2oic Citations

Cutting Edge: IL-1 receptor-associated kinase 4 structures reveal novel features and multiple conformations.

J Immunol 178 2641-5 (2007)
Related entries: 2oib, 2oid

Cited: 48 times
EuropePMC logo PMID: 17312103

Abstract

IL-1R-associated kinase (IRAK)4 plays a central role in innate and adaptive immunity, and is a crucial component in IL-1/TLR signaling. We have determined the crystal structures of the apo and ligand-bound forms of human IRAK4 kinase domain. These structures reveal several features that provide opportunities for the design of selective IRAK4 inhibitors. The N-terminal lobe of the IRAK4 kinase domain is structurally distinctive due to a loop insertion after an extended N-terminal helix. The gatekeeper residue is a tyrosine, a unique feature of the IRAK family. The IRAK4 structures also provide insights into the regulation of its activity. In the apo structure, two conformations coexist, differing in the relative orientation of the two kinase lobes and the position of helix C. In the presence of an ATP analog only one conformation is observed, indicating that this is the active conformation.

Reviews - 2oic mentioned but not cited (1)

  1. IRAK-4 inhibitors for inflammation. Wang Z, Wesche H, Stevens T, Walker N, Yeh WC. Curr Top Med Chem 9 724-737 (2009)

Articles - 2oic mentioned but not cited (5)

  1. Predicting new indications for approved drugs using a proteochemometric method. Dakshanamurthy S, Issa NT, Assefnia S, Seshasayee A, Peters OJ, Madhavan S, Uren A, Brown ML, Byers SW. J Med Chem 55 6832-6848 (2012)
  2. Inhibition of interleukin-1 receptor-associated kinase-1 is a therapeutic strategy for acute myeloid leukemia subtypes. Hosseini MM, Kurtz SE, Abdelhamed S, Mahmood S, Davare MA, Kaempf A, Elferich J, McDermott JE, Liu T, Payne SH, Shinde U, Rodland KD, Mori M, Druker BJ, Singer JW, Agarwal A. Leukemia 32 2374-2387 (2018)
  3. Monocarbonyl curcumin analogues: heterocyclic pleiotropic kinase inhibitors that mediate anticancer properties. Brown A, Shi Q, Moore TW, Yoon Y, Prussia A, Maddox C, Liotta DC, Shim H, Snyder JP. J Med Chem 56 3456-3466 (2013)
  4. Dimeric Structure of the Pseudokinase IRAK3 Suggests an Allosteric Mechanism for Negative Regulation. Lange SM, Nelen MI, Cohen P, Kulathu Y. Structure 29 238-251.e4 (2021)
  5. A simple extension to the CMASA method for the prediction of catalytic residues in the presence of single point mutations. Flores DI, Sotelo-Mundo RR, Brizuela CA. PLoS One 9 e108513 (2014)


Reviews citing this publication (8)

  1. IRAK1: a critical signaling mediator of innate immunity. Gottipati S, Rao NL, Fung-Leung WP. Cell Signal 20 269-276 (2008)
  2. Human Toll-like receptor-dependent induction of interferons in protective immunity to viruses. Zhang SY, Jouanguy E, Sancho-Shimizu V, von Bernuth H, Yang K, Abel L, Picard C, Puel A, Casanova JL. Immunol Rev 220 225-236 (2007)
  3. Understanding early TLR signaling through the Myddosome. Balka KR, De Nardo D. J Leukoc Biol 105 339-351 (2019)
  4. Inhibition of interleukin-1 receptor-associated kinase 1 (IRAK1) as a therapeutic strategy. Singer JW, Fleischman A, Al-Fayoumi S, Mascarenhas JO, Yu Q, Agarwal A. Oncotarget 9 33416-33439 (2018)
  5. Interleukin-1 receptor associated kinase inhibitors: potential therapeutic agents for inflammatory- and immune-related disorders. Bahia MS, Kaur M, Silakari P, Silakari O. Cell Signal 27 1039-1055 (2015)
  6. Kinase inhibitors as drugs for chronic inflammatory and immunological diseases: progress and challenges. Rokosz LL, Beasley JR, Carroll CD, Lin T, Zhao J, Appell KC, Webb ML. Expert Opin Ther Targets 12 883-903 (2008)
  7. The role of Toll-like receptor signaling in human immunodeficiencies. Suhir H, Etzioni A. Clin Rev Allergy Immunol 38 11-19 (2010)
  8. Recent Progress in the Molecular Recognition and Therapeutic Importance of Interleukin-1 Receptor-Associated Kinase 4. Patra MC, Choi S. Molecules 21 E1529 (2016)

Articles citing this publication (34)

  1. Tyrosine phosphorylation controls brassinosteroid receptor activation by triggering membrane release of its kinase inhibitor. Jaillais Y, Hothorn M, Belkhadir Y, Dabi T, Nimchuk ZL, Meyerowitz EM, Chory J. Genes Dev 25 232-237 (2011)
  2. Crystal structure of the ALK (anaplastic lymphoma kinase) catalytic domain. Lee CC, Jia Y, Li N, Sun X, Ng K, Ambing E, Gao MY, Hua S, Chen C, Kim S, Michellys PY, Lesley SA, Harris JL, Spraggon G. Biochem J 430 425-437 (2010)
  3. Crystal structures of the phosphorylated BRI1 kinase domain and implications for brassinosteroid signal initiation. Bojar D, Martinez J, Santiago J, Rybin V, Bayliss R, Hothorn M. Plant J 78 31-43 (2014)
  4. IRAK4 dimerization and trans-autophosphorylation are induced by Myddosome assembly. Ferrao R, Zhou H, Shan Y, Liu Q, Li Q, Shaw DE, Li X, Wu H. Mol Cell 55 891-903 (2014)
  5. The shrimp NF-κB pathway is activated by white spot syndrome virus (WSSV) 449 to facilitate the expression of WSSV069 (ie1), WSSV303 and WSSV371. Wang PH, Gu ZH, Wan DH, Zhang MY, Weng SP, Yu XQ, He JG. PLoS One 6 e24773 (2011)
  6. Differential regulation of Foxp3 and IL-17 expression in CD4 T helper cells by IRAK-1. Maitra U, Davis S, Reilly CM, Li L. J Immunol 182 5763-5769 (2009)
  7. The kinase activities of interleukin-1 receptor associated kinase (IRAK)-1 and 4 are redundant in the control of inflammatory cytokine expression in human cells. Song KW, Talamas FX, Suttmann RT, Olson PS, Barnett JW, Lee SW, Thompson KD, Jin S, Hekmat-Nejad M, Cai TZ, Manning AM, Hill RJ, Wong BR. Mol Immunol 46 1458-1466 (2009)
  8. Interleukin-1 receptor-associated kinase 4 (IRAK4) plays a dual role in myddosome formation and Toll-like receptor signaling. De Nardo D, Balka KR, Cardona Gloria Y, Rao VR, Latz E, Masters SL. J Biol Chem 293 15195-15207 (2018)
  9. Structure-function similarities between a plant receptor-like kinase and the human interleukin-1 receptor-associated kinase-4. Klaus-Heisen D, Nurisso A, Pietraszewska-Bogiel A, Mbengue M, Camut S, Timmers T, Pichereaux C, Rossignol M, Gadella TW, Imberty A, Lefebvre B, Cullimore JV. J Biol Chem 286 11202-11210 (2011)
  10. An innate immunity signaling process suppresses macrophage ABCA1 expression through IRAK-1-mediated downregulation of retinoic acid receptor alpha and NFATc2. Maitra U, Parks JS, Li L. Mol Cell Biol 29 5989-5997 (2009)
  11. IRAK4 kinase activity is required for Th17 differentiation and Th17-mediated disease. Staschke KA, Dong S, Saha J, Zhao J, Brooks NA, Hepburn DL, Xia J, Gulen MF, Kang Z, Altuntas CZ, Tuohy VK, Gilmour R, Li X, Na S. J Immunol 183 568-577 (2009)
  12. Crystal structure of human IRAK1. Wang L, Qiao Q, Ferrao R, Shen C, Hatcher JM, Buhrlage SJ, Gray NS, Wu H. Proc Natl Acad Sci U S A 114 13507-13512 (2017)
  13. Interleukin 1/Toll-like receptor-induced autophosphorylation activates interleukin 1 receptor-associated kinase 4 and controls cytokine induction in a cell type-specific manner. Cushing L, Stochaj W, Siegel M, Czerwinski R, Dower K, Wright Q, Hirschfield M, Casanova JL, Picard C, Puel A, Lin LL, Rao VR. J Biol Chem 289 10865-10875 (2014)
  14. Chaperone over-expression in Escherichia coli: apparent increased yields of soluble recombinant protein kinases are due mainly to soluble aggregates. Haacke A, Fendrich G, Ramage P, Geiser M. Protein Expr Purif 64 185-193 (2009)
  15. IRAK-4 kinase activity-dependent and -independent regulation of lipopolysaccharide-inducible genes. Koziczak-Holbro M, Glück A, Tschopp C, Mathison JC, Gram H. Eur J Immunol 38 788-796 (2008)
  16. Molecular evolution and structural features of IRAK family members. Gosu V, Basith S, Durai P, Choi S. PLoS One 7 e49771 (2012)
  17. Crystal structures of IL-2-inducible T cell kinase complexed with inhibitors: insights into rational drug design and activity regulation. Kutach AK, Villaseñor AG, Lam D, Belunis C, Janson C, Lok S, Hong LN, Liu CM, Deval J, Novak TJ, Barnett JW, Chu W, Shaw D, Kuglstatter A. Chem Biol Drug Des 76 154-163 (2010)
  18. Structural dynamic analysis of apo and ATP-bound IRAK4 kinase. Gosu V, Choi S. Sci Rep 4 5748 (2014)
  19. The interleukin-1 receptor associated kinase 1 contributes to the regulation of NFAT. Wang D, Fasciano S, Li L. Mol Immunol 45 3902-3908 (2008)
  20. Discovery of 5-Amino-N-(1H-pyrazol-4-yl)pyrazolo[1,5-a]pyrimidine-3-carboxamide Inhibitors of IRAK4. Lim J, Altman MD, Baker J, Brubaker JD, Chen H, Chen Y, Fischmann T, Gibeau C, Kleinschek MA, Leccese E, Lesburg C, Maclean JK, Moy LY, Mulrooney EF, Presland J, Rakhilina L, Smith GF, Steinhuebel D, Yang R. ACS Med Chem Lett 6 683-688 (2015)
  21. Autophosphorylation of gatekeeper tyrosine by symbiosis receptor kinase. Samaddar S, Dutta A, Sinharoy S, Paul A, Bhattacharya A, Saha S, Chien KY, Goshe MB, DasGupta M. FEBS Lett 587 2972-2979 (2013)
  22. IRAK4 and TLR3 Sequence Variants may Alter Breast Cancer Risk among African-American Women. Yeyeodu ST, Kidd LR, Oprea-Ilies GM, Burns BG, Vancleave TT, Shim JY, Kimbro KS. Front Immunol 4 338 (2013)
  23. A secreted Plasmodium falciparum kinase reveals a signature motif for classification of tyrosine kinase-like kinases. Abdi AI, Carvalho TG, Wilkes JM, Doerig C. Microbiology (Reading) 159 2533-2547 (2013)
  24. Identification of critical functional residues of receptor-like kinase ERECTA. Kosentka PZ, Zhang L, Simon YA, Satpathy B, Maradiaga R, Mitoubsi O, Shpak ED. J Exp Bot 68 1507-1518 (2017)
  25. Conformational flexibility and inhibitor binding to unphosphorylated interleukin-1 receptor-associated kinase 4 (IRAK4). Wang L, Ferrao R, Li Q, Hatcher JM, Choi HG, Buhrlage SJ, Gray NS, Wu H. J Biol Chem 294 4511-4519 (2019)
  26. Design of a Novel and Selective IRAK4 Inhibitor Using Topological Water Network Analysis and Molecular Modeling Approaches. Lee MH, Balupuri A, Jung YR, Choi S, Lee A, Cho YS, Kang NS. Molecules 23 E3136 (2018)
  27. Structural Characterization of Maize SIRK1 Kinase Domain Reveals an Unusual Architecture of the Activation Segment. Aquino B, Couñago RM, Verza N, Ferreira LM, Massirer KB, Gileadi O, Arruda P. Front Plant Sci 8 852 (2017)
  28. Gatekeeper tyrosine phosphorylation is autoinhibitory for Symbiosis Receptor Kinase. Paul A, Samaddar S, Bhattacharya A, Banerjee A, Das A, Chakrabarti S, DasGupta M. FEBS Lett 588 2881-2889 (2014)
  29. Protective Effects of Oridonin on Acute Liver Injury via Impeding Posttranslational Modifications of Interleukin-1 Receptor-Associated Kinase 4 (IRAK4) in the Toll-Like Receptor 4 (TLR4) Signaling Pathway. Shi M, Deng Y, Yu H, Xu L, Shi C, Chen J, Li G, Du Y, Wang YG. Mediators Inflamm 2019 7634761 (2019)
  30. Optimization of Nicotinamides as Potent and Selective IRAK4 Inhibitors with Efficacy in a Murine Model of Psoriasis. Nair S, Kumar SR, Paidi VR, Sistla R, Kantheti D, Polimera SR, Thangavel S, Mukherjee AJ, Das M, Bhide RS, Pitts WJ, Murugesan N, Dudhgoankar S, Nagar J, Subramani S, Mazumder D, Carman JA, Holloway DA, Li X, Fereshteh MP, Ruepp S, Palanisamy K, Mariappan TT, Maddi S, Saxena A, Elzinga P, Chimalakonda A, Ruan Q, Ghosh K, Bose S, Sack J, Yan C, Kiefer SE, Xie D, Newitt JA, Saravanakumar SP, Rampulla RA, Barrish JC, Carter PH, Hynes J. ACS Med Chem Lett 11 1402-1409 (2020)
  31. Putative link between Polo-like kinases (PLKs) and Toll-like receptor (TLR) signaling in transformed and primary human immune cells. El Maadidi S, Weber ANR, Motshwene P, Schüssler JM, Backes D, Dickhöfer S, Wang H, Liu X, Garcia MD, Taumer C, Soufi B, Wolz OO, Klimosch SN, Franz-Wachtel M, Macek B, Gay NJ. Sci Rep 9 13168 (2019)
  32. Structural and biochemical basis of Arabidopsis FERONIA receptor kinase-mediated early signaling initiation. Kong Y, Chen J, Jiang L, Chen H, Shen Y, Wang L, Yan Y, Zhou H, Zheng H, Yu F, Ming Z. Plant Commun 4 100559 (2023)
  33. IRAK-4 in macrophages contributes to inflammatory osteolysis of wear particles around loosened hip implants. Zhang YC, Xiao JH, Deng SJ, Yi GL. Innate Immun 27 470-482 (2021)
  34. Unraveling Extremely Damaging IRAK4 Variants and Their Potential Implications for IRAK4 Inhibitor Efficacy. Behairy MY, Eid RA, Otifi HM, Mohammed HM, Alshehri MA, Asiri A, Aldehri M, Zaki MSA, Darwish KM, Elhady SS, El-Shaer NH, Eldeen MA. J Pers Med 13 1648 (2023)