarz K, Hsieh EWY. J Exp Med 221 e20230927 (2024)
  12. A novel chemical attack on Notch-mediated transcription by targeting the NACK ATPase. Diluvio G, Kelley TT, Lahiry M, Alvarez-Trotta A, Kolb EM, Shersher E, Astudillo L, Kovall RA, Schürer SC, Capobianco AJ. Mol Ther Oncolytics 28 307-320 (2023)
  13. Building Admiral, an Automated Molecular Dynamics and Analysis Platform. Baumgartner MP, Zhang H. ACS Med Chem Lett 11 2331-2335 (2020)
  14. Can structural features of kinase receptors provide clues on selectivity and inhibition? A molecular modeling study. Ravichandran S, Luke BT, Collins JR. J. Mol. Graph. Model. 57 36-48 (2015)
  15. Identification of highly selective type II kinase inhibitors with chiral peptidomimetic tails. Han SJ, Jung JE, Oh DH, Kim M, Kim JM, Chung KS, Han HS, Lee JH, Lee KT, Jeong HJ, Park IH, Jeon E, Shin JS, Hwang D, Cho AE, Lee DH, Sim T. J Enzyme Inhib Med Chem 37 1257-1277 (2022)
  16. Investigating small molecule compounds targeting psoriasis based on cMAP database and molecular dynamics simulation. Zhou F, Yao H, Ma Z, Hu X. Skin Res Technol 29 e13301 (2023)
  17. Novel Phthalic-Based Anticancer Tyrosine Kinase Inhibitors: Design, Synthesis and Biological Activity. Kalinichenko E, Faryna A, Bozhok T, Golyakovich A, Panibrat A. Curr Issues Mol Biol 45 1820-1842 (2023)
  18. Synthesis, In Vitro and In Silico Anticancer Activity of New 4-Methylbenzamide Derivatives Containing 2,6-Substituted Purines as Potential Protein Kinases Inhibitors. Kalinichenko E, Faryna A, Bozhok T, Panibrat A. Int J Mol Sci 22 12738 (2021)


Articles citing this publication (29)

  1. Equally potent inhibition of c-Src and Abl by compounds that recognize inactive kinase conformations. Seeliger MA, Ranjitkar P, Kasap C, Shan Y, Shaw DE, Shah NP, Kuriyan J, Maly DJ. Cancer Res. 69 2384-2392 (2009)
  2. Explaining why Gleevec is a specific and potent inhibitor of Abl kinase. Lin YL, Meng Y, Jiang W, Roux B. Proc. Natl. Acad. Sci. U.S.A. 110 1664-1669 (2013)
  3. A new screening assay for allosteric inhibitors of cSrc. Simard JR, Klüter S, Grütter C, Getlik M, Rabiller M, Rode HB, Rauh D. Nat. Chem. Biol. 5 394-396 (2009)
  4. The structure of the leukemia drug imatinib bound to human quinone reductase 2 (NQO2). Winger JA, Hantschel O, Superti-Furga G, Kuriyan J. BMC Struct. Biol. 9 7 (2009)
  5. Crystal structures of IL-2-inducible T cell kinase complexed with inhibitors: insights into rational drug design and activity regulation. Kutach AK, Villaseñor AG, Lam D, Belunis C, Janson C, Lok S, Hong LN, Liu CM, Deval J, Novak TJ, Barnett JW, Chu W, Shaw D, Kuglstatter A. Chem Biol Drug Des 76 154-163 (2010)
  6. Insights into the conformational flexibility of Bruton's tyrosine kinase from multiple ligand complex structures. Kuglstatter A, Wong A, Tsing S, Lee SW, Lou Y, Villaseñor AG, Bradshaw JM, Shaw D, Barnett JW, Browner MF. Protein Sci. 20 428-436 (2011)
  7. Affinity reagents that target a specific inactive form of protein kinases. Ranjitkar P, Brock AM, Maly DJ. Chem. Biol. 17 195-206 (2010)
  8. An enriched structural kinase database to enable kinome-wide structure-based analyses and drug discovery. Brooijmans N, Chang YW, Mobilio D, Denny RA, Humblet C. Protein Sci. 19 763-774 (2010)
  9. Structural diversity of the active N-terminal kinase domain of p90 ribosomal S6 kinase 2. Malakhova M, Kurinov I, Liu K, Zheng D, D'Angelo I, Shim JH, Steinman V, Bode AM, Dong Z. PLoS ONE 4 e8044 (2009)
  10. Kinase array design, back to front: biaryl amides. Baldwin I, Bamborough P, Haslam CG, Hunjan SS, Longstaff T, Mooney CJ, Patel S, Quinn J, Somers DO. Bioorg. Med. Chem. Lett. 18 5285-5289 (2008)
  11. Scaffold mining of kinase hinge binders in crystal structure database. Xing L, Rai B, Lunney EA. J. Comput. Aided Mol. Des. 28 13-23 (2014)
  12. Classification of protein kinases on the basis of both kinase and non-kinase regions. Martin J, Anamika K, Srinivasan N. PLoS ONE 5 e12460 (2010)
  13. Targeted kinase selectivity from kinase profiling data. Milletti F, Hermann JC. ACS Med Chem Lett 3 383-386 (2012)
  14. Analysis of c-Met kinase domain complexes: a new specific catalytic site receptor model for defining binding modes of ATP-competitive ligands. Asses Y, Leroux V, Tairi-Kellou S, Dono R, Maina F, Maigret B. Chem Biol Drug Des 74 560-570 (2009)
  15. Detection of allosteric kinase inhibitors by displacement of active site probes. Lebakken CS, Reichling LJ, Ellefson JM, Riddle SM. J Biomol Screen 17 813-821 (2012)
  16. Imatinib binding to human serum albumin modulates heme association and reactivity. Di Muzio E, Polticelli F, Trezza V, Fanali G, Fasano M, Ascenzi P. Arch. Biochem. Biophys. 560 100-112 (2014)
  17. Pyrrole derivatives as potent inhibitors of lymphocyte-specific kinase: Structure, synthesis, and SAR. Takayama T, Umemiya H, Amada H, Yabuuchi T, Shiozawa F, Katakai H, Takaoka A, Yamaguchi A, Endo M, Sato M. Bioorg. Med. Chem. Lett. 20 108-111 (2010)
  18. Classifying kinase conformations using a machine learning approach. McSkimming DI, Rasheed K, Kannan N. BMC Bioinformatics 18 86 (2017)
  19. Conserved core substructures in the overlay of protein-ligand complexes. Finzel BC, Akavaram R, Ragipindi A, Van Voorst JR, Cahn M, Davis ME, Pokross ME, Sheriff S, Baldwin ET. J Chem Inf Model 51 1931-1941 (2011)
  20. Ring-fused pyrazole derivatives as potent inhibitors of lymphocyte-specific kinase (Lck): Structure, synthesis, and SAR. Takayama T, Umemiya H, Amada H, Yabuuchi T, Koami T, Shiozawa F, Oka Y, Takaoka A, Yamaguchi A, Endo M, Sato M. Bioorg. Med. Chem. Lett. 20 112-116 (2010)
  21. Characterization of interactions and pharmacophore development for DFG-out inhibitors to RET tyrosine kinase. Gao C, Grøtli M, Eriksson LA. J Mol Model 21 167 (2015)
  22. Insight on Mutation-Induced Resistance from Molecular Dynamics Simulations of the Native and Mutated CSF-1R and KIT. Da Silva Figueiredo Celestino Gomes P, Chauvot De Beauchêne I, Panel N, Lopez S, De Sepulveda P, Geraldo Pascutti P, Solary E, Tchertanov L. PLoS ONE 11 e0160165 (2016)
  23. Effect of the SH3-SH2 domain linker sequence on the structure of Hck kinase. Meiselbach H, Sticht H. J Mol Model 17 1927-1934 (2011)
  24. Large-Scale Virtual Screening Against the MET Kinase Domain Identifies a New Putative Inhibitor Type. Bresso E, Furlan A, Noel P, Leroux V, Maina F, Dono R, Maigret B. Molecules 25 (2020)
  25. Crystal Structures Reveal Hidden Domain Mechanics in Protein Kinase A (PKA). Welsh CL, Conklin AE, Madan LK. Biology (Basel) 12 1370 (2023)
  26. Defining a new nomenclature for the structures of active and inactive kinases. Modi V, Dunbrack RL. Proc. Natl. Acad. Sci. U.S.A. 116 6818-6827 (2019)
  27. Discovery of potent inhibitors for interleukin-2-inducible T-cell kinase: structure-based virtual screening and molecular dynamics simulation approaches. Meganathan C, Sakkiah S, Lee Y, Narayanan JV, Lee KW. J Mol Model 19 715-726 (2013)
  28. Molecular Dynamics and Machine Learning Give Insights on the Flexibility-Activity Relationships in Tyrosine Kinome. Majumdar S, Di Palma F, Spyrakis F, Decherchi S, Cavalli A. J Chem Inf Model 63 4814-4826 (2023)
  29. Molecular modeling study of the induced-fit effect on kinase inhibition: the case of fibroblast growth factor receptor 3 (FGFR3). Li Y, Delamar M, Busca P, Prestat G, Le Corre L, Legeai-Mallet L, Hu R, Zhang R, Barbault F. J. Comput. Aided Mol. Des. 29 619-641 (2015)