2phk Citations

The crystal structure of a phosphorylase kinase peptide substrate complex: kinase substrate recognition.

EMBO J. 16 6646-58 (1997)
Cited: 97 times
EuropePMC logo PMID: 9362479

Abstract

The structure of a truncated form of the gamma-subunit of phosphorylase kinase (PHKgammat) has been solved in a ternary complex with a non-hydrolysable ATP analogue (adenylyl imidodiphosphate, AMPPNP) and a heptapeptide substrate related in sequence to both the natural substrate and to the optimal peptide substrate. Kinetic characterization of the phosphotransfer reaction confirms the peptide to be a good substrate, and the structure allows identification of key features responsible for its high affinity. Unexpectedly, the substrate peptide forms a short anti-parallel beta-sheet with the kinase activation segment, the region which in other kinases plays an important role in regulation of enzyme activity. This anchoring of the main chain of the substrate peptide at a fixed distance from the gamma-phosphate of ATP explains the selectivity of PHK for serine/threonine over tyrosine as a substrate. The catalytic core of PHK exists as a dimer in crystals of the ternary complex, and the relevance of this phenomenon to its in vivo recognition of dimeric glycogen phosphorylase b is considered.

Articles - 2phk mentioned but not cited (6)

  1. A helix scaffold for the assembly of active protein kinases. Kornev AP, Taylor SS, Ten Eyck LF. Proc. Natl. Acad. Sci. U.S.A. 105 14377-14382 (2008)
  2. Coupling between catalytic site and collective dynamics: a requirement for mechanochemical activity of enzymes. Yang LW, Bahar I. Structure 13 893-904 (2005)
  3. Frequent somatic mutations in MAP3K5 and MAP3K9 in metastatic melanoma identified by exome sequencing. Stark MS, Woods SL, Gartside MG, Bonazzi VF, Dutton-Regester K, Aoude LG, Chow D, Sereduk C, Niemi NM, Tang N, Ellis JJ, Reid J, Zismann V, Tyagi S, Muzny D, Newsham I, Wu Y, Palmer JM, Pollak T, Youngkin D, Brooks BR, Lanagan C, Schmidt CW, Kobe B, MacKeigan JP, Yin H, Brown KM, Gibbs R, Trent J, Hayward NK. Nat. Genet. 44 165-169 (2011)
  4. Structural and Functional Characterization of the JH2 Pseudokinase Domain of JAK Family Tyrosine Kinase 2 (TYK2). Min X, Ungureanu D, Maxwell S, Hammarén H, Thibault S, Hillert EK, Ayres M, Greenfield B, Eksterowicz J, Gabel C, Walker N, Silvennoinen O, Wang Z. J. Biol. Chem. 290 27261-27270 (2015)
  5. Activation of protein kinase PKR requires dimerization-induced cis-phosphorylation within the activation loop. Dey M, Mann BR, Anshu A, Mannan MA. 289 5747-5757 (2014)
  6. A PREVIOUSLY UNKNOWN UNIQUE CHALLENGE FOR INHIBITORS OF SYK ATP-BINDING SITE: ROLE OF SYK AS A CELL CYCLE CHECKPOINT REGULATOR. Uckun FM, Ma H, Ozer Z, Goodman P, Zhang J, Qazi S. EBioMedicine 1 16-28 (2014)


Reviews citing this publication (21)

  1. Dynamic Protein Interaction Networks and New Structural Paradigms in Signaling. Csizmok V, Follis AV, Kriwacki RW, Forman-Kay JD. Chem. Rev. 116 6424-6462 (2016)
  2. Revisiting protein kinase-substrate interactions: Toward therapeutic development. de Oliveira PS, Ferraz FA, Pena DA, Pramio DT, Morais FA, Schechtman D. Sci Signal 9 re3 (2016)
  3. Modeling conformational transitions in kinases by molecular dynamics simulations: achievements, difficulties, and open challenges. D'Abramo M, Besker N, Chillemi G, Grottesi A. Front Genet 5 128 (2014)
  4. The structural basis for control of eukaryotic protein kinases. Endicott JA, Noble ME, Johnson LN. Annu. Rev. Biochem. 81 587-613 (2012)
  5. On the molecular mechanisms of mitotic kinase activation. Bayliss R, Fry A, Haq T, Yeoh S. Open Biol 2 120136 (2012)
  6. Proteus in the world of proteins: conformational changes in protein kinases. Rabiller M, Getlik M, Klüter S, Richters A, Tückmantel S, Simard JR, Rauh D. Arch. Pharm. (Weinheim) 343 193-206 (2010)
  7. Understanding and exploiting substrate recognition by protein kinases. Turk BE. Curr Opin Chem Biol 12 4-10 (2008)
  8. Mechanisms of specificity in protein phosphorylation. Ubersax JA, Ferrell JE. Nat. Rev. Mol. Cell Biol. 8 530-541 (2007)
  9. Substrate and docking interactions in serine/threonine protein kinases. Goldsmith EJ, Akella R, Min X, Zhou T, Humphreys JM. Chem. Rev. 107 5065-5081 (2007)
  10. Protein-protein interaction through beta-strand addition. Remaut H, Waksman G. Trends Biochem. Sci. 31 436-444 (2006)
  11. Uses for JNK: the many and varied substrates of the c-Jun N-terminal kinases. Bogoyevitch MA, Kobe B. Microbiol. Mol. Biol. Rev. 70 1061-1095 (2006)
  12. Protein-protein interactions in the allosteric regulation of protein kinases. Pellicena P, Kuriyan J. Curr. Opin. Struct. Biol. 16 702-709 (2006)
  13. Alpha-kinases: analysis of the family and comparison with conventional protein kinases. Drennan D, Ryazanov AG. Prog. Biophys. Mol. Biol. 85 1-32 (2004)
  14. Regulation of protein kinases; controlling activity through activation segment conformation. Nolen B, Taylor S, Ghosh G. Mol. Cell 15 661-675 (2004)
  15. Structural modes of stabilization of permissive phosphorylation sites in protein kinases: distinct strategies in Ser/Thr and Tyr kinases. Krupa A, Preethi G, Srinivasan N. J. Mol. Biol. 339 1025-1039 (2004)
  16. Signalling specificity of Ser/Thr protein kinases through docking-site-mediated interactions. Biondi RM, Nebreda AR. Biochem. J. 372 1-13 (2003)
  17. Death-associated protein kinase as a potential therapeutic target. Schumacher AM, Velentza AV, Watterson DM. Expert Opin. Ther. Targets 6 497-506 (2002)
  18. The protein kinase activity modulation sites: mechanisms for cellular regulation - targets for therapeutic intervention. Engh RA, Bossemeyer D. Adv. Enzyme Regul. 41 121-149 (2001)
  19. Control of sarcomeric assembly: the flow of information on titin. Gautel M, Mues A, Young P. Rev. Physiol. Biochem. Pharmacol. 138 97-137 (1999)
  20. Substrate and inhibitor recognition of protein kinases: what is known about the catalytic subunit of phosphorylase kinase? Graves D, Bartleson C, Biorn A, Pete M. Pharmacol. Ther. 82 143-155 (1999)
  21. The Eleventh Datta Lecture. The structural basis for substrate recognition and control by protein kinases. Johnson LN, Lowe ED, Noble ME, Owen DJ. FEBS Lett. 430 1-11 (1998)

Articles citing this publication (70)

  1. The importance of intrinsic disorder for protein phosphorylation. Iakoucheva LM, Radivojac P, Brown CJ, O'Connor TR, Sikes JG, Obradovic Z, Dunker AK. Nucleic Acids Res. 32 1037-1049 (2004)
  2. A structural explanation for the recognition of tyrosine-based endocytotic signals. Owen DJ, Evans PR. Science 282 1327-1332 (1998)
  3. Crystal structure of glycogen synthase kinase 3 beta: structural basis for phosphate-primed substrate specificity and autoinhibition. Dajani R, Fraser E, Roe SM, Young N, Good V, Dale TC, Pearl LH. Cell 105 721-732 (2001)
  4. Molecular architecture and functional model of the endocytic AP2 complex. Collins BM, McCoy AJ, Kent HM, Evans PR, Owen DJ. Cell 109 523-535 (2002)
  5. Higher-order substrate recognition of eIF2alpha by the RNA-dependent protein kinase PKR. Dar AC, Dever TE, Sicheri F. Cell 122 887-900 (2005)
  6. Deciphering protein kinase specificity through large-scale analysis of yeast phosphorylation site motifs. Mok J, Kim PM, Lam HY, Piccirillo S, Zhou X, Jeschke GR, Sheridan DL, Parker SA, Desai V, Jwa M, Cameroni E, Niu H, Good M, Remenyi A, Ma JL, Sheu YJ, Sassi HE, Sopko R, Chan CS, De Virgilio C, Hollingsworth NM, Lim WA, Stern DF, Stillman B, Andrews BJ, Gerstein MB, Snyder M, Turk BE. Sci Signal 3 ra12 (2010)
  7. Structure of the autoinhibited kinase domain of CaMKII and SAXS analysis of the holoenzyme. Rosenberg OS, Deindl S, Sung RJ, Nairn AC, Kuriyan J. Cell 123 849-860 (2005)
  8. Extensive phosphorylation with overlapping specificity by Mycobacterium tuberculosis serine/threonine protein kinases. Prisic S, Dankwa S, Schwartz D, Chou MF, Locasale JW, Kang CM, Bemis G, Church GM, Steen H, Husson RN. Proc. Natl. Acad. Sci. U.S.A. 107 7521-7526 (2010)
  9. Crystal structure of the catalytic subunit of protein kinase CK2 from Zea mays at 2.1 A resolution. Niefind K, Guerra B, Pinna LA, Issinger OG, Schomburg D. EMBO J. 17 2451-2462 (1998)
  10. Structural basis and prediction of substrate specificity in protein serine/threonine kinases. Brinkworth RI, Breinl RA, Kobe B. Proc. Natl. Acad. Sci. U.S.A. 100 74-79 (2003)
  11. The 1.7 A crystal structure of human cell cycle checkpoint kinase Chk1: implications for Chk1 regulation. Chen P, Luo C, Deng Y, Ryan K, Register J, Margosiak S, Tempczyk-Russell A, Nguyen B, Myers P, Lundgren K, Kan CC, O'Connor PM. Cell 100 681-692 (2000)
  12. Regulation of NDR protein kinase by hydrophobic motif phosphorylation mediated by the mammalian Ste20-like kinase MST3. Stegert MR, Hergovich A, Tamaskovic R, Bichsel SJ, Hemmings BA. Mol. Cell. Biol. 25 11019-11029 (2005)
  13. Protein kinase substrate recognition studied using the recombinant catalytic domain of AMP-activated protein kinase and a model substrate. Scott JW, Norman DG, Hawley SA, Kontogiannis L, Hardie DG. J. Mol. Biol. 317 309-323 (2002)
  14. Letter Alpha-kinases: a new class of protein kinases with a novel catalytic domain. Ryazanov AG, Pavur KS, Dorovkov MV. Curr. Biol. 9 R43-5 (1999)
  15. Crystal structures of IRAK-4 kinase in complex with inhibitors: a serine/threonine kinase with tyrosine as a gatekeeper. Wang Z, Liu J, Sudom A, Ayres M, Li S, Wesche H, Powers JP, Walker NP. Structure 14 1835-1844 (2006)
  16. Crystal structure of the Bacillus stearothermophilus anti-sigma factor SpoIIAB with the sporulation sigma factor sigmaF. Campbell EA, Masuda S, Sun JL, Muzzin O, Olson CA, Wang S, Darst SA. Cell 108 795-807 (2002)
  17. The active conformation of the PAK1 kinase domain. Lei M, Robinson MA, Harrison SC. Structure 13 769-778 (2005)
  18. Evolutionary constraints associated with functional specificity of the CMGC protein kinases MAPK, CDK, GSK, SRPK, DYRK, and CK2alpha. Kannan N, Neuwald AF. Protein Sci. 13 2059-2077 (2004)
  19. When fold is not important: a common structural framework for adenine and AMP binding in 12 unrelated protein families. Denessiouk KA, Johnson MS. Proteins 38 310-326 (2000)
  20. A dimeric kinase assembly underlying autophosphorylation in the p21 activated kinases. Pirruccello M, Sondermann H, Pelton JG, Pellicena P, Hoelz A, Chernoff J, Wemmer DE, Kuriyan J. J. Mol. Biol. 361 312-326 (2006)
  21. Intersubunit capture of regulatory segments is a component of cooperative CaMKII activation. Chao LH, Pellicena P, Deindl S, Barclay LA, Schulman H, Kuriyan J. Nat. Struct. Mol. Biol. 17 264-272 (2010)
  22. Structure of the catalytic and ubiquitin-associated domains of the protein kinase MARK/Par-1. Panneerselvam S, Marx A, Mandelkow EM, Mandelkow E. Structure 14 173-183 (2006)
  23. Interactions of UNC-34 Enabled with Rac GTPases and the NIK kinase MIG-15 in Caenorhabditis elegans axon pathfinding and neuronal migration. Shakir MA, Gill JS, Lundquist EA. Genetics 172 893-913 (2006)
  24. Crystal structure of the TAO2 kinase domain: activation and specificity of a Ste20p MAP3K. Zhou T, Raman M, Gao Y, Earnest S, Chen Z, Machius M, Cobb MH, Goldsmith EJ. Structure 12 1891-1900 (2004)
  25. PTG depletion removes Lafora bodies and rescues the fatal epilepsy of Lafora disease. Turnbull J, DePaoli-Roach AA, Zhao X, Cortez MA, Pencea N, Tiberia E, Piliguian M, Roach PJ, Wang P, Ackerley CA, Minassian BA. PLoS Genet. 7 e1002037 (2011)
  26. Phosphorylation of histone H3 Ser10 establishes a hierarchy for subsequent intramolecular modification events. Liokatis S, Stützer A, Elsässer SJ, Theillet FX, Klingberg R, van Rossum B, Schwarzer D, Allis CD, Fischle W, Selenko P. Nat. Struct. Mol. Biol. 19 819-823 (2012)
  27. Autophosphorylation restrains the apoptotic activity of DRP-1 kinase by controlling dimerization and calmodulin binding. Shani G, Henis-Korenblit S, Jona G, Gileadi O, Eisenstein M, Ziv T, Admon A, Kimchi A. EMBO J. 20 1099-1113 (2001)
  28. Coupled motions in the SH2 and kinase domains of Csk control Src phosphorylation. Wong L, Lieser SA, Miyashita O, Miller M, Tasken K, Onuchic JN, Adams JA, Woods VL, Jennings PA. J. Mol. Biol. 351 131-143 (2005)
  29. Crystal structures of the ADP and ATP bound forms of the Bacillus anti-sigma factor SpoIIAB in complex with the anti-anti-sigma SpoIIAA. Masuda S, Murakami KS, Wang S, Anders Olson C, Donigian J, Leon F, Darst SA, Campbell EA. J. Mol. Biol. 340 941-956 (2004)
  30. How does activation loop phosphorylation modulate catalytic activity in the cAMP-dependent protein kinase: a theoretical study. Cheng Y, Zhang Y, McCammon JA. Protein Sci. 15 672-683 (2006)
  31. A conserved water-mediated hydrogen bond network defines bosutinib's kinase selectivity. Levinson NM, Boxer SG. Nat. Chem. Biol. 10 127-132 (2014)
  32. Glycogen storage disease type IX: High variability in clinical phenotype. Beauchamp NJ, Dalton A, Ramaswami U, Niinikoski H, Mention K, Kenny P, Kolho KL, Raiman J, Walter J, Treacy E, Tanner S, Sharrard M. Mol. Genet. Metab. 92 88-99 (2007)
  33. Evidence for the location of the allosteric activation switch in the multisubunit phosphorylase kinase complex from mass spectrometric identification of chemically crosslinked peptides. Nadeau OW, Anderson DW, Yang Q, Artigues A, Paschall JE, Wyckoff GJ, McClintock JL, Carlson GM. J. Mol. Biol. 365 1429-1445 (2007)
  34. Release of ADP from the catalytic subunit of protein kinase A: a molecular dynamics simulation study. Lu B, Wong CF, McCammon JA. Protein Sci. 14 159-168 (2005)
  35. Structural basis of GSK-3 inhibition by N-terminal phosphorylation and by the Wnt receptor LRP6. Stamos JL, Chu ML, Enos MD, Shah N, Weis WI. Elife 3 e01998 (2014)
  36. Kinetics, in silico docking, molecular dynamics, and MM-GBSA binding studies on prototype indirubins, KT5720, and staurosporine as phosphorylase kinase ATP-binding site inhibitors: the role of water molecules examined. Hayes JM, Skamnaki VT, Archontis G, Lamprakis C, Sarrou J, Bischler N, Skaltsounis AL, Zographos SE, Oikonomakos NG. Proteins 79 703-719 (2011)
  37. Price to be paid for two-metal catalysis: magnesium ions that accelerate chemistry unavoidably limit product release from a protein kinase. Jacobsen DM, Bao ZQ, O'Brien P, Brooks CL, Young MA. J. Am. Chem. Soc. 134 15357-15370 (2012)
  38. Protein intrinsic disorder in the acetylome of intracellular and extracellular Toxoplasma gondii. Xue B, Jeffers V, Sullivan WJ, Uversky VN. Mol Biosyst 9 645-657 (2013)
  39. Structural basis for a high affinity inhibitor bound to protein kinase MK2. Hillig RC, Eberspaecher U, Monteclaro F, Huber M, Nguyen D, Mengel A, Muller-Tiemann B, Egner U. J. Mol. Biol. 369 735-745 (2007)
  40. Three-dimensional structure of phosphorylase kinase at 22 A resolution and its complex with glycogen phosphorylase b. Vénien-Bryan C, Lowe EM, Boisset N, Traxler KW, Johnson LN, Carlson GM. Structure 10 33-41 (2002)
  41. Structure of the nuclear factor κB-inducing kinase (NIK) kinase domain reveals a constitutively active conformation. Liu J, Sudom A, Min X, Cao Z, Gao X, Ayres M, Lee F, Cao P, Johnstone S, Plotnikova O, Walker N, Chen G, Wang Z. J. Biol. Chem. 287 27326-27334 (2012)
  42. Chk1-dependent constitutive phosphorylation of BLM helicase at serine 646 decreases after DNA damage. Kaur S, Modi P, Srivastava V, Mudgal R, Tikoo S, Arora P, Mohanty D, Sengupta S. Mol. Cancer Res. 8 1234-1247 (2010)
  43. SR protein kinase 1 is resilient to inactivation. Ngo JC, Gullingsrud J, Giang K, Yeh MJ, Fu XD, Adams JA, McCammon JA, Ghosh G. Structure 15 123-133 (2007)
  44. Identification and functional analysis of phosphorylation residues of the Arabidopsis BOTRYTIS-INDUCED KINASE1. Xu J, Wei X, Yan L, Liu D, Ma Y, Guo Y, Peng C, Zhou H, Yang C, Lou Z, Shui W. Protein Cell 4 771-781 (2013)
  45. PINK1 rendered temperature sensitive by disease-associated and engineered mutations. Narendra DP, Wang C, Youle RJ, Walker JE. Hum. Mol. Genet. 22 2572-2589 (2013)
  46. Structural basis of regulation and substrate specificity of protein kinase CK2 deduced from the modeling of protein-protein interactions. Rekha N, Srinivasan N. BMC Struct. Biol. 3 4 (2003)
  47. The structure of phosphorylase kinase holoenzyme at 9.9 angstroms resolution and location of the catalytic subunit and the substrate glycogen phosphorylase. Vénien-Bryan C, Jonic S, Skamnaki V, Brown N, Bischler N, Oikonomakos NG, Boisset N, Johnson LN. Structure 17 117-127 (2009)
  48. Structure of the dimeric autoinhibited conformation of DAPK2, a pro-apoptotic protein kinase. Patel AK, Yadav RP, Majava V, Kursula I, Kursula P. J. Mol. Biol. 409 369-383 (2011)
  49. High frequency of missense mutations in glycogen storage disease type VI. Beauchamp NJ, Taybert J, Champion MP, Layet V, Heinz-Erian P, Dalton A, Tanner MS, Pronicka E, Sharrard MJ. J. Inherit. Metab. Dis. 30 722-734 (2007)
  50. NleH defines a new family of bacterial effector kinases. Grishin AM, Cherney M, Anderson DH, Phanse S, Babu M, Cygler M. Structure 22 250-259 (2014)
  51. Deciphering the Arginine-binding preferences at the substrate-binding groove of Ser/Thr kinases by computational surface mapping. Ben-Shimon A, Niv MY. PLoS Comput. Biol. 7 e1002288 (2011)
  52. Identification of substrates for Ser/Thr kinases using residue-based statistical pair potentials. Kumar N, Mohanty D. Bioinformatics 26 189-197 (2010)
  53. Structure and location of the regulatory β subunits in the (αβγδ)4 phosphorylase kinase complex. Nadeau OW, Lane LA, Xu D, Sage J, Priddy TS, Artigues A, Villar MT, Yang Q, Robinson CV, Zhang Y, Carlson GM. J. Biol. Chem. 287 36651-36661 (2012)
  54. A computational analysis of substrate binding strength by phosphorylase kinase and protein kinase A. Brinkworth RI, Horne J, Kobe B. J. Mol. Recognit. 15 104-111 (2002)
  55. In Silico characterization of phosphorylase kinase: evidence for an alternate intronic polyadenylation site in PHKG1. Winchester JS, Rouchka EC, Rowland NS, Rice NA. Mol. Genet. Metab. 92 234-242 (2007)
  56. Poly-L-proline type II peptide mimics as probes of the active site occupancy requirements of cGMP-dependent protein kinase. Zhang R, Nickl CK, Mamai A, Flemer S, Natarajan A, Dostmann WR, Madalengoitia JS. J. Pept. Res. 66 151-159 (2005)
  57. Structural characterization of Ca2+/CaM in complex with the phosphorylase kinase PhK5 peptide. Cook AG, Johnson LN, McDonnell JM. FEBS J. 272 1511-1522 (2005)
  58. The diterpenoid alkaloid noroxoaconitine is a Mapkap kinase 5 (MK5/PRAK) inhibitor. Kostenko S, Khan MT, Sylte I, Moens U. Cell. Mol. Life Sci. 68 289-301 (2011)
  59. Pcp4l1 contains an auto-inhibitory element that prevents its IQ motif from binding to calmodulin. Morgan MA, Morgan JI. J. Neurochem. 121 843-851 (2012)
  60. Identifying three-dimensional structures of autophosphorylation complexes in crystals of protein kinases. Xu Q, Malecka KL, Fink L, Jordan EJ, Duffy E, Kolander S, Peterson JR, Dunbrack RL. Sci Signal 8 rs13 (2015)
  61. A PEF/Y substrate recognition and signature motif plays a critical role in DAPK-related kinase activity. Temmerman K, de Diego I, Pogenberg V, Simon B, Jonko W, Li X, Wilmanns M. Chem. Biol. 21 264-273 (2014)
  62. Arginine to citrulline replacement in substrates of phosphorylase kinase. Bartleson C, Luo S, Graves DJ, Martin BL. Biochim. Biophys. Acta 1480 23-28 (2000)
  63. Isolation and characterization of the carbon catabolite-derepressing protein kinase Snf1 from the stress tolerant yeast Torulaspora delbrueckii. Hernández-López MJ, Prieto JA, Randez-Gil F. Yeast 27 1061-1069 (2010)
  64. An assessment of protein-ligand binding site polarizability. Nayeem A, Krystek S, Stouch T. Biopolymers 70 201-211 (2003)
  65. Modeling kinase-substrate specificity: implication of the distance between substrate nucleophilic oxygen and attacked phosphorus of ATP analog on binding affinity. Sun M, Liu XH, Ji SH, Zhao YF. J. Mol. Graph. Model. 23 433-438 (2005)
  66. Flow cytometric analysis of genetic FRET detectors containing variable substrate sequences. Hong Lim K, Hsu CK, Park S. Biotechnol. Prog. 26 1765-1771 (2010)
  67. A novel Entamoeba histolytica inositol phosphate kinase catalyzes the formation of 5PP-Ins(1,2,3,4,6)P(5). Löser B, Nalaskowski MM, Fanick W, Lin H, Tannich E, Mayr GW. Mol. Biochem. Parasitol. 181 49-52 (2012)
  68. Louise N. Johnson 1940-2012. Barford D, Stuart DI. Nat. Struct. Mol. Biol. 19 1216-1217 (2012)
  69. Mass Spectrometric Analysis of Surface-Exposed Regions in the Hexadecameric Phosphorylase Kinase Complex. Rimmer MA, Artigues A, Nadeau OW, Villar MT, Vasquez-Montes V, Carlson GM. Biochemistry 54 6887-6895 (2015)
  70. The regulatory α and β subunits of phosphorylase kinase directly interact with its substrate, glycogen phosphorylase. Thompson JA, Carlson GM. Biochem. Biophys. Res. Commun. 482 221-225 (2017)


Related citations provided by authors (1)