2omv Citations

Extending the host range of Listeria monocytogenes by rational protein design.

Abstract

In causing disease, pathogens outmaneuver host defenses through a dedicated arsenal of virulence determinants that specifically bind or modify individual host molecules. This dedication limits the intruder to a defined range of hosts. Newly emerging diseases mostly involve existing pathogens whose arsenal has been altered to allow them to infect previously inaccessible hosts. We have emulated this chance occurrence by extending the host range accessible to the human pathogen Listeria monocytogenes by the intestinal route to include the mouse. Analyzing the recognition complex of the listerial invasion protein InlA and its human receptor E-cadherin, we postulated and verified amino acid substitutions in InlA to increase its affinity for E-cadherin. Two single substitutions increase binding affinity by four orders of magnitude and extend binding specificity to include formerly incompatible murine E-cadherin. By rationally adapting a single protein, we thus create a versatile murine model of human listeriosis.

Articles - 2omv mentioned but not cited (1)

  1. Of mice and men: Dissecting the interaction between Listeria monocytogenes Internalin A and E-cadherin. Genheden S, Eriksson LA. Comput Struct Biotechnol J 6 e201303022 (2013)


Reviews citing this publication (36)

  1. Manipulation of host-cell pathways by bacterial pathogens. Bhavsar AP, Guttman JA, Finlay BB. Nature 449 827-834 (2007)
  2. Listeria monocytogenes - from saprophyte to intracellular pathogen. Freitag NE, Port GC, Miner MD. Nat Rev Microbiol 7 623-628 (2009)
  3. Listeria monocytogenes: towards a complete picture of its physiology and pathogenesis. Radoshevich L, Cossart P. Nat Rev Microbiol 16 32-46 (2018)
  4. Role of pore-forming toxins in bacterial infectious diseases. Los FC, Randis TM, Aroian RV, Ratner AJ. Microbiol Mol Biol Rev 77 173-207 (2013)
  5. Listeria monocytogenes: epidemiology, human disease, and mechanisms of brain invasion. Drevets DA, Bronze MS. FEMS Immunol Med Microbiol 53 151-165 (2008)
  6. Listeria monocytogenes, a unique model in infection biology: an overview. Cossart P, Toledo-Arana A. Microbes Infect 10 1041-1050 (2008)
  7. IDO-expressing regulatory dendritic cells in cancer and chronic infection. Popov A, Schultze JL. J Mol Med (Berl) 86 145-160 (2008)
  8. Tissue Adaptations of Memory and Tissue-Resident Gamma Delta T Cells. Khairallah C, Chu TH, Sheridan BS. Front Immunol 9 2636 (2018)
  9. The interaction between Listeria monocytogenes and the host gastrointestinal tract. Sleator RD, Watson D, Hill C, Gahan CGM. Microbiology (Reading) 155 2463-2475 (2009)
  10. Display of recombinant proteins at the surface of lactic acid bacteria: strategies and applications. Michon C, Langella P, Eijsink VG, Mathiesen G, Chatel JM. Microb Cell Fact 15 70 (2016)
  11. Listeria monocytogenes internalin and E-cadherin: from structure to pathogenesis. Bonazzi M, Lecuit M, Cossart P. Cell Microbiol 11 693-702 (2009)
  12. Listeria monocytogenes internalin and E-cadherin: from bench to bedside. Bonazzi M, Lecuit M, Cossart P. Cold Spring Harb Perspect Biol 1 a003087 (2009)
  13. The role of type I interferons in intestinal infection, homeostasis, and inflammation. Cho H, Kelsall BL. Immunol Rev 260 145-167 (2014)
  14. Growth, survival, proliferation and pathogenesis of Listeria monocytogenes under low oxygen or anaerobic conditions: a review. Lungu B, Ricke SC, Johnson MG. Anaerobe 15 7-17 (2009)
  15. In vitro and in vivo models to study human listeriosis: mind the gap. Disson O, Lecuit M. Microbes Infect 15 971-980 (2013)
  16. Molecular basis of host specificity in human pathogenic bacteria. Pan X, Yang Y, Zhang JR. Emerg Microbes Infect 3 e23 (2014)
  17. Cytoskeleton rearrangements during Listeria infection: clathrin and septins as new players in the game. Mostowy S, Cossart P. Cell Motil Cytoskeleton 66 816-823 (2009)
  18. Novel functions of type I interferons revealed by infection studies with Listeria monocytogenes. Stockinger S, Decker T. Immunobiology 213 889-897 (2008)
  19. A survey of the year 2007 literature on applications of isothermal titration calorimetry. Bjelić S, Jelesarov I. J Mol Recognit 21 289-312 (2008)
  20. Animal models of listeriosis: a comparative review of the current state of the art and lessons learned. Hoelzer K, Pouillot R, Dennis S. Vet Res 43 18 (2012)
  21. Listeria Monocytogenes: A Model Pathogen Continues to Refine Our Knowledge of the CD8 T Cell Response. Qiu Z, Khairallah C, Sheridan BS. Pathogens 7 E55 (2018)
  22. Variability of Listeria monocytogenes virulence: a result of the evolution between saprophytism and virulence? Velge P, Roche SM. Future Microbiol 5 1799-1821 (2010)
  23. Unique functions of splenic CD8alpha+ dendritic cells during infection with intracellular pathogens. Neuenhahn M, Busch DH. Immunol Lett 114 66-72 (2007)
  24. Listeria monocytogenes: a model pathogen to study antigen-specific memory CD8 T cell responses. Khan SH, Badovinac VP. Semin Immunopathol 37 301-310 (2015)
  25. Animal models for oral transmission of Listeria monocytogenes. D'Orazio SE. Front Cell Infect Microbiol 4 15 (2014)
  26. How the study of Listeria monocytogenes has led to new concepts in biology. Rolhion N, Cossart P. Future Microbiol 12 621-638 (2017)
  27. Animal and Human Tissue Models of Vertical Listeria monocytogenes Transmission and Implications for Other Pregnancy-Associated Infections. Lowe DE, Robbins JR, Bakardjiev AI. Infect Immun 86 e00801-17 (2018)
  28. A Comparison of Oral and Intravenous Mouse Models of Listeriosis. Pitts MG, D'Orazio SEF. Pathogens 7 E13 (2018)
  29. Innate and adaptive immunologic functions of complement in the host response to Listeria monocytogenes infection. Calame DG, Mueller-Ortiz SL, Wetsel RA. Immunobiology 221 1407-1417 (2016)
  30. Regulation of anti-microbial autophagy by factors of the complement system. Viret C, Rozières A, Duclaux-Loras R, Boschetti G, Nancey S, Faure M. Microb Cell 7 93-105 (2020)
  31. Vertical Transmission of Listeria monocytogenes: Probing the Balance between Protection from Pathogens and Fetal Tolerance. Lamond NM, Freitag NE. Pathogens 7 E52 (2018)
  32. Age-dependent differences in systemic and cell-autonomous immunity to L. monocytogenes. Sherrid AM, Kollmann TR. Clin Dev Immunol 2013 917198 (2013)
  33. Tracing innate immune defences along the path of Listeria monocytogenes infection. Regan T, MacSharry J, Brint E. Immunol Cell Biol 92 563-569 (2014)
  34. Biotechnological applications of Listeria's sophisticated infection strategies. Barbuddhe S, Chakraborty T. Microb Biotechnol 1 361-372 (2008)
  35. The Role of Gram-Positive Surface Proteins in Bacterial Niche- and Host-Specialization. Pickering AC, Fitzgerald JR. Front Microbiol 11 594737 (2020)
  36. Anti-infective activities of long-chain fatty acids against foodborne pathogens. Borreby C, Lillebæk EMS, Kallipolitis BH. FEMS Microbiol Rev 47 fuad037 (2023)

Articles citing this publication (102)

  1. Oral infection drives a distinct population of intestinal resident memory CD8(+) T cells with enhanced protective function. Sheridan BS, Pham QM, Lee YT, Cauley LS, Puddington L, Lefrançois L. Immunity 40 747-757 (2014)
  2. γδ T cells exhibit multifunctional and protective memory in intestinal tissues. Sheridan BS, Romagnoli PA, Pham QM, Fu HH, Alonzo F, Schubert WD, Freitag NE, Lefrançois L. Immunity 39 184-195 (2013)
  3. Placental syncytiotrophoblast constitutes a major barrier to vertical transmission of Listeria monocytogenes. Robbins JR, Skrzypczynska KM, Zeldovich VB, Kapidzic M, Bakardjiev AI. PLoS Pathog 6 e1000732 (2010)
  4. Commensal microbes provide first line defense against Listeria monocytogenes infection. Becattini S, Littmann ER, Carter RA, Kim SG, Morjaria SM, Ling L, Gyaltshen Y, Fontana E, Taur Y, Leiner IM, Pamer EG. J Exp Med 214 1973-1989 (2017)
  5. inlA premature stop codons are common among Listeria monocytogenes isolates from foods and yield virulence-attenuated strains that confer protection against fully virulent strains. Nightingale KK, Ivy RA, Ho AJ, Fortes ED, Njaa BL, Peters RM, Wiedmann M. Appl Environ Microbiol 74 6570-6583 (2008)
  6. Virtual memory T cells develop and mediate bystander protective immunity in an IL-15-dependent manner. White JT, Cross EW, Burchill MA, Danhorn T, McCarter MD, Rosen HR, O'Connor B, Kedl RM. Nat Commun 7 11291 (2016)
  7. AgrD-dependent quorum sensing affects biofilm formation, invasion, virulence and global gene expression profiles in Listeria monocytogenes. Riedel CU, Monk IR, Casey PG, Waidmann MS, Gahan CG, Hill C. Mol Microbiol 71 1177-1189 (2009)
  8. Letter Interplay between microbial d-amino acids and host d-amino acid oxidase modifies murine mucosal defence and gut microbiota. Sasabe J, Miyoshi Y, Rakoff-Nahoum S, Zhang T, Mita M, Davis BM, Hamase K, Waldor MK. Nat Microbiol 1 16125 (2016)
  9. Listeria monocytogenes internalin B activates junctional endocytosis to accelerate intestinal invasion. Pentecost M, Kumaran J, Ghosh P, Amieva MR. PLoS Pathog 6 e1000900 (2010)
  10. A single natural nucleotide mutation alters bacterial pathogen host tropism. Viana D, Comos M, McAdam PR, Ward MJ, Selva L, Guinane CM, González-Muñoz BM, Tristan A, Foster SJ, Fitzgerald JR, Penadés JR. Nat Genet 47 361-366 (2015)
  11. Listeria Adhesion Protein Induces Intestinal Epithelial Barrier Dysfunction for Bacterial Translocation. Drolia R, Tenguria S, Durkes AC, Turner JR, Bhunia AK. Cell Host Microbe 23 470-484.e7 (2018)
  12. Invasive extravillous trophoblasts restrict intracellular growth and spread of Listeria monocytogenes. Zeldovich VB, Robbins JR, Kapidzic M, Lauer P, Bakardjiev AI. PLoS Pathog 7 e1002005 (2011)
  13. Lactococcus lactis expressing either Staphylococcus aureus fibronectin-binding protein A or Listeria monocytogenes internalin A can efficiently internalize and deliver DNA in human epithelial cells. Innocentin S, Guimarães V, Miyoshi A, Azevedo V, Langella P, Chatel JM, Lefèvre F. Appl Environ Microbiol 75 4870-4878 (2009)
  14. InlA promotes dissemination of Listeria monocytogenes to the mesenteric lymph nodes during food borne infection of mice. Bou Ghanem EN, Jones GS, Myers-Morales T, Patil PD, Hidayatullah AN, D'Orazio SE. PLoS Pathog 8 e1003015 (2012)
  15. Oral infection with signature-tagged Listeria monocytogenes reveals organ-specific growth and dissemination routes in guinea pigs. Melton-Witt JA, Rafelski SM, Portnoy DA, Bakardjiev AI. Infect Immun 80 720-732 (2012)
  16. Constitutive Activation of the PrfA regulon enhances the potency of vaccines based on live-attenuated and killed but metabolically active Listeria monocytogenes strains. Lauer P, Hanson B, Lemmens EE, Liu W, Luckett WS, Leong ML, Allen HE, Skoble J, Bahjat KS, Freitag NE, Brockstedt DG, Dubensky TW. Infect Immun 76 3742-3753 (2008)
  17. The combined actions of the copper-responsive repressor CsoR and copper-metallochaperone CopZ modulate CopA-mediated copper efflux in the intracellular pathogen Listeria monocytogenes. Corbett D, Schuler S, Glenn S, Andrew PW, Cavet JS, Roberts IS. Mol Microbiol 81 457-472 (2011)
  18. Placental syncytium forms a biophysical barrier against pathogen invasion. Zeldovich VB, Clausen CH, Bradford E, Fletcher DA, Maltepe E, Robbins JR, Bakardjiev AI. PLoS Pathog 9 e1003821 (2013)
  19. IL-17A-producing resident memory γδ T cells orchestrate the innate immune response to secondary oral Listeria monocytogenes infection. Romagnoli PA, Sheridan BS, Pham QM, Lefrançois L, Khanna KM. Proc Natl Acad Sci U S A 113 8502-8507 (2016)
  20. Invasion of the Brain by Listeria monocytogenes Is Mediated by InlF and Host Cell Vimentin. Ghosh P, Halvorsen EM, Ammendolia DA, Mor-Vaknin N, O'Riordan MXD, Brumell JH, Markovitz DM, Higgins DE. mBio 9 e00160-18 (2018)
  21. Modeling human listeriosis in natural and genetically engineered animals. Disson O, Nikitas G, Grayo S, Dussurget O, Cossart P, Lecuit M. Nat Protoc 4 799-810 (2009)
  22. Site-dependent recruitment of inflammatory cells determines the effective dose of Leishmania major. Ribeiro-Gomes FL, Roma EH, Carneiro MB, Doria NA, Sacks DL, Peters NC. Infect Immun 82 2713-2727 (2014)
  23. Constitutive activation of PrfA tilts the balance of Listeria monocytogenes fitness towards life within the host versus environmental survival. Bruno JC, Freitag NE. PLoS One 5 e15138 (2010)
  24. Two zinc uptake systems contribute to the full virulence of Listeria monocytogenes during growth in vitro and in vivo. Corbett D, Wang J, Schuler S, Lopez-Castejon G, Glenn S, Brough D, Andrew PW, Cavet JS, Roberts IS. Infect Immun 80 14-21 (2012)
  25. The surface proteins InlA and InlB are interdependently required for polar basolateral invasion by Listeria monocytogenes in a human model of the blood-cerebrospinal fluid barrier. Gründler T, Quednau N, Stump C, Orian-Rousseau V, Ishikawa H, Wolburg H, Schroten H, Tenenbaum T, Schwerk C. Microbes Infect 15 291-301 (2013)
  26. PI3-kinase activation is critical for host barrier permissiveness to Listeria monocytogenes. Gessain G, Tsai YH, Travier L, Bonazzi M, Grayo S, Cossart P, Charlier C, Disson O, Lecuit M. J Exp Med 212 165-183 (2015)
  27. Listerial invasion protein internalin B promotes entry into ileal Peyer's patches in vivo. Chiba S, Nagai T, Hayashi T, Baba Y, Nagai S, Koyasu S. Microbiol Immunol 55 123-129 (2011)
  28. Differentiation of distinct long-lived memory CD4 T cells in intestinal tissues after oral Listeria monocytogenes infection. Romagnoli PA, Fu HH, Qiu Z, Khairallah C, Pham QM, Puddington L, Khanna KM, Lefrançois L, Sheridan BS. Mucosal Immunol 10 520-530 (2017)
  29. Listeria monocytogenes CtaP is a multifunctional cysteine transport-associated protein required for bacterial pathogenesis. Xayarath B, Marquis H, Port GC, Freitag NE. Mol Microbiol 74 956-973 (2009)
  30. Route of Infection Determines the Impact of Type I Interferons on Innate Immunity to Listeria monocytogenes. Kernbauer E, Maier V, Rauch I, Müller M, Decker T. PLoS One 8 e65007 (2013)
  31. The short isoform of the CEACAM1 receptor in intestinal T cells regulates mucosal immunity and homeostasis via Tfh cell induction. Chen L, Chen Z, Baker K, Halvorsen EM, da Cunha AP, Flak MB, Gerber G, Huang YH, Hosomi S, Arthur JC, Dery KJ, Nagaishi T, Beauchemin N, Holmes KV, Ho JW, Shively JE, Jobin C, Onderdonk AB, Bry L, Weiner HL, Higgins DE, Blumberg RS. Immunity 37 930-946 (2012)
  32. Deciphering the landscape of host barriers to Listeria monocytogenes infection. Zhang T, Abel S, Abel Zur Wiesch P, Sasabe J, Davis BM, Higgins DE, Waldor MK. Proc Natl Acad Sci U S A 114 6334-6339 (2017)
  33. InlP, a New Virulence Factor with Strong Placental Tropism. Faralla C, Rizzuto GA, Lowe DE, Kim B, Cooke C, Shiow LR, Bakardjiev AI. Infect Immun 84 3584-3596 (2016)
  34. The Listeria monocytogenes ChiA chitinase enhances virulence through suppression of host innate immunity. Chaudhuri S, Gantner BN, Ye RD, Cianciotto NP, Freitag NE. mBio 4 e00617-12 (2013)
  35. Identification of a Potent Microbial Lipid Antigen for Diverse NKT Cells. Wolf BJ, Tatituri RV, Almeida CF, Le Nours J, Bhowruth V, Johnson D, Uldrich AP, Hsu FF, Brigl M, Besra GS, Rossjohn J, Godfrey DI, Brenner MB. J Immunol 195 2540-2551 (2015)
  36. Directed evolution and targeted mutagenesis to murinize Listeria monocytogenes internalin A for enhanced infectivity in the murine oral infection model. Monk IR, Casey PG, Hill C, Gahan CG. BMC Microbiol 10 318 (2010)
  37. Murinization of internalin extends its receptor repertoire, altering Listeria monocytogenes cell tropism and host responses. Tsai YH, Disson O, Bierne H, Lecuit M. PLoS Pathog 9 e1003381 (2013)
  38. Identification of components of the host type IA phosphoinositide 3-kinase pathway that promote internalization of Listeria monocytogenes. Jiwani S, Wang Y, Dowd GC, Gianfelice A, Pichestapong P, Gavicherla B, Vanbennekom N, Ireton K. Infect Immun 80 1252-1266 (2012)
  39. Pathogenicity and virulence of Listeria monocytogenes: A trip from environmental to medical microbiology. Quereda JJ, Morón-García A, Palacios-Gorba C, Dessaux C, García-Del Portillo F, Pucciarelli MG, Ortega AD. Virulence 12 2509-2545 (2021)
  40. Short-term consumption of a high-fat diet increases host susceptibility to Listeria monocytogenes infection. Las Heras V, Clooney AG, Ryan FJ, Cabrera-Rubio R, Casey PG, Hueston CM, Pinheiro J, Rudkin JK, Melgar S, Cotter PD, Hill C, Gahan CGM. Microbiome 7 7 (2019)
  41. Intracellular Listeria monocytogenes comprises a minimal but vital fraction of the intestinal burden following foodborne infection. Jones GS, Bussell KM, Myers-Morales T, Fieldhouse AM, Bou Ghanem EN, D'Orazio SE. Infect Immun 83 3146-3156 (2015)
  42. Type I IFN Does Not Promote Susceptibility to Foodborne Listeria monocytogenes. Pitts MG, Myers-Morales T, D'Orazio SE. J Immunol 196 3109-3116 (2016)
  43. HtpS, a novel immunogenic cell surface-exposed protein of Streptococcus suis, confers protection in mice. Shao Z, Pan X, Li X, Liu W, Han M, Wang C, Wang J, Zheng F, Cao M, Tang J. FEMS Microbiol Lett 314 174-182 (2011)
  44. Measuring bacterial load and immune responses in mice infected with Listeria monocytogenes. Wang N, Strugnell R, Wijburg O, Brodnicki T. J Vis Exp 3076 (2011)
  45. Adhesion to the host cell surface is sufficient to mediate Listeria monocytogenes entry into epithelial cells. Ortega FE, Rengarajan M, Chavez N, Radhakrishnan P, Gloerich M, Bianchini J, Siemers K, Luckett WS, Lauer P, Nelson WJ, Theriot JA. Mol Biol Cell 28 2945-2957 (2017)
  46. Health trajectories reveal the dynamic contributions of host genetic resistance and tolerance to infection outcome. Lough G, Kyriazakis I, Bergmann S, Lengeling A, Doeschl-Wilson AB. Proc Biol Sci 282 20152151 (2015)
  47. In vitro and in vivo characterization of DNA delivery using recombinant Lactococcus lactis expressing a mutated form of L. monocytogenes Internalin A. de Azevedo M, Karczewski J, Lefévre F, Azevedo V, Miyoshi A, Wells JM, Langella P, Chatel JM. BMC Microbiol 12 299 (2012)
  48. Oral transmission of Listeria monocytogenes in mice via ingestion of contaminated food. Bou Ghanem EN, Myers-Morales T, Jones GS, D'Orazio SE. J Vis Exp e50381 (2013)
  49. Listeria monocytogenes Has Both Cytochrome bd-Type and Cytochrome aa3-Type Terminal Oxidases, Which Allow Growth at Different Oxygen Levels, and Both Are Important in Infection. Corbett D, Goldrick M, Fernandes VE, Davidge K, Poole RK, Andrew PW, Cavet J, Roberts IS. Infect Immun 85 e00354-17 (2017)
  50. Down regulation of macrophage IFNGR1 exacerbates systemic L. monocytogenes infection. Eshleman EM, Delgado C, Kearney SJ, Friedman RS, Lenz LL. PLoS Pathog 13 e1006388 (2017)
  51. A mouse model of foodborne Listeria monocytogenes infection. Bou Ghanem EN, Myers-Morales T, D'Orazio SEF. Curr Protoc Microbiol 31 9B.3.1-9B.3.16 (2013)
  52. An extracellular Leptospira interrogans leucine-rich repeat protein binds human E- and VE-cadherins. Eshghi A, Gaultney RA, England P, Brûlé S, Miras I, Sato H, Coburn J, Bellalou J, Moriarty TJ, Haouz A, Picardeau M. Cell Microbiol 21 e12949 (2019)
  53. Lamellipodin Is Important for Cell-to-Cell Spread and Actin-Based Motility in Listeria monocytogenes. Wang J, King JE, Goldrick M, Lowe M, Gertler FB, Roberts IS. Infect Immun 83 3740-3748 (2015)
  54. Structural characterization of a novel subfamily of leucine-rich repeat proteins from the human pathogen Leptospira interrogans. Miras I, Saul F, Nowakowski M, Weber P, Haouz A, Shepard W, Picardeau M. Acta Crystallogr D Biol Crystallogr 71 1351-1359 (2015)
  55. A mariner transposon-based signature-tagged mutagenesis system for the analysis of oral infection by Listeria monocytogenes. Cummins J, Casey PG, Joyce SA, Gahan CG. PLoS One 8 e75437 (2013)
  56. Evidence for subpopulations of Listeria monocytogenes with enhanced invasion of cardiac cells. Alonzo F, Bobo LD, Skiest DJ, Freitag NE. J Med Microbiol 60 423-434 (2011)
  57. Influence of internalin A murinisation on host resistance to orally acquired listeriosis in mice. Bergmann S, Beard PM, Pasche B, Lienenklaus S, Weiss S, Gahan CG, Schughart K, Lengeling A. BMC Microbiol 13 90 (2013)
  58. Quantitative analysis and prediction of curvature in leucine-rich repeat proteins. Hindle KL, Bella J, Lovell SC. Proteins 77 342-358 (2009)
  59. Biofilm-isolated Listeria monocytogenes exhibits reduced systemic dissemination at the early (12-24 h) stage of infection in a mouse model. Bai X, Liu D, Xu L, Tenguria S, Drolia R, Gallina NLF, Cox AD, Koo OK, Bhunia AK. NPJ Biofilms Microbiomes 7 18 (2021)
  60. Listeria monocytogenes alters mast cell phenotype, mediator and osteopontin secretion in a listeriolysin-dependent manner. Jobbings CE, Sandig H, Whittingham-Dowd JK, Roberts IS, Bulfone-Paus S. PLoS One 8 e57102 (2013)
  61. The use of Listeria monocytogenes as a DNA delivery vector for cancer gene therapy. Tangney M, van Pijkeren JP, Gahan CG. Bioeng Bugs 1 284-287 (2010)
  62. Embryonic macrophages function during early life to determine invariant natural killer T cell levels at barrier surfaces. Gensollen T, Lin X, Zhang T, Pyzik M, See P, Glickman JN, Ginhoux F, Waldor M, Salmi M, Rantakari P, Blumberg RS. Nat Immunol 22 699-710 (2021)
  63. Aging-Induced Dysbiosis of Gut Microbiota as a Risk Factor for Increased Listeria monocytogenes Infection. Alam MS, Gangiredla J, Hasan NA, Barnaba T, Tartera C. Front Immunol 12 672353 (2021)
  64. Immune response elicited by DNA vaccination using Lactococcus lactis is modified by the production of surface exposed pathogenic protein. Pontes D, Azevedo M, Innocentin S, Blugeon S, Lefévre F, Azevedo V, Miyoshi A, Courtin P, Chapot-Chartier MP, Langella P, Chatel JM. PLoS One 9 e84509 (2014)
  65. STAT4 Directs a Protective Innate Lymphoid Cell Response to Gastrointestinal Infection. Dulson SJ, Watkins EE, Crossman DK, Harrington LE. J Immunol 203 2472-2484 (2019)
  66. Human Placental Trophoblasts Infected by Listeria monocytogenes Undergo a Pro-Inflammatory Switch Associated With Poor Pregnancy Outcomes. Johnson LJ, Azari S, Webb A, Zhang X, Gavrilin MA, Marshall JM, Rood K, Seveau S. Front Immunol 12 709466 (2021)
  67. In vitro properties of a Listeria monocytogenes bacteriophage-resistant mutant predict its efficacy as a live oral vaccine strain. Spears PA, Suyemoto MM, Hamrick TS, Wolf RL, Havell EA, Orndorff PE. Infect Immun 79 5001-5009 (2011)
  68. Intrahost passage alters SigB-dependent acid resistance and host cell-associated kinetics of Listeria monocytogenes. Asakura H, Kawamoto K, Okada Y, Kasuga F, Makino S, Yamamoto S, Igimi S. Infect Genet Evol 12 94-101 (2012)
  69. Mucosal CD8 T Cell Responses Are Shaped by Batf3-DC After Foodborne Listeria monocytogenes Infection. Imperato JN, Xu D, Romagnoli PA, Qiu Z, Perez P, Khairallah C, Pham QM, Andrusaite A, Bravo-Blas A, Milling SWF, Lefrancois L, Khanna KM, Puddington L, Sheridan BS. Front Immunol 11 575967 (2020)
  70. Neurotropic Lineage III Strains of Listeria monocytogenes Disseminate to the Brain without Reaching High Titer in the Blood. Senay TE, Ferrell JL, Garrett FG, Albrecht TM, Cho J, Alexander KL, Myers-Morales T, Grothaus OF, D'Orazio SEF. mSphere 5 e00871-20 (2020)
  71. The bioluminescent Listeria monocytogenes strain Xen32 is defective in flagella expression and highly attenuated in orally infected BALB/cJ mice. Bergmann S, Rohde M, Schughart K, Lengeling A. Gut Pathog 5 19 (2013)
  72. Inhibition of calpain blocks the phagosomal escape of Listeria monocytogenes. Lopez-Castejon G, Corbett D, Goldrick M, Roberts IS, Brough D. PLoS One 7 e35936 (2012)
  73. Regulation of Th17 cells by P. UF1 against systemic Listeria monocytogenes infection. Colliou N, Ge Y, Gong M, Zadeh M, Li J, Alonzo F, Mohamadzadeh M. Gut Microbes 9 279-287 (2018)
  74. Exploring the chicken embryo as a possible model for studying Listeria monocytogenes pathogenicity. Gripenland J, Andersson C, Johansson J. Front Cell Infect Microbiol 4 170 (2014)
  75. Increased Listeria monocytogenes Dissemination and Altered Population Dynamics in Muc2-Deficient Mice. Zhang T, Sasabe J, Hullahalli K, Sit B, Waldor MK. Infect Immun 89 e00667-20 (2021)
  76. Listeria monocytogenes Infection of Bat Pipistrellus nathusii Epithelial cells Depends on the Invasion Factors InlA and InlB. Povolyaeva O, Chalenko Y, Kalinin E, Kolbasova O, Pivova E, Kolbasov D, Yurkov S, Ermolaeva S. Pathogens 9 E867 (2020)
  77. A blend of broadly-reactive and pathogen-selected Vγ4 Vδ1 T cell receptors confer broad bacterial reactivity of resident memory γδ T cells. Khairallah C, Bettke JA, Gorbatsevych O, Qiu Z, Zhang Y, Cho K, Kim KS, Chu TH, Imperato JN, Hatano S, Romanov G, Yoshikai Y, Puddington L, Surh CD, Bliska JB, van der Velden AWM, Sheridan BS. Mucosal Immunol 15 176-187 (2022)
  78. A microbial transporter of the dietary antioxidant ergothioneine. Dumitrescu DG, Gordon EM, Kovalyova Y, Seminara AB, Duncan-Lowey B, Forster ER, Zhou W, Booth CJ, Shen A, Kranzusch PJ, Hatzios SK. Cell 185 4526-4540.e18 (2022)
  79. Host syndecan-1 promotes listeriosis by inhibiting intravascular neutrophil extracellular traps. Aquino RS, Hayashida A, Park PW. PLoS Pathog 16 e1008497 (2020)
  80. Neonatal immunization with Listeria monocytogenes induces T cells with an adult-like avidity, sensitivity, and TCR-Vbeta repertoire, and does not adversely impact the response to boosting. Smolen KK, Loeffler DI, Reikie BA, Aplin L, Cai B, Fortuno ES, Kollmann TR. Vaccine 28 235-242 (2009)
  81. Spontaneous Proliferation of CD4+ T Cells in RAG-Deficient Hosts Promotes Antigen-Independent but IL-2-Dependent Strong Proliferative Response of Naïve CD8+ T Cells. Kim J, Lee JY, Cho K, Hong SW, Kim KS, Sprent J, Im SH, Surh CD, Cho JH. Front Immunol 9 1907 (2018)
  82. Designer bugs: structural engineering to build a better mouse model. Bhaskaran SS, Stebbins CE. Cell Host Microbe 1 241-243 (2007)
  83. Experimental Infection with Listeria monocytogenes as a Model for Studying Host Interferon-γ Responses. Ahn JJ, Selvanantham T, Zhang MA, Mallevaey T, Dunn SE. J Vis Exp (2016)
  84. Exposure to TiO2 Nanoparticles Increases Listeria monocytogenes Infection of Intestinal Epithelial Cells. Ammendolia MG, De Berardis B, Maurizi L, Longhi C. Nanomaterials (Basel) 10 E2196 (2020)
  85. Lactiplantibacillus plantarum subsp. plantarum and Fructooligosaccharides Combination Inhibits the Growth, Adhesion, Invasion, and Virulence of Listeria monocytogenes. Dong Q, Lu X, Gao B, Liu Y, Aslam MZ, Wang X, Li Z. Foods 11 170 (2022)
  86. Listeria monocytogenes Co-Opts the Host Exocyst Complex To Promote Internalin A-Mediated Entry. Gyanwali GC, Herath TUB, Gianfelice A, Ireton K. Infect Immun 90 e0032622 (2022)
  87. Congress Meeting report of the European mouse complex genetics network SYSGENET. Delprato A, Aransay AM, Kollmus H, Schughart K, Falcon-Perez JM. Mamm Genome 24 190-197 (2013)
  88. Prostaglandin E2 Inhibits the Ability of Neutrophils to Kill Listeria monocytogenes. Pitts MG, D'Orazio SEF. J Immunol 202 3474-3482 (2019)
  89. Pulmonary insults exacerbate susceptibility to oral Listeria monocytogenes infection through the production of IL-10 by NK cells. Bortell N, Aguilera ER, Lenz LL. PLoS Pathog 17 e1009531 (2021)
  90. The use of foodborne infection to evaluate bacterial pathogenesis and host response. Chu TH, Qiu Z, Sheridan BS. Methods Cell Biol 168 299-314 (2022)
  91. γδ T cell IFNγ production is directly subverted by Yersinia pseudotuberculosis outer protein YopJ in mice and humans. Chu TH, Khairallah C, Shieh J, Cho R, Qiu Z, Zhang Y, Eskiocak O, Thanassi DG, Kaplan MH, Beyaz S, Yang VW, Bliska JB, Sheridan BS. PLoS Pathog 17 e1010103 (2021)
  92. A concerted mechanism involving ACAT and SREBPs by which oxysterols deplete accessible cholesterol to restrict microbial infection. Heisler DB, Johnson KA, Ma DH, Ohlson MB, Zhang L, Tran M, Corley CD, Abrams ME, McDonald JG, Schoggins JW, Alto NM, Radhakrishnan A. Elife 12 e83534 (2023)
  93. Apolipoprotein E genotype affects innate susceptibility to Listeria monocytogenes infection in aged male mice. Cho J, Alexander KL, Ferrell JL, Johnson LA, Estus S, D'Orazio SEF. Infect Immun 91 e0025123 (2023)
  94. Egress of Listeria monocytogenes from Mesenteric Lymph Nodes Depends on Intracellular Replication and Cell-to-Cell Spread. Tucker JS, Cho J, Albrecht TM, Ferrell JL, D'Orazio SEF. Infect Immun 91 e0006423 (2023)
  95. Enrichment of Neutrophils and Monocytes From the Liver Following Either Oral or Intravenous Listeria monocytogenes Infection. Pitts MG, D'Orazio SEF. Curr Protoc Immunol 130 e102 (2020)
  96. Extrauterine listeriosis in the gravid mouse influences embryonic growth and development. Suyemoto MM, Hamrick TS, Spears PA, Horton JR, Washington IM, Havell EA, Borst LB, Orndorff PE. PLoS One 8 e72601 (2013)
  97. Implementation of Active Learning Approach to Teach Biorisk Management and Dual-Use Research of Concern in Egypt. Elhadidy M, El-Tholoth M, Brocard AS. Appl Biosaf 24 100-110 (2019)
  98. Listeria motility increases the efficiency of epithelial invasion during intestinal infection. Wortel IMN, Kim S, Liu AY, Ibarra EC, Miller MJ. PLoS Pathog 18 e1011028 (2022)
  99. Live-cell imaging reveals single-cell and population-level infection strategies of Listeria monocytogenes in macrophages. Moran J, Feltham L, Bagnall J, Goldrick M, Lord E, Nettleton C, Spiller DG, Roberts I, Paszek P. Front Immunol 14 1235675 (2023)
  100. Retinoic acid signaling during priming licenses intestinal CD103+ CD8 TRM cell differentiation. Qiu Z, Khairallah C, Chu TH, Imperato JN, Lei X, Romanov G, Atakilit A, Puddington L, Sheridan BS. J Exp Med 220 e20210923 (2023)
  101. Structural evolution of an immune evasion determinant shapes pathogen host tropism. Marcinkiewicz AL, Brangulis K, Dupuis AP, Hart TM, Zamba-Campero M, Nowak TA, Stout JL, Akopjana I, Kazaks A, Bogans J, Ciota AT, Kraiczy P, Kolokotronis SO, Lin YP. Proc Natl Acad Sci U S A 120 e2301549120 (2023)
  102. News [PI3-kinase activation is critical for host barrier permissiveness to Listeria monocytogenes]. Gessain G, Disson O, Lecuit M. Med Sci (Paris) 32 557-560 (2016)