2pad Citations

Binding of chloromethyl ketone substrate analogues to crystalline papain.

Biochemistry 15 3731-8 (1976)
Related entries: 1pad, 4pad, 5pad, 6pad

Cited: 182 times
EuropePMC logo PMID: 952885

Abstract

Papain (EC 3.4.22.2) is a proteolytic enzyme, the three-dimensional structure of which has been determined by x-ray diffraction at 2.8 A resolution (Drenth, J., Jansonius, J.N., Koekoek, R., Swen, H. M., and Wothers, B.G. (1968), Nature (London) 218, 929-932). The active site is a groove on the molecular surface in which the essential sulfhydryl group of cysteine-25 is situated next to the imidazole ring of histidine-159. The main object of this study was to determine by the difference-Fourier technique the binding mode for the substrate in the groove in order to explain the substrate specificity of the enzyme (P2 should have a hydrophobic side chain (Berger and Schechter, 1970) and to contribute to an elucidation of the catalytic mechanism. To this end, three chloromethyl ketone substrate analogues were reacted with the enzyme by covalent attachment to the sulfur atom of cysteine-25. The products crystallized isomorphously with the parent structure that is not the native, active enzyme but a mixture of oxidized papain (probably papain-SO2-) and papain with an extra cysteine attached to cysteine-25. Although this made the interpretation of the difference electron density maps less easy, it provided us with a clear picture of the way in which the acyl part of the substrate binds in the active site groove. The carbonyl oxygen of the P1 residue is near two potential hydrogen-bond donating groups, the backbone NH of cysteine-25 and the NH2 of glutamine-19. Valine residues 133 and 157 are responsible for the preference of papain in its substrate splitting. By removing the methylene group that covalently attaches the inhibitor molecules to the sulfur atom of cysteine-25 we obtained acceptable models for the acyl-enzyme structure and for the tetrahedral intermediate. The carbonyl oxygen of the P1 residue, carrying a formal negative charge in the tetrahedral intermediate, is stabilized by formation of two hydrogen bonds with the backbone NH of cysteine-25 and the NH2 group of glutamine-19. This situation resembles that suggested for the proteolytic serine enzymes (Henderson, R., Wright, C. S., Hess, G. P., and Blow, D. M. (1971), Cold Spring Harbor Symp. Quant. Biol. 36, 63-70; Robertus, J. D., Kraut, J., Alden, R. A., and Birktoft, J. J. (1972b), Biochemistry 11, 4293-4303). The nitrogen atom of the scissile peptide bond was found close to the imidazole ring of histidine-159, suggesting a role for this ring in protonating the N atom of the leaving group (Lowe, 1970). This proton transfer would be facilitated by a 30 degrees rotation of the ring around the C beta-Cgamma bond from an in-plane position with the sulfur atom to an in-plane position with the N atom. The possibility of this rotation is derived from a difference electron-density map for fully oxidizied papain vs. the parent protein.

Reviews citing this publication (17)

  1. Natural protein proteinase inhibitors and their interaction with proteinases. Bode W, Huber R. Eur J Biochem 204 433-451 (1992)
  2. The role of the alpha-helix dipole in protein function and structure. Hol WG. Prog Biophys Mol Biol 45 149-195 (1985)
  3. The lysosomal cysteine proteases. McGrath ME. Annu Rev Biophys Biomol Struct 28 181-204 (1999)
  4. Bacterial aminopeptidases: properties and functions. Gonzales T, Robert-Baudouy J. FEMS Microbiol Rev 18 319-344 (1996)
  5. Revised definition of substrate binding sites of papain-like cysteine proteases. Turk D, Guncar G, Podobnik M, Turk B. Biol Chem 379 137-147 (1998)
  6. SCA3: neurological features, pathogenesis and animal models. Riess O, Rüb U, Pastore A, Bauer P, Schöls L. Cerebellum 7 125-137 (2008)
  7. Current problems in mechanistic studies of serine and cysteine proteinases. Polgár L, Halász P. Biochem J 207 1-10 (1982)
  8. Structure, function and dynamics in adenovirus maturation. Mangel WF, San Martín C. Viruses 6 4536-4570 (2014)
  9. Fractionation and purification of the enzymes stored in the latex of Carica papaya. Azarkan M, El Moussaoui A, van Wuytswinkel D, Dehon G, Looze Y. J Chromatogr B Analyt Technol Biomed Life Sci 790 229-238 (2003)
  10. The picornaviral 3C proteinases: cysteine nucleophiles in serine proteinase folds. Malcolm BA. Protein Sci 4 1439-1445 (1995)
  11. The proteasome: a macromolecular assembly designed to confine proteolysis to a nanocompartment. Baumeister W, Cejka Z, Kania M, Seemüller E. Biol Chem 378 121-130 (1997)
  12. Cysteine proteases: mode of action and role in epidermal differentiation. Brocklehurst K, Philpott MP. Cell Tissue Res 351 237-244 (2013)
  13. Phytochelatin synthase: of a protease a peptide polymerase made. Rea PA. Physiol Plant 145 154-164 (2012)
  14. Temporal and spatial control of the adenovirus proteinase by both a peptide and the viral DNA. Mangel WF, Toledo DL, Ding J, Sweet RM, McGrath WJ. Trends Biochem Sci 22 393-398 (1997)
  15. Fluorescence studies on the active sites of proteinases. Fruton JS. Mol Cell Biochem 32 105-114 (1980)
  16. Semisynthetic enzymes: design of flavin-dependent oxidoreductases. Hilvert D, Kaiser ET. Biotechnol Genet Eng Rev 5 297-318 (1987)
  17. Viral proteases: an emerging therapeutic target. Korant BD. Crit Rev Biotechnol 8 149-157 (1988)

Articles citing this publication (165)

  1. The alpha-helix dipole and the properties of proteins. Hol WG, van Duijnen PT, Berendsen HJ. Nature 273 443-446 (1978)
  2. The 2.0 A X-ray crystal structure of chicken egg white cystatin and its possible mode of interaction with cysteine proteinases. Bode W, Engh R, Musil D, Thiele U, Huber R, Karshikov A, Brzin J, Kos J, Turk V. EMBO J 7 2593-2599 (1988)
  3. The refined 2.15 A X-ray crystal structure of human liver cathepsin B: the structural basis for its specificity. Musil D, Zucic D, Turk D, Engh RA, Mayr I, Huber R, Popovic T, Turk V, Towatari T, Katunuma N. EMBO J 10 2321-2330 (1991)
  4. Structure of papain refined at 1.65 A resolution. Kamphuis IG, Kalk KH, Swarte MB, Drenth J. J Mol Biol 179 233-256 (1984)
  5. Thiol proteases. Comparative studies based on the high-resolution structures of papain and actinidin, and on amino acid sequence information for cathepsins B and H, and stem bromelain. Kamphuis IG, Drenth J, Baker EN. J Mol Biol 182 317-329 (1985)
  6. Structure of actinidin, after refinement at 1.7 A resolution. Baker EN. J Mol Biol 141 441-484 (1980)
  7. Picornaviral 3C cysteine proteinases have a fold similar to chymotrypsin-like serine proteinases. Allaire M, Chernaia MM, Malcolm BA, James MN. Nature 369 72-76 (1994)
  8. Crystal structure of a deubiquitinating enzyme (human UCH-L3) at 1.8 A resolution. Johnston SC, Larsen CN, Cook WJ, Wilkinson KD, Hill CP. EMBO J 16 3787-3796 (1997)
  9. Structure of human dipeptidyl peptidase I (cathepsin C): exclusion domain added to an endopeptidase framework creates the machine for activation of granular serine proteases. Turk D, Janjić V, Stern I, Podobnik M, Lamba D, Dahl SW, Lauritzen C, Pedersen J, Turk V, Turk B. EMBO J 20 6570-6582 (2001)
  10. Contributions of tryptophan side chains to the far-ultraviolet circular dichroism of proteins. Woody RW. Eur Biophys J 23 253-262 (1994)
  11. The solution structure of the Josephin domain of ataxin-3: structural determinants for molecular recognition. Nicastro G, Menon RP, Masino L, Knowles PP, McDonald NQ, Pastore A. Proc Natl Acad Sci U S A 102 10493-10498 (2005)
  12. Evaluation of protein models by atomic solvation preference. Holm L, Sander C. J Mol Biol 225 93-105 (1992)
  13. A viral cleavage site cassette: identification of amino acid sequences required for tobacco etch virus polyprotein processing. Carrington JC, Dougherty WG. Proc Natl Acad Sci U S A 85 3391-3395 (1988)
  14. Cloning and sequencing of papain-encoding cDNA. Cohen LW, Coghlan VM, Dihel LC. Gene 48 219-227 (1986)
  15. Mechanism of inhibition of papain by chicken egg white cystatin. Inhibition constants of N-terminally truncated forms and cyanogen bromide fragments of the inhibitor. Machleidt W, Thiele U, Laber B, Assfalg-Machleidt I, Esterl A, Wiegand G, Kos J, Turk V, Bode W. FEBS Lett 243 234-238 (1989)
  16. Crystal structure of porcine cathepsin H determined at 2.1 A resolution: location of the mini-chain C-terminal carboxyl group defines cathepsin H aminopeptidase function. Guncar G, Podobnik M, Pungercar J, Strukelj B, Turk V, Turk D. Structure 6 51-61 (1998)
  17. Hormonal regulation, processing, and secretion of cysteine proteinases in barley aleurone layers. Koehler SM, Ho TH. Plant Cell 2 769-783 (1990)
  18. Crystal structure of microbial transglutaminase from Streptoverticillium mobaraense. Kashiwagi T, Yokoyama K, Ishikawa K, Ono K, Ejima D, Matsui H, Suzuki E. J Biol Chem 277 44252-44260 (2002)
  19. Beta-lactamase of Bacillus licheniformis 749/C at 2 A resolution. Moews PC, Knox JR, Dideberg O, Charlier P, Frère JM. Proteins 7 156-171 (1990)
  20. Transglutaminase factor XIII uses proteinase-like catalytic triad to crosslink macromolecules. Pedersen LC, Yee VC, Bishop PD, Le Trong I, Teller DC, Stenkamp RE. Protein Sci 3 1131-1135 (1994)
  21. Letter Crystal structure of human cathepsin K complexed with a potent inhibitor. McGrath ME, Klaus JL, Barnes MG, Brömme D. Nat Struct Biol 4 105-109 (1997)
  22. Revealing the molecular mechanisms of proteolysis of SARS-CoV-2 Mpro by QM/MM computational methods. Świderek K, Moliner V. Chem Sci 11 10626-10630 (2020)
  23. Structure based development of novel specific inhibitors for cathepsin L and cathepsin S in vitro and in vivo. Katunuma N, Murata E, Kakegawa H, Matsui A, Tsuzuki H, Tsuge H, Turk D, Turk V, Fukushima M, Tada Y, Asao T. FEBS Lett 458 6-10 (1999)
  24. Structure of the streptococcal endopeptidase IdeS, a cysteine proteinase with strict specificity for IgG. Wenig K, Chatwell L, von Pawel-Rammingen U, Björck L, Huber R, Sondermann P. Proc Natl Acad Sci U S A 101 17371-17376 (2004)
  25. Structural basis for the removal of ubiquitin and interferon-stimulated gene 15 by a viral ovarian tumor domain-containing protease. James TW, Frias-Staheli N, Bacik JP, Levingston Macleod JM, Khajehpour M, García-Sastre A, Mark BL. Proc Natl Acad Sci U S A 108 2222-2227 (2011)
  26. Crystal structure of the human adenovirus proteinase with its 11 amino acid cofactor. Ding J, McGrath WJ, Sweet RM, Mangel WF. EMBO J 15 1778-1783 (1996)
  27. Crystal structure of the wild-type human procathepsin B at 2.5 A resolution reveals the native active site of a papain-like cysteine protease zymogen. Podobnik M, Kuhelj R, Turk V, Turk D. J Mol Biol 271 774-788 (1997)
  28. Crystal structure of a conserved protease that binds DNA: the bleomycin hydrolase, Gal6. Joshua-Tor L, Xu HE, Johnston SA, Rees DC. Science 269 945-950 (1995)
  29. Biosynthesis, purification, and characterization of the human coronavirus 229E 3C-like proteinase. Ziebuhr J, Heusipp G, Siddell SG. J Virol 71 3992-3997 (1997)
  30. X-ray crystallographic structure of a papain-leupeptin complex. Schröder E, Phillips C, Garman E, Harlos K, Crawford C. FEBS Lett 315 38-42 (1993)
  31. The prosequence of procaricain forms an alpha-helical domain that prevents access to the substrate-binding cleft. Groves MR, Taylor MA, Scott M, Cummings NJ, Pickersgill RW, Jenkins JA. Structure 4 1193-1203 (1996)
  32. Crystal structures of recombinant rat cathepsin B and a cathepsin B-inhibitor complex. Implications for structure-based inhibitor design. Jia Z, Hasnain S, Hirama T, Lee X, Mort JS, To R, Huber CP. J Biol Chem 270 5527-5533 (1995)
  33. Up-regulation of a cysteine protease accompanies the ethylene-insensitive senescence of daylily (Hemerocallis) flowers. Valpuesta V, Lange NE, Guerrero C, Reid MS. Plant Mol Biol 28 575-582 (1995)
  34. Poliovirus-encoded proteinase 3C: a possible evolutionary link between cellular serine and cysteine proteinase families. Gorbalenya AE, Blinov VM, Donchenko AP. FEBS Lett 194 253-257 (1986)
  35. Differences in the interaction of the catalytic groups of the active centres of actinidin and papain. Rapid purification of fully active actinidin by covalent chromatography and characterization of its active centre by use of two-protonic-state reactivity probes. Brocklehurst K, Baines BS, Malthouse JP. Biochem J 197 739-746 (1981)
  36. The crystal structure of recombinant proDer p 1, a major house dust mite proteolytic allergen. Meno K, Thorsted PB, Ipsen H, Kristensen O, Larsen JN, Spangfort MD, Gajhede M, Lund K. J Immunol 175 3835-3845 (2005)
  37. Inhibition mechanism of cathepsin L-specific inhibitors based on the crystal structure of papain-CLIK148 complex. Tsuge H, Nishimura T, Tada Y, Asao T, Turk D, Turk V, Katunuma N. Biochem Biophys Res Commun 266 411-416 (1999)
  38. Probing the specificity of cysteine proteinases at subsites remote from the active site: analysis of P4, P3, P2' and P3' variations in extended substrates. Portaro FC, Santos AB, Cezari MH, Juliano MA, Juliano L, Carmona E. Biochem J 347 Pt 1 123-129 (2000)
  39. A single amino acid substitution affects substrate specificity in cysteine proteinases from Fasciola hepatica. Smooker PM, Whisstock JC, Irving JA, Siyaguna S, Spithill TW, Pike RN. Protein Sci 9 2567-2572 (2000)
  40. L-Pyroglutamyl-L-phenylalanyl-L-leucine-p-nitroanilide--a chromogenic substrate for thiol proteinase assay. Filippova IYu, Lysogorskaya EN, Oksenoit ES, Rudenskaya GN, Stepanov VM. Anal Biochem 143 293-297 (1984)
  41. The evolution of enzyme specificity in Fasciola spp. Irving JA, Spithill TW, Pike RN, Whisstock JC, Smooker PM. J Mol Evol 57 1-15 (2003)
  42. A gibberellin-regulated gene from wheat with sequence homology to cathepsin B of mammalian cells. Cejudo FJ, Murphy G, Chinoy C, Baulcombe DC. Plant J 2 937-948 (1992)
  43. Structure and mechanism of cysteine peptidase gingipain K (Kgp), a major virulence factor of Porphyromonas gingivalis in periodontitis. de Diego I, Veillard F, Sztukowska MN, Guevara T, Potempa B, Pomowski A, Huntington JA, Potempa J, Gomis-Rüth FX. J Biol Chem 289 32291-32302 (2014)
  44. Crystal structure of papain-E64-c complex. Binding diversity of E64-c to papain S2 and S3 subsites. Kim MJ, Yamamoto D, Matsumoto K, Inoue M, Ishida T, Mizuno H, Sumiya S, Kitamura K. Biochem J 287 ( Pt 3) 797-803 (1992)
  45. Demonstration that 1-trans-epoxysuccinyl-L-leucylamido-(4-guanidino) butane (E-64) is one of the most effective low Mr inhibitors of trypsin-catalysed hydrolysis. Characterization by kinetic analysis and by energy minimization and molecular dynamics simulation of the E-64-beta-trypsin complex. Sreedharan SK, Verma C, Caves LS, Brocklehurst SM, Gharbia SE, Shah HN, Brocklehurst K. Biochem J 316 ( Pt 3) 777-786 (1996)
  46. Plasmodium falciparum SERA5 plays a non-enzymatic role in the malarial asexual blood-stage lifecycle. Stallmach R, Kavishwar M, Withers-Martinez C, Hackett F, Collins CR, Howell SA, Yeoh S, Knuepfer E, Atid AJ, Holder AA, Blackman MJ. Mol Microbiol 96 368-387 (2015)
  47. Development of broad-spectrum halomethyl ketone inhibitors against coronavirus main protease 3CL(pro). Bacha U, Barrila J, Gabelli SB, Kiso Y, Mario Amzel L, Freire E. Chem Biol Drug Des 72 34-49 (2008)
  48. Molecular dynamics simulations of the catalytic pathway of a cysteine protease: a combined QM/MM study of human cathepsin K. Ma S, Devi-Kesavan LS, Gao J. J Am Chem Soc 129 13633-13645 (2007)
  49. Structure of porcine pancreatic prephospholipase A2. Drenth J, Enzing CM, Kalk KH, Vessies JC. Nature 264 373-377 (1976)
  50. A model to explain the pH-dependent specificity of cathepsin B-catalysed hydrolyses. Khouri HE, Plouffe C, Hasnain S, Hirama T, Storer AC, Ménard R. Biochem J 275 ( Pt 3) 751-757 (1991)
  51. Haloacetamidine-based inactivators of protein arginine deiminase 4 (PAD4): evidence that general acid catalysis promotes efficient inactivation. Knuckley B, Causey CP, Pellechia PJ, Cook PF, Thompson PR. Chembiochem 11 161-165 (2010)
  52. Structure-function relationships in the cysteine proteinases actinidin, papain and papaya proteinase omega. Three-dimensional structure of papaya proteinase omega deduced by knowledge-based modelling and active-centre characteristics determined by two-hydronic-state reactivity probe kinetics and kinetics of catalysis. Topham CM, Salih E, Frazao C, Kowlessur D, Overington JP, Thomas M, Brocklehurst SM, Patel M, Thomas EW, Brocklehurst K. Biochem J 280 ( Pt 1) 79-92 (1991)
  53. The 2.0 A crystal structure and substrate specificity of the KDEL-tailed cysteine endopeptidase functioning in programmed cell death of Ricinus communis endosperm. Than ME, Helm M, Simpson DJ, Lottspeich F, Huber R, Gietl C. J Mol Biol 336 1103-1116 (2004)
  54. A new autocatalytic activation mechanism for cysteine proteases revealed by Prevotella intermedia interpain A. Mallorquí-Fernández N, Manandhar SP, Mallorquí-Fernández G, Usón I, Wawrzonek K, Kantyka T, Solà M, Thøgersen IB, Enghild JJ, Potempa J, Gomis-Rüth FX. J Biol Chem 283 2871-2882 (2008)
  55. Structure of actinidin: details of the polypeptide chain conformation and active site from an electron density map at 2-8 A resolution. Baker EN. J Mol Biol 115 263-277 (1977)
  56. The amino acid sequence of chymopapain from Carica papaya. Watson DC, Yaguchi M, Lynn KR. Biochem J 266 75-81 (1990)
  57. Complete amino acid sequence of ananain and a comparison with stem bromelain and other plant cysteine proteases. Lee KL, Albee KL, Bernasconi RJ, Edmunds T. Biochem J 327 ( Pt 1) 199-202 (1997)
  58. On the role of the active site helix in papain, an ab initio molecular orbital study. van Duijnen PT, Thole BT, Hol WG. Biophys Chem 9 273-280 (1979)
  59. Amino-acid sequence and glycan structures of cysteine proteases with proline specificity from ginger rhizome Zingiber officinale. Choi KH, Laursen RA. Eur J Biochem 267 1516-1526 (2000)
  60. Flavopapain: synthesis and properties of semi-synthetic enzymes. Levine HL, Nakagawa Y, Kaiser ET. Biochem Biophys Res Commun 76 64-70 (1977)
  61. An episulfide cation (thiiranium ring) trapped in the active site of HAV 3C proteinase inactivated by peptide-based ketone inhibitors. Yin J, Cherney MM, Bergmann EM, Zhang J, Huitema C, Pettersson H, Eltis LD, Vederas JC, James MN. J Mol Biol 361 673-686 (2006)
  62. Serine protease inhibitors N-alpha-tosyl-L-lysinyl-chloromethylketone (TLCK) and N-tosyl-L-phenylalaninyl-chloromethylketone (TPCK) are potent inhibitors of activated caspase proteases. Frydrych I, Mlejnek P. J Cell Biochem 103 1646-1656 (2008)
  63. Distinct Roles of Catalytic Cysteine and Histidine in the Protease and Ligase Mechanisms of Human Legumain As Revealed by DFT-Based QM/MM Simulations. Elsässer B, Zauner FB, Messner J, Soh WT, Dall E, Brandstetter H. ACS Catal 7 5585-5593 (2017)
  64. Structure of the autocatalytic cysteine protease domain of potyvirus helper-component proteinase. Guo B, Lin J, Ye K. J Biol Chem 286 21937-21943 (2011)
  65. Anti-malarial drug development using models of enzyme structure. Li Z, Chen X, Davidson E, Zwang O, Mendis C, Ring CS, Roush WR, Fegley G, Li R, Rosenthal PJ. Chem Biol 1 31-37 (1994)
  66. Chymopapain. Chromatographic purification and immunological characterization. Buttle DJ, Barrett AJ. Biochem J 223 81-88 (1984)
  67. In vitro translation and processing of cathepsin B of Schistosoma mansoni. Felleisen R, Klinkert MQ. EMBO J 9 371-377 (1990)
  68. Substrate-derived two-protonic-state electrophiles as sensitive kinetic specificity probes for cysteine proteinases. Activation of 2-pyridyl disulphides by hydrogen-bonding. Brocklehurst K, Kowlessur D, O'Driscoll M, Patel G, Quenby S, Salih E, Templeton W, Thomas EW, Willenbrock F. Biochem J 244 173-181 (1987)
  69. Mechanism of the reaction of papain with substrate-derived diazomethyl ketones. Implications for the difference in site specificity of halomethyl ketones for serine proteinases and cysteine proteinases and for stereoelectronic requirements in the papain catalytic mechanism. Brocklehurst K, Malthouse JP. Biochem J 175 761-764 (1978)
  70. E-64 analogues as inhibitors of cathepsin B. On the role of the absolute configuration of the epoxysuccinyl group. Schaschke N, Assfalg-Machleidt I, Machleidt W, Turk D, Moroder L. Bioorg Med Chem 5 1789-1797 (1997)
  71. 2-Aminotetralones: novel inhibitors of MurA and MurZ. Dunsmore CJ, Miller K, Blake KL, Patching SG, Henderson PJ, Garnett JA, Stubbings WJ, Phillips SE, Palestrant DJ, Angeles Jde L, Leeds JA, Chopra I, Fishwick CW. Bioorg Med Chem Lett 18 1730-1734 (2008)
  72. An evolutionarily conserved tripartite tryptophan motif stabilizes the prodomains of cathepsin L-like cysteine proteases. Kreusch S, Fehn M, Maubach G, Nissler K, Rommerskirch W, Schilling K, Weber E, Wenz I, Wiederanders B. Eur J Biochem 267 2965-2972 (2000)
  73. Consequences of molecular recognition in the S1-S2 intersubsite region of papain for catalytic-site chemistry. Change in pH-dependence characteristics and generation of an inverse solvent kinetic isotope effect by introduction of a P1-P2 amide bond into a two-protonic-state reactivity probe. Brocklehurst K, Kowlessur D, Patel G, Templeton W, Quigley K, Thomas EW, Wharton CW, Willenbrock F, Szawelski RJ. Biochem J 250 761-772 (1988)
  74. Mode of binding of E-64-c, a potent thiol protease inhibitor, to papain as determined by X-ray crystal analysis of the complex. Matsumoto K, Yamamoto D, Ohishi H, Tomoo K, Ishida T, Inoue M, Sadatome T, Kitamura K, Mizuno H. FEBS Lett 245 177-180 (1989)
  75. Thienylhalomethylketones: Irreversible glycogen synthase kinase 3 inhibitors as useful pharmacological tools. Perez DI, Conde S, Pérez C, Gil C, Simon D, Wandosell F, Moreno FJ, Gelpí JL, Luque FJ, Martínez A. Bioorg Med Chem 17 6914-6925 (2009)
  76. Evidence for multiple reactive forms of papain. Polgár L, Halász P. Eur J Biochem 88 513-521 (1978)
  77. Crystal and molecular structure of the sulfhydryl protease calotropin DI at 3.2 A resolution. Heinemann U, Pal GP, Hilgenfeld R, Saenger W. J Mol Biol 161 591-606 (1982)
  78. Evidence for a two-state transition in papain that may have no close analogue in ficin. Differences in the disposition of cationic sites and hydrophobic binding areas in the active centres of papain and ficin. Brocklehurst K, Malthouse JP. Biochem J 191 707-718 (1980)
  79. Crystal structure of a caricain D158E mutant in complex with E-64. Katerelos NA, Taylor MA, Scott M, Goodenough PW, Pickersgill RW. FEBS Lett 392 35-39 (1996)
  80. Electrostatic properties in the catalytic site of papain: A possible regulatory mechanism for the reactivity of the ion pair. Dardenne LE, Werneck AS, de Oliveira Neto M, Bisch PM. Proteins 52 236-253 (2003)
  81. Cysteine proteases such as papain are not inhibited by substrate analogue peptidyl boronic acids. Martichonok V, Jones JB. Bioorg Med Chem 5 679-684 (1997)
  82. Effects of conformational selectivity and of overlapping kinetically influential ionizations on the characteristics of pH-dependent enzyme kinetics. Implications of free-enzyme pKa variability in reactions of papain for its catalytic mechanism. Brocklehurst K, Willenbrock SJ, Salih E. Biochem J 211 701-708 (1983)
  83. In vitro and ex vivo inhibition of hepatitis A virus 3C proteinase by a peptidyl monofluoromethyl ketone. Morris TS, Frormann S, Shechosky S, Lowe C, Lall MS, Gauss-Müller V, Purcell RH, Emerson SU, Vederas JC, Malcolm BA. Bioorg Med Chem 5 797-807 (1997)
  84. Inhibition of papain by N-acyl-aminoacetaldehydes and N-acyl-aminopropanones. Evidence for hemithioacetal formation by a cross-saturation technique in nuclear-magnetic resonance spectroscopy. Bendall MR, Cartwright IL, Clark PI, Lowe G, Nurse D. Eur J Biochem 79 201-209 (1977)
  85. Negatively charged reactants as probes in the study of the essential mercaptide-imidazolium ion-pair of thiolenzymes. Halász P, Polgár L. Eur J Biochem 79 491-494 (1977)
  86. QM/MM study of the active site of free papain and of the NMA-papain complex. Han WG, Tajkhorshid E, Suhai S. J Biomol Struct Dyn 16 1019-1032 (1999)
  87. Design and synthesis of dipeptidyl alpha',beta'-epoxy ketones, potent irreversible inhibitors of the cysteine protease cruzain. Roush WR, González FV, McKerrow JH, Hansell E. Bioorg Med Chem Lett 8 2809-2812 (1998)
  88. Inhibition of cathepsin B and papain by peptidyl alpha-keto esters, alpha-keto amides, alpha-diketones, and alpha-keto acids. Hu LY, Abeles RH. Arch Biochem Biophys 281 271-274 (1990)
  89. Purification of active calpain by affinity chromatography on an immobilized peptide inhibitor. Anagli J, Vilei EM, Molinari M, Calderara S, Carafoli E. Eur J Biochem 241 948-954 (1996)
  90. Chondroitin sulfate promotes activation of cathepsin K. Lemaire PA, Huang L, Zhuo Y, Lu J, Bahnck C, Stachel SJ, Carroll SS, Duong LT. J Biol Chem 289 21562-21572 (2014)
  91. Identification, characterization and deduced amino acid sequence of the dominant protease from Kudoa paniformis and K. thyrsites: a unique cytoplasmic cysteine protease. Funk VA, Olafson RW, Raap M, Smith D, Aitken L, Haddow JD, Wang D, Dawson-Coates JA, Burke RD, Miller KM. Comp Biochem Physiol B Biochem Mol Biol 149 477-489 (2008)
  92. Lantibiotic transporter requires cooperative functioning of the peptidase domain and the ATP binding domain. Nishie M, Sasaki M, Nagao J, Zendo T, Nakayama J, Sonomoto K. J Biol Chem 286 11163-11169 (2011)
  93. Crystal structure of rat trypsin-S195C at -150 degrees C. Analysis of low activity of recombinant and semisynthetic thiol proteases. Wilke ME, Higaki JN, Craik CS, Fletterick RJ. J Mol Biol 219 511-523 (1991)
  94. Deuterium isotope effects on papain acylation. Evidence for lack of general base catalysis and for enzyme--leaving-group interaction. Polgár L. Eur J Biochem 98 369-374 (1979)
  95. Mechanism of cysteine protease inactivation by peptidyl epoxides. Albeck A, Kliper S. Biochem J 322 ( Pt 3) 879-884 (1997)
  96. Molecular weight variations in the diversity of phospholipase A2 forms in reptile venoms. DuBourdieu DJ, Kawaguchi H, Shier WT. Toxicon 25 333-343 (1987)
  97. New substrates of papain, based on the conserved sequence of natural inhibitors of the cystatin family. Serveau C, Juliano L, Bernard P, Moreau T, Mayer R, Gauthier F. Biochimie 76 153-158 (1994)
  98. Structural features underlying selective inhibition of GSK3β by dibromocantharelline: implications for rational drug design. Zhang N, Zhong R, Yan H, Jiang Y. Chem Biol Drug Des 77 199-205 (2011)
  99. The influence of purification and protein heterogeneity on the crystallization of p-hydroxybenzoate hydroxylase. Van der Laan JM, Swarte MB, Groendijk H, Hol WG, Drenth J. Eur J Biochem 179 715-724 (1989)
  100. E64 [trans-epoxysuccinyl-L-leucylamido-(4-guanidino)butane] analogues as inhibitors of cysteine proteinases: investigation of S2 subsite interactions. Gour-Salin BJ, Lachance P, Magny MC, Plouffe C, Ménard R, Storer AC. Biochem J 299 ( Pt 2) 389-392 (1994)
  101. Enzyme catalytic promiscuity: The papain-catalyzed Knoevenagel reaction. Hu W, Guan Z, Deng X, He YH. Biochimie 94 656-661 (2012)
  102. Investigation of the catalytic site of actinidin by using benzofuroxan as a reactivity probe with selectivity for the thiolate-imidazolium ion-pair systems of cysteine proteinases. Evidence that the reaction of the ion-pair of actinidin (pKI 3.0, pKII 9.6) is modulated by the state of ionization of a group associated with a molecular pKa of 5.5. Salih E, Brocklehurst K. Biochem J 213 713-718 (1983)
  103. Affinity chromatographic purification of papain. Funk MO, Nakagawa Y, Skochdopole J, Kaiser ET. Int J Pept Protein Res 13 296-303 (1979)
  104. Cysteine-specific, covalent anchoring of transition organometallic complexes to the protein papain from Carica papaya. Haquette P, Salmain M, Svedlung K, Martel A, Rudolf B, Zakrzewski J, Cordier S, Roisnel T, Fosse C, Jaouen G. Chembiochem 8 224-231 (2007)
  105. Sequencing and characterization of asclepain f: the first cysteine peptidase cDNA cloned and expressed from Asclepias fruticosa latex. Trejo SA, López LM, Caffini NO, Natalucci CL, Canals F, Avilés FX. Planta 230 319-328 (2009)
  106. The Oxyanion Hole in Serine beta-Lactamase Catalysis: Interactions of Thiono Substrates with the Active Site. Curley K, Pratt RF. Bioorg Chem 28 338-356 (2000)
  107. The use of crystallography, graphics, and quantitative structure--activity relationships in the analysis of the papain hydrolysis of X-phenyl hippurates. Smith RN, Hansch C, Kim KH, Omiya B, Fukumura G, Selassie CD, Jow PY, Blaney JM, Langridge R. Arch Biochem Biophys 215 319-328 (1982)
  108. Cysteine proteases: the S2P2 hydrogen bond is more important for catalysis than is the analogous S1P1 bond. Asbóth B, Majer Z, Polgár L. FEBS Lett 233 339-341 (1988)
  109. Differences between the electric fields of the catalytic sites of papain and actinidin detected by using the thiol-located nitrobenzofurazan label as a spectroscopic reporter group. Brocklehurst K, Salih E, Lodwig TS. Biochem J 220 609-612 (1984)
  110. Evaluation of hydrogen-bonding and enantiomeric P2-S2 hydrophobic contacts in dynamic aspects of molecular recognition by papain. Patel M, Kayani IS, Templeton W, Mellor GW, Thomas EW, Brocklehurst K. Biochem J 287 ( Pt 3) 881-889 (1992)
  111. Fluorescent Probes for Studying Thioamide Positional Effects on Proteolysis Reveal Insight into Resistance to Cysteine Proteases. Liu C, Barrett TM, Chen X, Ferrie JJ, Petersson EJ. Chembiochem 20 2059-2062 (2019)
  112. Proposed amino acid sequence and the 1.63 A X-ray crystal structure of a plant cysteine protease, ervatamin B: some insights into the structural basis of its stability and substrate specificity. Biswas S, Chakrabarti C, Kundu S, Jagannadham MV, Dattagupta JK. Proteins 51 489-497 (2003)
  113. The proteolytic system of pineapple stems revisited: Purification and characterization of multiple catalytically active forms. Matagne A, Bolle L, El Mahyaoui R, Baeyens-Volant D, Azarkan M. Phytochemistry 138 29-51 (2017)
  114. A Selective Irreversible Inhibitor of Furin Does Not Prevent Pseudomonas Aeruginosa Exotoxin A-Induced Airway Epithelial Cytotoxicity. Ferguson TE, Reihill JA, Walker B, Hamilton RA, Martin SL. PLoS One 11 e0159868 (2016)
  115. Dependence of the P2-S2 stereochemical selectivity of papain on the nature of the catalytic-site chemistry. Quantification of selectivity in the catalysed hydrolysis of the enantiomeric N-acetylphenylalanylglycine 4-nitroanilides. Kowlessur D, Thomas EW, Topham CM, Templeton W, Brocklehurst K. Biochem J 266 653-660 (1990)
  116. The basic difference in catalyses by serine and cysteine proteinases resides in charge stabilization in the transition state. Polgár L, Asbóth B. J Theor Biol 121 323-326 (1986)
  117. Variation in aspects of cysteine proteinase catalytic mechanism deduced by spectroscopic observation of dithioester intermediates, kinetic analysis and molecular dynamics simulations. Reid JD, Hussain S, Sreedharan SK, Bailey TS, Pinitglang S, Thomas EW, Verma CS, Brocklehurst K. Biochem J 357 343-352 (2001)
  118. Variation in the P2-S2 stereochemical selectivity towards the enantiomeric N-acetylphenylalanylglycine 4-nitroanilides among the cysteine proteinases papain, ficin and actinidin. Patel M, Kayani IS, Mellor GW, Sreedharan S, Templeton W, Thomas EW, Thomas M, Brocklehurst K. Biochem J 281 ( Pt 2) 553-559 (1992)
  119. Autoproteolytic activation of ThnT results in structural reorganization necessary for substrate binding and catalysis. Buller AR, Labonte JW, Freeman MF, Wright NT, Schildbach JF, Townsend CA. J Mol Biol 422 508-518 (2012)
  120. Mutagenesis and crystallographic studies of the catalytic residues of the papain family protease bleomycin hydrolase: new insights into active-site structure. O'Farrell PA, Joshua-Tor L. Biochem J 401 421-428 (2007)
  121. Peptide methyl ketones as reversible inhibitors of cysteine proteinases. Brömme D, Bartels B, Kirschke H, Fittkau S. J Enzyme Inhib 3 13-21 (1989)
  122. Purification and characterization of kininogens from sheep plasma. Baba SP, Zehra S, Bano B. Protein J 24 95-102 (2005)
  123. A re-appraisal of the structural basis of stereochemical recognition in papain. Insensitivity of binding-site-catalytic-site signalling to P2-chirality in a time-dependent inhibition. Templeton W, Kowlessur D, Thomas EW, Topham CM, Brocklehurst K. Biochem J 266 645-651 (1990)
  124. A theoretical study of the active sites of papain and S195C rat trypsin: implications for the low reactivity of mutant serine proteinases. Beveridge AJ. Protein Sci 5 1355-1365 (1996)
  125. Detection and accumulation of tetrahedral intermediates in elastase catalysis. Fink AL, Meehan P. Proc Natl Acad Sci U S A 76 1566-1569 (1979)
  126. Irreversible inhibition of transglutaminases by sulfonium methylketones: optimization of specificity and potency with omega-aminoacyl spacers. Pliura DH, Bonaventura BJ, Pauls HW, Killackey JF, Krantz A. J Enzyme Inhib 6 181-194 (1992)
  127. Mutational analysis of Cvab, an ABC transporter involved in the secretion of active colicin V. Wu KH, Hsieh YH, Tai PC. PLoS One 7 e35382 (2012)
  128. Revisiting the S2 specificity of papain by structural analogs of Phe. Lecaille F, Serveau C, Gauthier F, Lalmanach G. FEBS Lett 445 311-314 (1999)
  129. Structure-function relationship of Chikungunya nsP2 protease: A comparative study with papain. Ramakrishnan C, Kutumbarao NHV, Suhitha S, Velmurugan D. Chem Biol Drug Des 89 772-782 (2017)
  130. Comparative resonance Raman spectroscopic and kinetic studies of acyl-enzymes involving papain, actinidin and papaya peptidase II. Brocklehurst K, Carey PR, Lee HH, Salih E, Storer AC. Biochem J 223 649-657 (1984)
  131. Insight to structural subsite recognition in plant thiol protease-inhibitor complexes : understanding the basis of differential inhibition and the role of water. Bhattacharya S, Ghosh S, Chakraborty S, Bera AK, Mukhopadhayay BP, Dey I, Banerjee A. BMC Struct Biol 1 4 (2001)
  132. Reaction field effects on proton transfer in the active site of actinidin. Thole BT, Van Duijnen PT. Biophys Chem 18 53-59 (1983)
  133. Structures of the free and inhibitors-bound forms of bromelain and ananain from Ananas comosus stem and in vitro study of their cytotoxicity. Azarkan M, Maquoi E, Delbrassine F, Herman R, M'Rabet N, Calvo Esposito R, Charlier P, Kerff F. Sci Rep 10 19570 (2020)
  134. Synthesis and biological evaluation of reversible inhibitors of IdeS, a bacterial cysteine protease and virulence determinant. Berggren K, Johansson B, Fex T, Kihlberg J, Björck L, Luthman K. Bioorg Med Chem 17 3463-3470 (2009)
  135. A theoretical study of glucosamine synthase. II. Combined quantum and molecular mechanics simulation of sulfhydryl attack on the carboxyamide group. Tempczyk A, Tarnowska M, Liwo A, Borowski E. Eur Biophys J 21 137-145 (1992)
  136. A theoretical study of glucosamine synthase. Part I. Molecular mechanics calculations on substrate binding. Tempczyk A, Tarnowska M, Liwo A. Eur Biophys J 17 201-210 (1989)
  137. Identification of the functional ionic groups of papain by pH/rate profile analysis. Allen KG, Stewart JA, Johnson PE, Wettlaufer DG. Eur J Biochem 87 575-582 (1978)
  138. Inactivation of cysteine proteases by peptidyl epoxides: characterization of the alkylation sites on the enzyme and the inactivator. Albeck A, Kliper S. Biochem J 346 Pt 1 71-76 (2000)
  139. Inhibition of cysteine proteases by peptides containing aziridine-2,3-dicarboxylic acid building blocks. Schirmeister T. Biopolymers 51 87-97 (1999)
  140. Inhibition of papain with 2-benzyl-3,4-epoxybutanoic acid esters. Mechanistic and stereochemical probe for cysteine protease catalysis. Kim DH, Jin Y, Ryu CH. Bioorg Med Chem 5 2103-2108 (1997)
  141. Quantifying tetrahedral adduct formation and stabilization in the cysteine and the serine proteases. Cleary JA, Doherty W, Evans P, Malthouse JP. Biochim Biophys Acta 1854 1382-1391 (2015)
  142. Serine protease inhibitors N-alpha-tosyl-L-lysinyl-chloromethylketone (TLCK) and N-tosyl-L-phenylalaninyl-chloromethylketone (TPCK) do not inhibit caspase-3 and caspase-7 processing in cells exposed to pro-apoptotic inducing stimuli. Frydrych I, Mlejnek P. J Cell Biochem 105 1501-1506 (2008)
  143. A Secreted NlpC/P60 Endopeptidase from Photobacterium damselae subsp. piscicida Cleaves the Peptidoglycan of Potentially Competing Bacteria. Lisboa J, Pereira C, Rifflet A, Ayala J, Terceti MS, Barca AV, Rodrigues I, Pereira PJB, Osorio CR, García-Del Portillo F, Gomperts Boneca I, do Vale A, Dos Santos NMS. mSphere 6 e00736-20 (2021)
  144. A comparison between the binding modes of a substrate and inhibitor to papain as observed in complex crystal structures. Yamamoto D, Ishida T, Inoue M. Biochem Biophys Res Commun 171 711-716 (1990)
  145. Adaptive amino acid replacements accompanied by domain fusion in reverse transcriptase. Shirai T, Go M. J Mol Evol 44 Suppl 1 S155-62 (1997)
  146. Binding modes of a new epoxysuccinyl-peptide inhibitor of cysteine proteases. Where and how do cysteine proteases express their selectivity? Czaplewski C, Grzonka Z, Jaskólski M, Kasprzykowski F, Kozak M, Politowska E, Ciarkowski J. Biochim Biophys Acta 1431 290-305 (1999)
  147. Electrostatic recognition between enzyme and inhibitor: interaction between papain and leupeptin. Costabel M, Vallejo DF, Grigera JR. Arch Biochem Biophys 394 161-166 (2001)
  148. Fluorescence energy transfer studies on the active site of papain. Henes JB, Briggs MS, Sligar SG, Fruton JS. Proc Natl Acad Sci U S A 77 940-943 (1980)
  149. Purification of soluble and membrane-bound proteases with substrate-analogous inhibitors by affinity chromatography. Jahreis G, Peters K, Kirschke H. J Biochem Biophys Methods 49 491-505 (2001)
  150. A 13C-NMR study of the inhibition of papain by a dipeptide-glyoxal inhibitor. Lowther J, Djurdjevic-Pahl A, Hewage C, Malthouse JP. Biochem J 366 983-987 (2002)
  151. Enantioselective reductive amination of alpha-keto acids by papain-based semisynthetic enzyme. Chen CX, Jiang B, Branford-White C, Zhu LM. Biochemistry (Mosc) 74 36-40 (2009)
  152. Phage-Related Ribosomal Protease (Prp) of Staphylococcus aureus: In Vitro Michaelis-Menten Kinetics, Screening for Inhibitors, and Crystal Structure of a Covalent Inhibition Product Complex. Hotinger JA, Pendergrass HA, Peterson D, Wright HT, May AE. Biochemistry 61 1323-1336 (2022)
  153. Sequence and structure similarities of cathepsin B from the parasite Schistosoma mansoni and human liver. Klinkert MQ, Cioli D, Shaw E, Turk V, Bode W, Butler R. FEBS Lett 351 397-400 (1994)
  154. Synthesis of five enantiomerically pure haptens designed for in vitro evolution of antibodies with peptidase activity. Wagner J, Lerner RA, Barbas CF. Bioorg Med Chem 4 901-916 (1996)
  155. Ferrocenopapain, an organometallic protein formed by site-specific inactivation of papain using chloroacetylferrocene. Douglas KT, Ejim OS, Taylor K. J Enzyme Inhib 6 233-242 (1992)
  156. Identification and classification of papain-like cysteine proteinases. Ozhelvaci F, Steczkiewicz K. J Biol Chem 299 104801 (2023)
  157. Molecular basis of specificity and deamidation of eIF4A by Burkholderia Lethal Factor 1. Mobbs GW, Aziz AA, Dix SR, Blackburn GM, Sedelnikova SE, Minshull TC, Dickman MJ, Baker PJ, Nathan S, Raih MF, Rice DW. Commun Biol 5 272 (2022)
  158. On the inactivity of thiol-subtilisin. The role of the intramolecular electric field. Van Duijnen PT. Biophys Chem 13 133-139 (1981)
  159. Preparation of flavopapain and other semisynthetic enzymes. Kaiser ET. Ann N Y Acad Sci 501 14-20 (1987)
  160. Reduction of benzaldehyde catalyzed by papain-based semisynthetic enzymes. Chen CX, Jiang B, Carrey EA, Zhu LM. Appl Biochem Biotechnol 162 1506-1516 (2010)
  161. Stieltjes integration and differential geometry: a model for enzyme recognition, discrimination, and catalysis. Louie AH, Somorjai RL. Bull Math Biol 46 745-764 (1984)
  162. Structural and dynamic studies of the peptidase domain from Clostridium thermocellum PCAT1. Bhattacharya S, Palillo A. Protein Sci 31 498-512 (2022)
  163. AlphaFold-Multimer predicts cross-kingdom interactions at the plant-pathogen interface. Homma F, Huang J, van der Hoorn RAL. Nat Commun 14 6040 (2023)
  164. Amino acid sequence and some properties of phytolacain G, a cysteine protease from growing fruit of pokeweed, Phytolacca americana. Uchikoba T, Arima K, Yonezawa H, Shimada M, Kaneda M. Biochim Biophys Acta 1523 254-260 (2000)
  165. Exploring the interaction of some N-benzyloxycarbonyl-L-phenyl alanyl-L-alanine ketones and bovine spleen cathepsin B by molecular modeling and binding free energy calculation. Dey I. J Biomol Struct Dyn 16 891-900 (1999)


Related citations provided by authors (3)

  1. The Structure of Papain. Drenth J, Jansonius JN, Koekoek R, Wolthers BG Adv. Protein Chem. 25 79- (1971)
  2. The Structure of the Papain Molecule. Drenth J, Jansonius JN, Koekoek R, Sluyterman LAA, Wolthers BG Philos. Trans. R. Soc. London,Ser. B 257 231- (1970)
  3. Structure of Papain. Drenth J, Jansonius JN, Koekoek R, Swen HM, Wolthers BG Nature 218 929- (1968)