2nz8 Citations

The DH and PH domains of Trio coordinately engage Rho GTPases for their efficient activation.

J Mol Biol 368 1307-20 (2007)
Cited: 70 times
EuropePMC logo PMID: 17391702

Abstract

Rho-family GTPases are activated by the exchange of bound GDP for GTP, a process that is catalyzed by Dbl-family guanine nucleotide exchange factors (GEFs). The catalytic unit of Dbl-family GEFs consists of a Dbl homology (DH) domain followed almost invariantly by a pleckstrin-homology (PH) domain. The majority of the catalytic interface forms between the switch regions of the GTPase and the DH domain, but full catalytic activity often requires the associated PH domain. Although PH domains are usually characterized as lipid-binding regions, they also participate in protein-protein interactions. For example, the DH-associated PH domain of Dbs must contact its cognate GTPases for efficient exchange. Similarly, the N-terminal DH/PH fragment of Trio, which catalyzes exchange on both Rac1 and RhoG, is fourfold more active in vitro than the isolated DH domain. Given continued uncertainty regarding functional roles of DH-associated PH domains, we have undertaken structural and functional analyses of the N-terminal DH/PH cassette of Trio. The crystal structure of this fragment of Trio bound to nucleotide-depleted Rac1 highlights the engagement of the PH domain with Rac1 and substitution of residues involved in this interface substantially diminishes activation of Rac1 and RhoG. Also, these mutations significantly reduce the ability of full-length Trio to induce neurite outgrowth dependent on RhoG activation in PC-12 cells. Overall, these studies substantiate a general role for DH-associated PH domains in engaging Rho GTPases directly for efficient guanine nucleotide exchange and support a parsimonious explanation for the essentially invariant linkage between DH and PH domains.

Reviews - 2nz8 mentioned but not cited (1)

  1. Structural Insights into the Regulation Mechanism of Small GTPases by GEFs. Toma-Fukai S, Shimizu T. Molecules 24 E3308 (2019)

Articles - 2nz8 mentioned but not cited (24)

  1. Benchmarking and analysis of protein docking performance in Rosetta v3.2. Chaudhury S, Berrondo M, Weitzner BD, Muthu P, Bergman H, Gray JJ. PLoS One 6 e22477 (2011)
  2. Protein-protein docking benchmark version 3.0. Hwang H, Pierce B, Mintseris J, Janin J, Weng Z. Proteins 73 705-709 (2008)
  3. Cross-link guided molecular modeling with ROSETTA. Kahraman A, Herzog F, Leitner A, Rosenberger G, Aebersold R, Malmström L. PLoS One 8 e73411 (2013)
  4. An autism spectrum disorder-related de novo mutation hotspot discovered in the GEF1 domain of Trio. Sadybekov A, Tian C, Arnesano C, Katritch V, Herring BE. Nat Commun 8 601 (2017)
  5. The DH and PH domains of Trio coordinately engage Rho GTPases for their efficient activation. Chhatriwala MK, Betts L, Worthylake DK, Sondek J. J Mol Biol 368 1307-1320 (2007)
  6. Structural basis for mutual relief of the Rac guanine nucleotide exchange factor DOCK2 and its partner ELMO1 from their autoinhibited forms. Hanawa-Suetsugu K, Kukimoto-Niino M, Mishima-Tsumagari C, Akasaka R, Ohsawa N, Sekine S, Ito T, Tochio N, Koshiba S, Kigawa T, Terada T, Shirouzu M, Nishikimi A, Uruno T, Katakai T, Kinashi T, Kohda D, Fukui Y, Yokoyama S. Proc Natl Acad Sci U S A 109 3305-3310 (2012)
  7. Genome-wide CRISPR screen identifies FAM49B as a key regulator of actin dynamics and T cell activation. Shang W, Jiang Y, Boettcher M, Ding K, Mollenauer M, Liu Z, Wen X, Liu C, Hao P, Zhao S, McManus MT, Wei L, Weiss A, Wang H. Proc Natl Acad Sci U S A 115 E4051-E4060 (2018)
  8. An interactome perturbation framework prioritizes damaging missense mutations for developmental disorders. Chen S, Fragoza R, Klei L, Liu Y, Wang J, Roeder K, Devlin B, Yu H. Nat Genet 50 1032-1040 (2018)
  9. Encounter complexes and dimensionality reduction in protein-protein association. Kozakov D, Li K, Hall DR, Beglov D, Zheng J, Vakili P, Schueler-Furman O, Paschalidis ICh, Clore GM, Vajda S. Elife 3 e01370 (2014)
  10. MEGADOCK: an all-to-all protein-protein interaction prediction system using tertiary structure data. Ohue M, Matsuzaki Y, Uchikoga N, Ishida T, Akiyama Y. Protein Pept Lett 21 766-778 (2014)
  11. Neurodevelopmental disease-associated de novo mutations and rare sequence variants affect TRIO GDP/GTP exchange factor activity. Katrancha SM, Wu Y, Zhu M, Eipper BA, Koleske AJ, Mains RE. Hum Mol Genet 26 4728-4740 (2017)
  12. Binding interface prediction by combining protein-protein docking results. Hwang H, Vreven T, Weng Z. Proteins 82 57-66 (2014)
  13. Protein-protein binding site identification by enumerating the configurations. Guo F, Li SC, Wang L, Zhu D. BMC Bioinformatics 13 158 (2012)
  14. Prediction of Protein-Protein Interaction Sites Using Convolutional Neural Network and Improved Data Sets. Xie Z, Deng X, Shu K. Int J Mol Sci 21 E467 (2020)
  15. Comparison of tertiary structures of proteins in protein-protein complexes with unbound forms suggests prevalence of allostery in signalling proteins. Swapna LS, Mahajan S, de Brevern AG, Srinivasan N. BMC Struct Biol 12 6 (2012)
  16. How to use not-always-reliable binding site information in protein-protein docking prediction. Li L, Huang Y, Xiao Y. PLoS One 8 e75936 (2013)
  17. Rapid in silico Design of Potential Cyclic Peptide Binders Targeting Protein-Protein Interfaces. Santini BL, Zacharias M. Front Chem 8 573259 (2020)
  18. Fgd5 is a Rac1-specific Rho GEF that is selectively inhibited by aurintricarboxylic acid. Park S, Guo Y, Negre J, Preto J, Smithers CC, Azad AK, Overduin M, Murray AG, Eitzen G. Small GTPases 12 147-160 (2021)
  19. Focused grid-based resampling for protein docking and mapping. Mamonov AB, Moghadasi M, Mirzaei H, Zarbafian S, Grove LE, Bohnuud T, Vakili P, Ch Paschalidis I, Vajda S, Kozakov D. J Comput Chem 37 961-970 (2016)
  20. Structural quality of unrefined models in protein docking. Anishchenko I, Kundrotas PJ, Vakser IA. Proteins 85 39-45 (2017)
  21. Protein docking with predicted constraints. Krippahl L, Barahona P. Algorithms Mol Biol 10 9 (2015)
  22. Autoinhibition of the GEF activity of cytoskeletal regulatory protein Trio is disrupted in neurodevelopmental disorder-related genetic variants. Bircher JE, Corcoran EE, Lam TT, Trnka MJ, Koleske AJ. J Biol Chem 298 102361 (2022)
  23. N-terminal Dbl domain of the RhoGEF, Kalirin. Gorbatyuk VY, Schiller MR, Gorbatyuk OI, Barwinski M, Hoch JC. J Biomol NMR 52 269-276 (2012)
  24. Structural/functional studies of Trio provide insights into its configuration and show that conserved linker elements enhance its activity for Rac1. Bandekar SJ, Chen CL, Ravala SK, Cash JN, Avramova LV, Zhalnina MV, Gutkind JS, Li S, Tesmer JJG. J Biol Chem 298 102209 (2022)


Reviews citing this publication (7)

  1. Regulation of small GTPases by GEFs, GAPs, and GDIs. Cherfils J, Zeghouf M. Physiol Rev 93 269-309 (2013)
  2. Organization and dynamics of PDZ-domain-related supramodules in the postsynaptic density. Feng W, Zhang M. Nat Rev Neurosci 10 87-99 (2009)
  3. Structure and function of heterotrimeric G protein-regulated Rho guanine nucleotide exchange factors. Aittaleb M, Boguth CA, Tesmer JJ. Mol Pharmacol 77 111-125 (2010)
  4. Intermediate Charcot-Marie-Tooth disease. Liu L, Zhang R. Neurosci Bull 30 999-1009 (2014)
  5. Trio family proteins as regulators of cell migration and morphogenesis in development and disease - mechanisms and cellular contexts. Bircher JE, Koleske AJ. J Cell Sci 134 jcs248393 (2021)
  6. Interneuron odyssey: molecular mechanisms of tangential migration. Toudji I, Toumi A, Chamberland É, Rossignol E. Front Neural Circuits 17 1256455 (2023)
  7. Kalirin as a Novel Treatment Target for Cognitive Dysfunction in Schizophrenia. Mould AW, Al-Juffali N, von Delft A, Brennan PE, Tunbridge EM. CNS Drugs 36 1-16 (2022)

Articles citing this publication (38)

  1. Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein-protein binding free energies and re-rank binding poses generated by protein-protein docking. Chen F, Liu H, Sun H, Pan P, Li Y, Li D, Hou T. Phys Chem Chem Phys 18 22129-22139 (2016)
  2. Structure of Galphaq-p63RhoGEF-RhoA complex reveals a pathway for the activation of RhoA by GPCRs. Lutz S, Shankaranarayanan A, Coco C, Ridilla M, Nance MR, Vettel C, Baltus D, Evelyn CR, Neubig RR, Wieland T, Tesmer JJ. Science 318 1923-1927 (2007)
  3. Galphaq directly activates p63RhoGEF and Trio via a conserved extension of the Dbl homology-associated pleckstrin homology domain. Rojas RJ, Yohe ME, Gershburg S, Kawano T, Kozasa T, Sondek J. J Biol Chem 282 29201-29210 (2007)
  4. A genome-wide RNAi screen reveals a Trio-regulated Rho GTPase circuitry transducing mitogenic signals initiated by G protein-coupled receptors. Vaqué JP, Dorsam RT, Feng X, Iglesias-Bartolome R, Forsthoefel DJ, Chen Q, Debant A, Seeger MA, Ksander BR, Teramoto H, Gutkind JS. Mol Cell 49 94-108 (2013)
  5. A cell active chemical GEF inhibitor selectively targets the Trio/RhoG/Rac1 signaling pathway. Bouquier N, Vignal E, Charrasse S, Weill M, Schmidt S, Léonetti JP, Blangy A, Fort P. Chem Biol 16 657-666 (2009)
  6. Crucial structural role for the PH and C1 domains of the Vav1 exchange factor. Rapley J, Tybulewicz VL, Rittinger K. EMBO Rep 9 655-661 (2008)
  7. Mechanistic insights into specificity, activity, and regulatory elements of the regulator of G-protein signaling (RGS)-containing Rho-specific guanine nucleotide exchange factors (GEFs) p115, PDZ-RhoGEF (PRG), and leukemia-associated RhoGEF (LARG). Jaiswal M, Gremer L, Dvorsky R, Haeusler LC, Cirstea IC, Uhlenbrock K, Ahmadian MR. J Biol Chem 286 18202-18212 (2011)
  8. Mutations specific to the Rac-GEF domain of TRIO cause intellectual disability and microcephaly. Pengelly RJ, Greville-Heygate S, Schmidt S, Seaby EG, Jabalameli MR, Mehta SG, Parker MJ, Goudie D, Fagotto-Kaufmann C, Mercer C, DDD Study, Debant A, Ennis S, Baralle D. J Med Genet 53 735-742 (2016)
  9. Structural basis of guanine nucleotide exchange mediated by the T-cell essential Vav1. Chrencik JE, Brooun A, Zhang H, Mathews II, Hura GL, Foster SA, Perry JJ, Streiff M, Ramage P, Widmer H, Bokoch GM, Tainer JA, Weckbecker G, Kuhn P. J Mol Biol 380 828-843 (2008)
  10. Opposite Modulation of RAC1 by Mutations in TRIO Is Associated with Distinct, Domain-Specific Neurodevelopmental Disorders. Barbosa S, Greville-Heygate S, Bonnet M, Godwin A, Fagotto-Kaufmann C, Kajava AV, Laouteouet D, Mawby R, Wai HA, Dingemans AJM, Hehir-Kwa J, Willems M, Capri Y, Mehta SG, Cox H, Goudie D, Vansenne F, Turnpenny P, Vincent M, Cogné B, Lesca G, Hertecant J, Rodriguez D, Keren B, Burglen L, Gérard M, Putoux A, C4RCD Research Group, Cantagrel V, Siquier-Pernet K, Rio M, Banka S, Sarkar A, Steeves M, Parker M, Clement E, Moutton S, Tran Mau-Them F, Piton A, de Vries BBA, Guille M, Debant A, Schmidt S, Baralle D. Am J Hum Genet 106 338-355 (2020)
  11. Galpha q allosterically activates and relieves autoinhibition of p63RhoGEF. Shankaranarayanan A, Boguth CA, Lutz S, Vettel C, Uhlemann F, Aittaleb M, Wieland T, Tesmer JJ. Cell Signal 22 1114-1123 (2010)
  12. Identification and characterization of cancer mutations in Japanese lung adenocarcinoma without sequencing of normal tissue counterparts. Suzuki A, Mimaki S, Yamane Y, Kawase A, Matsushima K, Suzuki M, Goto K, Sugano S, Esumi H, Suzuki Y, Tsuchihara K. PLoS One 8 e73484 (2013)
  13. Aptamer-derived peptides as potent inhibitors of the oncogenic RhoGEF Tgat. Bouquier N, Fromont S, Zeeh JC, Auziol C, Larrousse P, Robert B, Zeghouf M, Cherfils J, Debant A, Schmidt S. Chem Biol 16 391-400 (2009)
  14. Structural basis for autoinhibition of the guanine nucleotide exchange factor FARP2. He X, Kuo YC, Rosche TJ, Zhang X. Structure 21 355-364 (2013)
  15. Calmodulin and PI(3,4,5)P₃ cooperatively bind to the Itk pleckstrin homology domain to promote efficient calcium signaling and IL-17A production. Wang X, Boyken SE, Hu J, Xu X, Rimer RP, Shea MA, Shaw AS, Andreotti AH, Huang YH. Sci Signal 7 ra74 (2014)
  16. Mutations in the PLEKHG5 gene is relevant with autosomal recessive intermediate Charcot-Marie-Tooth disease. Kim HJ, Hong YB, Park JM, Choi YR, Kim YJ, Yoon BR, Koo H, Yoo JH, Kim SB, Park M, Chung KW, Choi BO. Orphanet J Rare Dis 8 104 (2013)
  17. Membrane localization of RasGRP1 is controlled by an EF-hand, and by the GEF domain. Tazmini G, Beaulieu N, Woo A, Zahedi B, Goulding RE, Kay RJ. Biochim Biophys Acta 1793 447-461 (2009)
  18. The solution structure and dynamics of the DH-PH module of PDZRhoGEF in isolation and in complex with nucleotide-free RhoA. Cierpicki T, Bielnicki J, Zheng M, Gruszczyk J, Kasterka M, Petoukhov M, Zhang A, Fernandez EJ, Svergun DI, Derewenda U, Bushweller JH, Derewenda ZS. Protein Sci 18 2067-2079 (2009)
  19. Elimination of Kalrn expression in POMC cells reduces anxiety-like behavior and contextual fear learning. Mandela P, Yan Y, LaRese T, Eipper BA, Mains RE. Horm Behav 66 430-438 (2014)
  20. Structure of the C-terminal guanine nucleotide exchange factor module of Trio in an autoinhibited conformation reveals its oncogenic potential. Bandekar SJ, Arang N, Tully ES, Tang BA, Barton BL, Li S, Gutkind JS, Tesmer JJG. Sci Signal 12 eaav2449 (2019)
  21. Disruption of a RAC1-centred network is associated with Alzheimer's disease pathology and causes age-dependent neurodegeneration. Kikuchi M, Sekiya M, Hara N, Miyashita A, Kuwano R, Ikeuchi T, Iijima KM, Nakaya A. Hum Mol Genet 29 817-833 (2020)
  22. Non-muscle myosin II regulates neuronal actin dynamics by interacting with guanine nucleotide exchange factors. Shin EY, Lee CS, Yun CY, Won SY, Kim HK, Lee YH, Kwak SJ, Kim EG. PLoS One 9 e95212 (2014)
  23. Supervillin binds the Rac/Rho-GEF Trio and increases Trio-mediated Rac1 activation. Son K, Smith TC, Luna EJ. Cytoskeleton (Hoboken) 72 47-64 (2015)
  24. Obligatory roles of filamin A in E-cadherin-mediated cell-cell adhesion in epidermal keratinocytes. Tu CL, You M. J Dermatol Sci 73 142-151 (2014)
  25. Autoinhibition of GEF activity in Intersectin 1 is mediated by the short SH3-DH domain linker. Kintscher C, Wuertenberger S, Eylenstein R, Uhlendorf T, Groemping Y. Protein Sci 19 2164-2174 (2010)
  26. Genome-wide DNA methylation and transcriptomic profiles in the lifestyle strategies and asexual development of the forest fungal pathogen Heterobasidion parviporum. Zeng Z, Wu J, Kovalchuk A, Raffaello T, Wen Z, Liu M, Asiegbu FO. Epigenetics 14 16-40 (2019)
  27. Targeting rho guanine nucleotide exchange factor ARHGEF5/TIM with auto-inhibitory peptides in human breast cancer. Huang O, Wu D, Xie F, Lin L, Wang X, Jiang M, Li Y, Chen W, Shen K, Hu X. Amino Acids 47 1239-1246 (2015)
  28. Echovirus 30 induced neuronal cell death through TRIO-RhoA signaling activation. Lee JW, Yeo SG, Kang BH, Lee HK, Kim JW, Lee SH, Kim KS, Cheon DS. PLoS One 7 e36656 (2012)
  29. Novel loss-of-function variants in TRIO are associated with neurodevelopmental disorder: case report. Schultz-Rogers L, Muthusamy K, Pinto E Vairo F, Klee EW, Lanpher B. BMC Med Genet 21 219 (2020)
  30. In vitro fluorescence assay to measure GDP/GTP exchange of guanine nucleotide exchange factors of Rho family GTPases. Blaise AM, Corcoran EE, Wattenberg ES, Zhang YL, Cottrell JR, Koleske AJ. Biol Methods Protoc 7 bpab024 (2022)
  31. Intramolecular interactions between the Dbl homology (DH) domain and the carboxyl-terminal region of myosin II-interacting guanine nucleotide exchange factor (MyoGEF) act as an autoinhibitory mechanism for the regulation of MyoGEF functions. Wu D, Jiao M, Zu S, Sollecito CC, Jimenez-Cowell K, Mold AJ, Kennedy RM, Wei Q. J Biol Chem 289 34033-34048 (2014)
  32. RhoGEF Trio Regulates Radial Migration of Projection Neurons via Its Distinct Domains. Wei C, Sun M, Sun X, Meng H, Li Q, Gao K, Yue W, Wang L, Zhang D, Li J. Neurosci Bull 38 249-262 (2022)
  33. Serotonin signals through postsynaptic Gαq, Trio RhoGEF, and diacylglycerol to promote Caenorhabditis elegans egg-laying circuit activity and behavior. Dhakal P, Chaudhry SI, Signorelli R, Collins KM. Genetics 221 iyac084 (2022)
  34. A developmental delay linked missense mutation in Kalirin-7 disrupts protein function and neuronal morphology. Parnell E, Voorn RA, Martin-de-Saavedra MD, Loizzo DD, Dos Santos M, Penzes P. Front Mol Neurosci 15 994513 (2022)
  35. Identification of potent and novel inhibitors against RAC1: a Rho family GTPase. Madhukar G, Subbarao N. In Silico Pharmacol 10 13 (2022)
  36. Pathogenic TRIO variants associated with neurodevelopmental disorders perturb the molecular regulation of TRIO and axon pathfinding in vivo. Bonnet M, Roche F, Fagotto-Kaufmann C, Gazdagh G, Truong I, Comunale F, Barbosa S, Bonhomme M, Nafati N, Hunt D, Rodriguez MP, Chaudhry A, Shears D, Madruga M, Vansenne F, Curie A, Kajava AV, Baralle D, Fassier C, Debant A, Schmidt S. Mol Psychiatry 28 1527-1544 (2023)
  37. Septin-mediated RhoA activation engages the exocyst complex to recruit the cilium transition zone. Safavian D, Kim MS, Xie H, El-Zeiry M, Palander O, Dai L, Collins RF, Froese C, Shannon R, Nagata KI, Trimble WS. J Cell Biol 222 e201911062 (2023)
  38. Serine phosphorylation of the RhoGEF Trio stabilizes endothelial cell-cell junctions. Daniel AE, van der Meer WJ, Wester L, de Waard V, van den Biggelaar M, van Buul JD. Small GTPases 14 45-54 (2023)