2ojr Citations

Double-lanthanide-binding tags for macromolecular crystallographic structure determination.

J Am Chem Soc 129 7114-20 (2007)
Cited: 39 times
EuropePMC logo PMID: 17497863

Abstract

A double-lanthanide-binding tag (dLBT), a small peptide sequence engineered to bind two lanthanide ions (e.g., Tb3+) with high affinity, was used to solve the phase problem for the structure determination of ubiquitin by the single-wavelength anomalous diffraction (SAD) method. Since the dLBT is comprised exclusively of encoded amino acids, the necessity for the incorporation of unnatural amino acids or chemical modification of the protein as a prerequisite for X-ray structure determination is eliminated. A construct encoding the dLBT as an N-terminal fusion with ubiquitin provides for facile expression and purification using standard methods. Phasing of the single-wavelength X-ray data (at 2.6 A resolution) using only the anomalous signal from the two tightly bound Tb3+ ions in the dLBT led to clear electron-density maps. Nearly 75% of the ubiquitin structure was built using automated model-building software without user intervention. It is anticipated that this technique will be broadly applicable, complementing existing macromolecular phasing methodologies. The dLBT should be particularly useful in cases where protein derivatization with heavy atoms proves to be problematic or synchrotron facilities are unavailable.

Articles - 2ojr mentioned but not cited (3)

  1. Structural and functional studies on the interaction of GspC and GspD in the type II secretion system. Korotkov KV, Johnson TL, Jobling MG, Pruneda J, Pardon E, Héroux A, Turley S, Steyaert J, Holmes RK, Sandkvist M, Hol WG. PLoS Pathog 7 e1002228 (2011)
  2. Lanthanides: Applications in Cancer Diagnosis and Therapy. Teo RD, Termini J, Gray HB. J Med Chem 59 6012-6024 (2016)
  3. Prospects for de novo phasing with de novo protein models. Das R, Baker D. Acta Crystallogr D Biol Crystallogr 65 169-175 (2009)


Reviews citing this publication (9)

  1. Application of metal coordination chemistry to explore and manipulate cell biology. Haas KL, Franz KJ. Chem Rev 109 4921-4960 (2009)
  2. Principles of responsive lanthanide-based luminescent probes for cellular imaging. Thibon A, Pierre VC. Anal Bioanal Chem 394 107-120 (2009)
  3. Structure determination of protein-protein complexes with long-range anisotropic paramagnetic NMR restraints. Hass MA, Ubbink M. Curr Opin Struct Biol 24 45-53 (2014)
  4. A molecular engineering toolbox for the structural biologist. Debelouchina GT, Muir TW. Q Rev Biophys 50 e7 (2017)
  5. Selective Chemical Labeling of Proteins with Small Fluorescent Molecules Based on Metal-Chelation Methodology. Soh N. Sensors (Basel) 8 1004-1024 (2008)
  6. Paramagnetic NMR in drug discovery. Softley CA, Bostock MJ, Popowicz GM, Sattler M. J Biomol NMR 74 287-309 (2020)
  7. Multivalent chelators for spatially and temporally controlled protein functionalization. You C, Piehler J. Anal Bioanal Chem 406 3345-3357 (2014)
  8. Paramagnetic Chemical Probes for Studying Biological Macromolecules. Miao Q, Nitsche C, Orton H, Overhand M, Otting G, Ubbink M. Chem Rev 122 9571-9642 (2022)
  9. Lanthanide-Based Optical Probes of Biological Systems. Cho U, Chen JK. Cell Chem Biol 27 921-936 (2020)

Articles citing this publication (27)

  1. Engineering encodable lanthanide-binding tags into loop regions of proteins. Barthelmes K, Reynolds AM, Peisach E, Jonker HR, DeNunzio NJ, Allen KN, Imperiali B, Schwalbe H. J Am Chem Soc 133 808-819 (2011)
  2. A versatile ditopic ligand system for sensitizing the luminescence of bimetallic lanthanide bio-imaging probes. Chauvin AS, Comby S, Song B, Vandevyver CD, Bünzli JC. Chemistry 14 1726-1739 (2008)
  3. Bioconjugated lanthanide luminescent helicates as multilabels for lab-on-a-chip detection of cancer biomarkers. Fernández-Moreira V, Song B, Sivagnanam V, Chauvin AS, Vandevyver CD, Gijs M, Hemmilä I, Lehr HA, Bünzli JC. Analyst 135 42-52 (2010)
  4. Crystallophore: a versatile lanthanide complex for protein crystallography combining nucleating effects, phasing properties, and luminescence. Engilberge S, Riobé F, Di Pietro S, Lassalle L, Coquelle N, Arnaud CA, Pitrat D, Mulatier JC, Madern D, Breyton C, Maury O, Girard E. Chem Sci 8 5909-5917 (2017)
  5. Bioadsorption of Rare Earth Elements through Cell Surface Display of Lanthanide Binding Tags. Park DM, Reed DW, Yung MC, Eslamimanesh A, Lencka MM, Anderko A, Fujita Y, Riman RE, Navrotsky A, Jiao Y. Environ Sci Technol 50 2735-2742 (2016)
  6. Encoded loop-lanthanide-binding tags for long-range distance measurements in proteins by NMR and EPR spectroscopy. Barthelmes D, Gränz M, Barthelmes K, Allen KN, Imperiali B, Prisner T, Schwalbe H. J Biomol NMR 63 275-282 (2015)
  7. Protein crystallography through supramolecular interactions between a lanthanide complex and arginine. Pompidor G, D'Aléo A, Vicat J, Toupet L, Giraud N, Kahn R, Maury O. Angew Chem Int Ed Engl 47 3388-3391 (2008)
  8. Chemoenzymatic synthesis of polyprenyl phosphates. Hartley MD, Larkin A, Imperiali B. Bioorg Med Chem 16 5149-5156 (2008)
  9. Get phases from arsenic anomalous scattering: de novo SAD phasing of two protein structures crystallized in cacodylate buffer. Liu X, Zhang H, Wang XJ, Li LF, Su XD. PLoS One 6 e24227 (2011)
  10. Lanthanide binding and IgG affinity construct: potential applications in solution NMR, MRI, and luminescence microscopy. Barb AW, Ho TG, Flanagan-Steet H, Prestegard JH. Protein Sci 21 1456-1466 (2012)
  11. A dipicolinate lanthanide complex for solving protein structures using anomalous diffraction. Pompidor G, Maury O, Vicat J, Kahn R. Acta Crystallogr D Biol Crystallogr 66 762-769 (2010)
  12. Design of lanthanide fingers: compact lanthanide-binding metalloproteins. am Ende CW, Meng HY, Ye M, Pandey AK, Zondlo NJ. Chembiochem 11 1738-1747 (2010)
  13. Functionalisation of lanthanide complexes via microwave-enhanced Cu(I)-catalysed azide-alkyne cycloaddition. Szíjjártó C, Pershagen E, Borbas KE. Dalton Trans 41 7660-7669 (2012)
  14. Multiple paramagnetic effects through a tagged reporter protein. Camacho-Zarco AR, Munari F, Wegstroth M, Liu WM, Ubbink M, Becker S, Zweckstetter M. Angew Chem Int Ed Engl 54 336-339 (2015)
  15. Structural biology of the lanthanides-mining rare earths in the Protein Data Bank. Djinovic-Carugo K, Carugo O. J Inorg Biochem 143 69-76 (2015)
  16. Tailoring encodable lanthanide-binding tags as MRI contrast agents. Daughtry KD, Martin LJ, Sarraju A, Imperiali B, Allen KN. Chembiochem 13 2567-2574 (2012)
  17. Paramagnetic DOSY: An Accurate Tool for the Analysis of the Supramolecular Interactions between Lanthanide Complexes and Proteins. Denis-Quanquin S, Riobé F, Delsuc MA, Maury O, Giraud N. Chemistry 22 18123-18131 (2016)
  18. An encodable lanthanide binding tag with reduced size and flexibility for measuring residual dipolar couplings and pseudocontact shifts in large proteins. Barb AW, Subedi GP. J Biomol NMR 64 75-85 (2016)
  19. Luminescent lanthanide-binding peptides: sensitising the excited states of Eu(III) and Tb(III) with a 1,8-naphthalimide-based antenna. Bonnet CS, Devocelle M, Gunnlaugsson T. Org Biomol Chem 10 126-133 (2012)
  20. Peptide coated gold nanoparticles that bind lanthanide ions. Savage AC, Pikramenou Z. Chem Commun (Camb) 47 6431-6433 (2011)
  21. Exploration of the supramolecular interactions involving tris-dipicolinate lanthanide complexes in protein crystals by a combined biostructural, computational and NMR study. Dumont E, Pompidor G, D'Aléo A, Vicat J, Toupet L, Kahn R, Girard E, Maury O, Giraud N. Phys Chem Chem Phys 15 18235-18242 (2013)
  22. Synthesis and characterisation of lanthanide-hydroporphyrin dyads. Xiong R, Andres J, Scheffler K, Borbas KE. Dalton Trans 44 2541-2553 (2015)
  23. Conformational dynamics and alignment properties of loop lanthanide-binding-tags (LBTs) studied in interleukin-1β. Barthelmes D, Barthelmes K, Schnorr K, Jonker HRA, Bodmer B, Allen KN, Imperiali B, Schwalbe H. J Biomol NMR 68 187-194 (2017)
  24. Clicked europium dipicolinate complexes for protein X-ray structure determination. Talon R, Nauton L, Canet JL, Kahn R, Girard E, Gautier A. Chem Commun (Camb) 48 11886-11888 (2012)
  25. Rigid 5'-6-locked phenanthroline-derived nucleosides chelated to ruthenium and europium ions. Gislason K, Sigurdsson ST. Bioorg Med Chem Lett 23 264-267 (2013)
  26. Unveiling the Binding Modes of the Crystallophore, a Terbium-based Nucleating and Phasing Molecular Agent for Protein Crystallography. Engilberge S, Riobé F, Wagner T, Di Pietro S, Breyton C, Franzetti B, Shima S, Girard E, Dumont E, Maury O. Chemistry 24 9739-9746 (2018)
  27. Synthesis of lanthanide tag and experimental studies on paramagnetically induced residual dipolar couplings. Yassin A, Nehmeh B, Kantar SE, Al Kazzaz Y, Akoury E. BMC Chem 16 54 (2022)