2pin Citations

Structural insight into the mode of action of a direct inhibitor of coregulator binding to the thyroid hormone receptor.

Abstract

The development of nuclear hormone receptor antagonists that directly inhibit the association of the receptor with its essential coactivators would allow useful manipulation of nuclear hormone receptor signaling. We previously identified 3-(dibutylamino)-1-(4-hexylphenyl)-propan-1-one (DHPPA), an aromatic beta-amino ketone that inhibits coactivator recruitment to thyroid hormone receptor beta (TRbeta), in a high-throughput screen. Initial evidence suggested that the aromatic beta-enone 1-(4-hexylphenyl)-prop-2-en-1-one (HPPE), which alkylates a specific cysteine residue on the TRbeta surface, is liberated from DHPPA. Nevertheless, aspects of the mechanism and specificity of action of DHPPA remained unclear. Here, we report an x-ray structure of TRbeta with the inhibitor HPPE at 2.3-A resolution. Unreacted HPPE is located at the interface that normally mediates binding between TRbeta and its coactivator. Several lines of evidence, including experiments with TRbeta mutants and mass spectroscopic analysis, showed that HPPE specifically alkylates cysteine residue 298 of TRbeta, which is located near the activation function-2 pocket. We propose that this covalent adduct formation proceeds through a two-step mechanism: 1) beta-elimination to form HPPE; and 2) a covalent bond slowly forms between HPPE and TRbeta. DHPPA represents a novel class of potent TRbeta antagonist, and its crystal structure suggests new ways to design antagonists that target the assembly of nuclear hormone receptor gene-regulatory complexes and block transcription.

Reviews - 2pin mentioned but not cited (1)

Articles - 2pin mentioned but not cited (10)

  1. Chemical Composition and Immunomodulatory Activity of Hypericum perforatum Essential Oils. Schepetkin IA, Özek G, Özek T, Kirpotina LN, Khlebnikov AI, Quinn MT. Biomolecules 10 E916 (2020)
  2. Prediction of binding affinity and efficacy of thyroid hormone receptor ligands using QSAR and structure-based modeling methods. Politi R, Rusyn I, Tropsha A. Toxicol Appl Pharmacol 280 177-189 (2014)
  3. Neutrophil Immunomodulatory Activity of Farnesene, a Component of Artemisia dracunculus Essential Oils. Schepetkin IA, Özek G, Özek T, Kirpotina LN, Khlebnikov AI, Klein RA, Quinn MT. Pharmaceuticals (Basel) 15 642 (2022)
  4. Chemical Composition and Immunomodulatory Activity of Essential Oils from Rhododendron albiflorum. Schepetkin IA, Özek G, Özek T, Kirpotina LN, Khlebnikov AI, Quinn MT. Molecules 26 3652 (2021)
  5. Mapping the Electronic Structure and the Reactivity Trends for Stabilized α-Boryl Carbanions. Maza RJ, Fernández E, Carbó JJ. Chemistry 27 12352-12361 (2021)
  6. Letter (-) Arctigenin and (+) pinoresinol are antagonists of the human thyroid hormone receptor β. Ogungbe IV, Crouch RA, Demeritte T. J Chem Inf Model 54 3051-3055 (2014)
  7. Computational Analysis of Crystallization Additives for the Identification of New Allosteric Sites. Fogha J, Diharce J, Obled A, Aci-Sèche S, Bonnet P. ACS Omega 5 2114-2122 (2020)
  8. Exploring Ligand Binding Domain Dynamics in the NRs Superfamily. D'Arrigo G, Autiero I, Gianquinto E, Siragusa L, Baroni M, Cruciani G, Spyrakis F. Int J Mol Sci 23 8732 (2022)
  9. Neutrophil Immunomodulatory Activity of Nerolidol, a Major Component of Essential Oils from Populus balsamifera Buds and Propolis. Schepetkin IA, Özek G, Özek T, Kirpotina LN, Kokorina PI, Khlebnikov AI, Quinn MT. Plants (Basel) 11 3399 (2022)
  10. Volatile Composition, Antimicrobial Activity, and In Vitro Innate Immunomodulatory Activity of Echinacea purpurea (L.) Moench Essential Oils. Dosoky NS, Kirpotina LN, Schepetkin IA, Khlebnikov AI, Lisonbee BL, Black JL, Woolf H, Thurgood TL, Graf BL, Satyal P, Quinn MT. Molecules 28 7330 (2023)


Reviews citing this publication (8)

  1. Allosteric Modulation as a Unifying Mechanism for Receptor Function and Regulation. Changeux JP, Christopoulos A. Cell 166 1084-1102 (2016)
  2. Caught in self-interaction: evolutionary and functional mechanisms of protein homooligomerization. Hashimoto K, Nishi H, Bryant S, Panchenko AR. Phys Biol 8 035007 (2011)
  3. Androgen receptor coregulators: recruitment via the coactivator binding groove. van de Wijngaart DJ, Dubbink HJ, van Royen ME, Trapman J, Jenster G. Mol Cell Endocrinol 352 57-69 (2012)
  4. Mannich bases in medicinal chemistry and drug design. Roman G. Eur J Med Chem 89 743-816 (2015)
  5. Beyond the ligand-binding pocket: targeting alternate sites in nuclear receptors. Caboni L, Lloyd DG. Med Res Rev 33 1081-1118 (2013)
  6. Allosteric modulation as a unifying mechanism for receptor function and regulation. Changeux JP, Christopoulos A. Diabetes Obes Metab 19 Suppl 1 4-21 (2017)
  7. International Union of Basic and Clinical Pharmacology CXIII: Nuclear Receptor Superfamily-Update 2023. Burris TP, de Vera IMS, Cote I, Flaveny CA, Wanninayake US, Chatterjee A, Walker JK, Steinauer N, Zhang J, Coons LA, Korach KS, Cain DW, Hollenberg AN, Webb P, Forrest D, Jetten AM, Edwards DP, Grimm SL, Hartig S, Lange CA, Richer JK, Sartorius CA, Tetel M, Billon C, Elgendy B, Hegazy L, Griffett K, Peinetti N, Burnstein KL, Hughes TS, Sitaula S, Stayrook KR, Culver A, Murray MH, Finck BN, Cidlowski JA. Pharmacol Rev 75 1233-1318 (2023)
  8. Receptor modulators associated with the hypothalamus -pituitary-thyroid axis. Cheng X, Zhang H, Guan S, Zhao Q, Shan Y. Front Pharmacol 14 1291856 (2023)

Articles citing this publication (22)

  1. Mechanisms of protein oligomerization, the critical role of insertions and deletions in maintaining different oligomeric states. Hashimoto K, Panchenko AR. Proc Natl Acad Sci U S A 107 20352-20357 (2010)
  2. International Union of Basic and Clinical Pharmacology. XC. multisite pharmacology: recommendations for the nomenclature of receptor allosterism and allosteric ligands. Christopoulos A, Changeux JP, Catterall WA, Fabbro D, Burris TP, Cidlowski JA, Olsen RW, Peters JA, Neubig RR, Pin JP, Sexton PM, Kenakin TP, Ehlert FJ, Spedding M, Langmead CJ. Pharmacol Rev 66 918-947 (2014)
  3. An alternate binding site for PPARγ ligands. Hughes TS, Giri PK, de Vera IM, Marciano DP, Kuruvilla DS, Shin Y, Blayo AL, Kamenecka TM, Burris TP, Griffin PR, Kojetin DJ. Nat Commun 5 3571 (2014)
  4. Aromatic sulfonyl fluorides covalently kinetically stabilize transthyretin to prevent amyloidogenesis while affording a fluorescent conjugate. Grimster NP, Connelly S, Baranczak A, Dong J, Krasnova LB, Sharpless KB, Powers ET, Wilson IA, Kelly JW. J Am Chem Soc 135 5656-5668 (2013)
  5. Fluorescence polarization assays in high-throughput screening and drug discovery: a review. Hall MD, Yasgar A, Peryea T, Braisted JC, Jadhav A, Simeonov A, Coussens NP. Methods Appl Fluoresc 4 022001 (2016)
  6. Chemoselective small molecules that covalently modify one lysine in a non-enzyme protein in plasma. Choi S, Connelly S, Reixach N, Wilson IA, Kelly JW. Nat Chem Biol 6 133-139 (2010)
  7. Structure of the homodimeric androgen receptor ligand-binding domain. Nadal M, Prekovic S, Gallastegui N, Helsen C, Abella M, Zielinska K, Gay M, Vilaseca M, Taulès M, Houtsmuller AB, van Royen ME, Claessens F, Fuentes-Prior P, Estébanez-Perpiñá E. Nat Commun 8 14388 (2017)
  8. Improvement of pharmacological properties of irreversible thyroid receptor coactivator binding inhibitors. Hwang JY, Arnold LA, Zhu F, Kosinski A, Mangano TJ, Setola V, Roth BL, Guy RK. J Med Chem 52 3892-3901 (2009)
  9. Peroxisome proliferation-activated receptor δ agonist GW0742 interacts weakly with multiple nuclear receptors, including the vitamin D receptor. Nandhikonda P, Yasgar A, Baranowski AM, Sidhu PS, McCallum MM, Pawlak AJ, Teske K, Feleke B, Yuan NY, Kevin C, Bikle DD, Ayers SD, Webb P, Rai G, Simeonov A, Jadhav A, Maloney D, Arnold LA. Biochemistry 52 4193-4203 (2013)
  10. Identification of a new hormone-binding site on the surface of thyroid hormone receptor. Souza PC, Puhl AC, Martínez L, Aparício R, Nascimento AS, Figueira AC, Nguyen P, Webb P, Skaf MS, Polikarpov I. Mol Endocrinol 28 534-545 (2014)
  11. Methylsulfonylnitrobenzoates, a new class of irreversible inhibitors of the interaction of the thyroid hormone receptor and its obligate coactivators that functionally antagonizes thyroid hormone. Hwang JY, Huang W, Arnold LA, Huang R, Attia RR, Connelly M, Wichterman J, Zhu F, Augustinaite I, Austin CP, Inglese J, Johnson RL, Guy RK. J Biol Chem 286 11895-11908 (2011)
  12. Modification of the Orthosteric PPARγ Covalent Antagonist Scaffold Yields an Improved Dual-Site Allosteric Inhibitor. Brust R, Lin H, Fuhrmann J, Asteian A, Kamenecka TM, Kojetin DJ. ACS Chem Biol 12 969-978 (2017)
  13. A quantitative high-throughput screen identifies novel inhibitors of the interaction of thyroid receptor beta with a peptide of steroid receptor coactivator 2. Johnson RL, Hwang JY, Arnold LA, Huang R, Wichterman J, Augustinaite I, Austin CP, Inglese J, Guy RK, Huang W. J Biomol Screen 16 618-627 (2011)
  14. Ligand induced interaction of thyroid hormone receptor beta with its coregulators. Valadares NF, Polikarpov I, Garratt RC. J Steroid Biochem Mol Biol 112 205-212 (2008)
  15. High-throughput identification of promiscuous inhibitors from screening libraries with the use of a thiol-containing fluorescent probe. McCallum MM, Nandhikonda P, Temmer JJ, Eyermann C, Simeonov A, Jadhav A, Yasgar A, Maloney D, Arnold AL. J Biomol Screen 18 705-713 (2013)
  16. Probing the Complex Binding Modes of the PPARγ Partial Agonist 2-Chloro-N-(3-chloro-4-((5-chlorobenzo[d]thiazol-2-yl)thio)phenyl)-4-(trifluoromethyl)benzenesulfonamide (T2384) to Orthosteric and Allosteric Sites with NMR Spectroscopy. Hughes TS, Shang J, Brust R, de Vera IMS, Fuhrmann J, Ruiz C, Cameron MD, Kamenecka TM, Kojetin DJ. J Med Chem 59 10335-10341 (2016)
  17. 27-Hydroxycholesterol Is an Estrogen Receptor β-Selective Negative Allosteric Modifier of 17β-Estradiol Binding. Starkey NJE, Li Y, Drenkhahn-Weinaug SK, Liu J, Lubahn DB. Endocrinology 159 1972-1981 (2018)
  18. Molecular basis for dimer formation of TRbeta variant D355R. Jouravel N, Sablin E, Togashi M, Baxter JD, Webb P, Fletterick RJ. Proteins 75 111-117 (2009)
  19. Similarities and differences between two modes of antagonism of the thyroid hormone receptor. Sadana P, Hwang JY, Attia RR, Arnold LA, Neale G, Guy RK. ACS Chem Biol 6 1096-1106 (2011)
  20. Synthesis and evaluation of methylsulfonylnitrobenzamides (MSNBAs) as inhibitors of the thyroid hormone receptor-coactivator interaction. Hwang JY, Attia RR, Carrillo AK, Connelly MC, Guy RK. Bioorg Med Chem Lett 23 1891-1895 (2013)
  21. A novel chemo-phenotypic method identifies mixtures of salpn, vitamin D3, and pesticides involved in the development of colorectal and pancreatic cancer. Issa NT, Wathieu H, Glasgow E, Peran I, Parasido E, Li T, Simbulan-Rosenthal CM, Rosenthal D, Medvedev AV, Makarov SS, Albanese C, Byers SW, Dakshanamurthy S. Ecotoxicol Environ Saf 233 113330 (2022)
  22. Differential effects of TR ligands on hormone dissociation rates: evidence for multiple ligand entry/exit pathways. Cunha Lima ST, Nguyen NH, Togashi M, Apriletti JW, Nguyen P, Polikarpov I, Scanlan TS, Baxter JD, Webb P. J Steroid Biochem Mol Biol 117 125-131 (2009)