2nt0 Citations

Structure of acid beta-glucosidase with pharmacological chaperone provides insight into Gaucher disease.

Nat Chem Biol 3 101-7 (2007)
Related entries: 2nsx, 2nt1

Cited: 133 times
EuropePMC logo PMID: 17187079

Abstract

Gaucher disease results from mutations in the lysosomal enzyme acid beta-glucosidase (GCase). Although enzyme replacement therapy has improved the health of some affected individuals, such as those with the prevalent N370S mutation, oral treatment with pharmacological chaperones may be therapeutic in a wider range of tissue compartments by restoring sufficient activity of endogenous mutant GCase. Here we demonstrate that isofagomine (IFG, 1) binds to the GCase active site, and both increases GCase activity in cell lysates and restores lysosomal trafficking in cells containing N370S mutant GCase. We also compare the crystal structures of IFG-bound GCase at low pH with those of glycerol-bound GCase at low pH and apo-GCase at neutral pH. Our data indicate that IFG induces active GCase, which is secured by interactions with Asn370. The design of small molecules that stabilize substrate-bound conformations of mutant proteins may be a general therapeutic strategy for diseases caused by protein misfolding and mistrafficking.

Articles - 2nt0 mentioned but not cited (9)

  1. Effects of pH and iminosugar pharmacological chaperones on lysosomal glycosidase structure and stability. Lieberman RL, D'aquino JA, Ringe D, Petsko GA. Biochemistry 48 4816-4827 (2009)
  2. Detection of ligand binding hot spots on protein surfaces via fragment-based methods: application to DJ-1 and glucocerebrosidase. Landon MR, Lieberman RL, Hoang QQ, Ju S, Caaveiro JM, Orwig SD, Kozakov D, Brenke R, Chuang GY, Beglov D, Vajda S, Petsko GA, Ringe D. J Comput Aided Mol Des 23 491-500 (2009)
  3. X-ray and biochemical analysis of N370S mutant human acid β-glucosidase. Wei RR, Hughes H, Boucher S, Bird JJ, Guziewicz N, Van Patten SM, Qiu H, Pan CQ, Edmunds T. J Biol Chem 286 299-308 (2011)
  4. Identification of pharmacological chaperones for Gaucher disease and characterization of their effects on beta-glucocerebrosidase by hydrogen/deuterium exchange mass spectrometry. Tropak MB, Kornhaber GJ, Rigat BA, Maegawa GH, Buttner JD, Blanchard JE, Murphy C, Tuske SJ, Coales SJ, Hamuro Y, Brown ED, Mahuran DJ. Chembiochem 9 2650-2662 (2008)
  5. A Guided Tour of the Structural Biology of Gaucher Disease: Acid-β-Glucosidase and Saposin C. Lieberman RL. Enzyme Res 2011 973231 (2011)
  6. A Network Pharmacology Study on the Mechanisms of the Herbal Extract, Christina Loosestrife, for the Treatment of Nephrolithiasis. Yu K, Zhang P, Xie ZG. Med Sci Monit 26 e919360 (2020)
  7. A baculoviral system for the production of human β-glucocerebrosidase enables atomic resolution analysis. Rowland RJ, Wu L, Liu F, Davies GJ. Acta Crystallogr D Struct Biol 76 565-580 (2020)
  8. Design, Synthesis and Structural Analysis of Glucocerebrosidase Imaging Agents. Rowland RJ, Chen Y, Breen I, Wu L, Offen WA, Beenakker TJ, Su Q, van den Nieuwendijk AMCH, Aerts JMFG, Artola M, Overkleeft HS, Davies GJ. Chemistry 27 16377-16388 (2021)
  9. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)


Reviews citing this publication (45)

  1. Natural products to drugs: natural product-derived compounds in clinical trials. Butler MS. Nat Prod Rep 25 475-516 (2008)
  2. β-Glucosidases. Ketudat Cairns JR, Esen A. Cell Mol Life Sci 67 3389-3405 (2010)
  3. N-glycan structure dictates extension of protein folding or onset of disposal. Molinari M. Nat Chem Biol 3 313-320 (2007)
  4. Treating lysosomal storage diseases with pharmacological chaperones: from concept to clinics. Parenti G. EMBO Mol Med 1 268-279 (2009)
  5. Glycosphingolipids--nature, function, and pharmacological modulation. Wennekes T, van den Berg RJ, Boot RG, van der Marel GA, Overkleeft HS, Aerts JM. Angew Chem Int Ed Engl 48 8848-8869 (2009)
  6. Pharmacological Chaperone Therapy: Preclinical Development, Clinical Translation, and Prospects for the Treatment of Lysosomal Storage Disorders. Parenti G, Andria G, Valenzano KJ. Mol Ther 23 1138-1148 (2015)
  7. Chemical and biological approaches for adapting proteostasis to ameliorate protein misfolding and aggregation diseases: progress and prognosis. Lindquist SL, Kelly JW. Cold Spring Harb Perspect Biol 3 a004507 (2011)
  8. Identification and characterization of pharmacological chaperones to correct enzyme deficiencies in lysosomal storage disorders. Valenzano KJ, Khanna R, Powe AC, Boyd R, Lee G, Flanagan JJ, Benjamin ER. Assay Drug Dev Technol 9 213-235 (2011)
  9. Covalent inhibitors of glycosidases and their applications in biochemistry and biology. Rempel BP, Withers SG. Glycobiology 18 570-586 (2008)
  10. GBA, Gaucher Disease, and Parkinson's Disease: From Genetic to Clinic to New Therapeutic Approaches. Riboldi GM, Di Fonzo AB. Cells 8 E364 (2019)
  11. Gaucher disease. Butters TD. Curr Opin Chem Biol 11 412-418 (2007)
  12. Small-molecule structure correctors target abnormal protein structure and function: structure corrector rescue of apolipoprotein E4-associated neuropathology. Mahley RW, Huang Y. J Med Chem 55 8997-9008 (2012)
  13. Gaucher disease: Progress and ongoing challenges. Mistry PK, Lopez G, Schiffmann R, Barton NW, Weinreb NJ, Sidransky E. Mol Genet Metab 120 8-21 (2017)
  14. Pharmacologic chaperoning as a strategy to treat Gaucher disease. Yu Z, Sawkar AR, Kelly JW. FEBS J 274 4944-4950 (2007)
  15. GBA-Associated Parkinson's Disease and Other Synucleinopathies. Gan-Or Z, Liong C, Alcalay RN. Curr Neurol Neurosci Rep 18 44 (2018)
  16. Pharmacological chaperoning: a primer on mechanism and pharmacology. Leidenheimer NJ, Ryder KG. Pharmacol Res 83 10-19 (2014)
  17. Gaucher-related synucleinopathies: the examination of sporadic neurodegeneration from a rare (disease) angle. Sardi SP, Cheng SH, Shihabuddin LS. Prog Neurobiol 125 47-62 (2015)
  18. Glycan antagonists and inhibitors: a fount for drug discovery. Brown JR, Crawford BE, Esko JD. Crit Rev Biochem Mol Biol 42 481-515 (2007)
  19. Progress and potential of non-inhibitory small molecule chaperones for the treatment of Gaucher disease and its implications for Parkinson disease. Jung O, Patnaik S, Marugan J, Sidransky E, Westbroek W. Expert Rev Proteomics 13 471-479 (2016)
  20. Pharmacoperones as Novel Therapeutics for Diverse Protein Conformational Diseases. Tao YX, Conn PM. Physiol Rev 98 697-725 (2018)
  21. Acid beta-glucosidase: insights from structural analysis and relevance to Gaucher disease therapy. Kacher Y, Brumshtein B, Boldin-Adamsky S, Toker L, Shainskaya A, Silman I, Sussman JL, Futerman AH. Biol Chem 389 1361-1369 (2008)
  22. Genetic modification: A tool for enhancing beta-glucosidase production for biofuel application. Singhania RR, Patel AK, Pandey A, Ganansounou E. Bioresour Technol 245 1352-1361 (2017)
  23. Pharmacological small molecules for the treatment of lysosomal storage disorders. Smid BE, Aerts JM, Boot RG, Linthorst GE, Hollak CE. Expert Opin Investig Drugs 19 1367-1379 (2010)
  24. Phenylketonuria as a model for protein misfolding diseases and for the development of next generation orphan drugs for patients with inborn errors of metabolism. Muntau AC, Gersting SW. J Inherit Metab Dis 33 649-658 (2010)
  25. Mutant GBA1 expression and synucleinopathy risk: first insights from cellular and mouse models. Sardi SP, Singh P, Cheng SH, Shihabuddin LS, Schlossmacher MG. Neurodegener Dis 10 195-202 (2012)
  26. Small Molecule Chaperones for the Treatment of Gaucher Disease and GBA1-Associated Parkinson Disease. Han TU, Sam R, Sidransky E. Front Cell Dev Biol 8 271 (2020)
  27. Pathology and current treatment of neurodegenerative sphingolipidoses. Eckhardt M. Neuromolecular Med 12 362-382 (2010)
  28. Lysosomal Proteins as a Therapeutic Target in Neurodegeneration. Mc Donald JM, Krainc D. Annu Rev Med 68 445-458 (2017)
  29. Structural aspects of therapeutic enzymes to treat metabolic disorders. Kang TS, Stevens RC. Hum Mutat 30 1591-1610 (2009)
  30. New Directions in Gaucher Disease. Horowitz M, Elstein D, Zimran A, Goker-Alpan O. Hum Mutat 37 1121-1136 (2016)
  31. Autophagy-Lysosomal Pathway as Potential Therapeutic Target in Parkinson's Disease. Bonam SR, Tranchant C, Muller S. Cells 10 3547 (2021)
  32. Sphingolipid lysosomal storage diseases: from bench to bedside. Abed Rabbo M, Khodour Y, Kaguni LS, Stiban J. Lipids Health Dis 20 44 (2021)
  33. On the design of broad based screening assays to identify potential pharmacological chaperones of protein misfolding diseases. Naik S, Zhang N, Gao P, Fisher MT. Curr Top Med Chem 12 2504-2522 (2012)
  34. Precision medicine in Parkinson's disease patients with LRRK2 and GBA risk variants - Let's get even more personal. von Linstow CU, Gan-Or Z, Brundin P. Transl Neurodegener 9 39 (2020)
  35. GBA1 mutations: Prospects for exosomal biomarkers in α-synuclein pathologies. Johnson PH, Weinreb NJ, Cloyd JC, Tuite PJ, Kartha RV. Mol Genet Metab 129 35-46 (2020)
  36. Recent advances and novel treatments for sphingolipidoses. Arenz C. Future Med Chem 9 1687-1700 (2017)
  37. Approaches for probing and evaluating mammalian sphingolipid metabolism. Snider JM, Luberto C, Hannun YA. Anal Biochem 575 70-86 (2019)
  38. The role of protein structural analysis in the next generation sequencing era. Yue WW, Froese DS, Brennan PE. Top Curr Chem 336 67-98 (2014)
  39. Glucocerebrosidase, a new player changing the old rules in Lewy body diseases. Yang NY, Lee YN, Lee HJ, Kim YS, Lee SJ. Biol Chem 394 807-818 (2013)
  40. Inside job: ligand-receptor pharmacology beneath the plasma membrane. Babcock JJ, Li M. Acta Pharmacol Sin 34 859-869 (2013)
  41. Genetic variations in GBA1 and LRRK2 genes: Biochemical and clinical consequences in Parkinson disease. Smith LJ, Lee CY, Menozzi E, Schapira AHV. Front Neurol 13 971252 (2022)
  42. Glucocerebrosidase Mutations Cause Mitochondrial and Lysosomal Dysfunction in Parkinson's Disease: Pathogenesis and Therapeutic Implications. Zheng W, Fan D. Front Aging Neurosci 14 851135 (2022)
  43. Animal Models for the Study of Gaucher Disease. Cabasso O, Kuppuramalingam A, Lelieveld L, Van der Lienden M, Boot R, Aerts JM, Horowitz M. Int J Mol Sci 24 16035 (2023)
  44. Pharmacological Chaperones and Protein Conformational Diseases: Approaches of Computational Structural Biology. Grasso D, Galderisi S, Santucci A, Bernini A. Int J Mol Sci 24 5819 (2023)
  45. [Synthetic medicinal chemistry of the biomolecular components mimics]. Takahata H. Yakugaku Zasshi 133 575-585 (2013)

Articles citing this publication (79)

  1. Acid β-glucosidase mutants linked to Gaucher disease, Parkinson disease, and Lewy body dementia alter α-synuclein processing. Cullen V, Sardi SP, Ng J, Xu YH, Sun Y, Tomlinson JJ, Kolodziej P, Kahn I, Saftig P, Woulfe J, Rochet JC, Glicksman MA, Cheng SH, Grabowski GA, Shihabuddin LS, Schlossmacher MG. Ann Neurol 69 940-953 (2011)
  2. Identification and characterization of ambroxol as an enzyme enhancement agent for Gaucher disease. Maegawa GH, Tropak MB, Buttner JD, Rigat BA, Fuller M, Pandit D, Tang L, Kornhaber GJ, Hamuro Y, Clarke JT, Mahuran DJ. J Biol Chem 284 23502-23516 (2009)
  3. Pharmacological chaperones stabilize retromer to limit APP processing. Mecozzi VJ, Berman DE, Simoes S, Vetanovetz C, Awal MR, Patel VM, Schneider RT, Petsko GA, Ringe D, Small SA. Nat Chem Biol 10 443-449 (2014)
  4. Ultrasensitive in situ visualization of active glucocerebrosidase molecules. Witte MD, Kallemeijn WW, Aten J, Li KY, Strijland A, Donker-Koopman WE, van den Nieuwendijk AM, Bleijlevens B, Kramer G, Florea BI, Hooibrink B, Hollak CE, Ottenhoff R, Boot RG, van der Marel GA, Overkleeft HS, Aerts JM. Nat Chem Biol 6 907-913 (2010)
  5. Alpha-synuclein interacts with Glucocerebrosidase providing a molecular link between Parkinson and Gaucher diseases. Yap TL, Gruschus JM, Velayati A, Westbroek W, Goldin E, Moaven N, Sidransky E, Lee JC. J Biol Chem 286 28080-28088 (2011)
  6. Three classes of glucocerebrosidase inhibitors identified by quantitative high-throughput screening are chaperone leads for Gaucher disease. Zheng W, Padia J, Urban DJ, Jadhav A, Goker-Alpan O, Simeonov A, Goldin E, Auld D, LaMarca ME, Inglese J, Austin CP, Sidransky E. Proc Natl Acad Sci U S A 104 13192-13197 (2007)
  7. The pharmacological chaperone isofagomine increases the activity of the Gaucher disease L444P mutant form of beta-glucosidase. Khanna R, Benjamin ER, Pellegrino L, Schilling A, Rigat BA, Soska R, Nafar H, Ranes BE, Feng J, Lun Y, Powe AC, Palling DJ, Wustman BA, Schiffmann R, Mahuran DJ, Lockhart DJ, Valenzano KJ. FEBS J 277 1618-1638 (2010)
  8. Consolidation of glycosyl hydrolase family 30: a dual domain 4/7 hydrolase family consisting of two structurally distinct groups. St John FJ, González JM, Pozharski E. FEBS Lett 584 4435-4441 (2010)
  9. Partial restoration of mutant enzyme homeostasis in three distinct lysosomal storage disease cell lines by altering calcium homeostasis. Mu TW, Fowler DM, Kelly JW. PLoS Biol 6 e26 (2008)
  10. Ambroxol as a pharmacological chaperone for mutant glucocerebrosidase. Bendikov-Bar I, Maor G, Filocamo M, Horowitz M. Blood Cells Mol Dis 50 141-145 (2013)
  11. Parkinson disease-linked GBA mutation effects reversed by molecular chaperones in human cell and fly models. Sanchez-Martinez A, Beavan M, Gegg ME, Chau KY, Whitworth AJ, Schapira AH. Sci Rep 6 31380 (2016)
  12. Crystal structures of complexes of N-butyl- and N-nonyl-deoxynojirimycin bound to acid beta-glucosidase: insights into the mechanism of chemical chaperone action in Gaucher disease. Brumshtein B, Greenblatt HM, Butters TD, Shaaltiel Y, Aviezer D, Silman I, Futerman AH, Sussman JL. J Biol Chem 282 29052-29058 (2007)
  13. Membrane-bound α-synuclein interacts with glucocerebrosidase and inhibits enzyme activity. Yap TL, Velayati A, Sidransky E, Lee JC. Mol Genet Metab 108 56-64 (2013)
  14. Discovery, structure-activity relationship, and biological evaluation of noninhibitory small molecule chaperones of glucocerebrosidase. Patnaik S, Zheng W, Choi JH, Motabar O, Southall N, Westbroek W, Lea WA, Velayati A, Goldin E, Sidransky E, Leister W, Marugan JJ. J Med Chem 55 5734-5748 (2012)
  15. Ex vivo and in vivo effects of isofagomine on acid β-glucosidase variants and substrate levels in Gaucher disease. Sun Y, Liou B, Xu YH, Quinn B, Zhang W, Hamler R, Setchell KD, Grabowski GA. J Biol Chem 287 4275-4287 (2012)
  16. What are pharmacological chaperones and why are they interesting? Ringe D, Petsko GA. J Biol 8 80 (2009)
  17. Histone deacetylase inhibitors prevent the degradation and restore the activity of glucocerebrosidase in Gaucher disease. Lu J, Yang C, Chen M, Ye DY, Lonser RR, Brady RO, Zhuang Z. Proc Natl Acad Sci U S A 108 21200-21205 (2011)
  18. Insights into Krabbe disease from structures of galactocerebrosidase. Deane JE, Graham SC, Kim NN, Stein PE, McNair R, Cachón-González MB, Cox TM, Read RJ. Proc Natl Acad Sci U S A 108 15169-15173 (2011)
  19. Structural and mechanistic insight into the basis of mucopolysaccharidosis IIIB. Ficko-Blean E, Stubbs KA, Nemirovsky O, Vocadlo DJ, Boraston AB. Proc Natl Acad Sci U S A 105 6560-6565 (2008)
  20. Pharmacological enhancement of α-glucosidase by the allosteric chaperone N-acetylcysteine. Porto C, Ferrara MC, Meli M, Acampora E, Avolio V, Rosa M, Cobucci-Ponzano B, Colombo G, Moracci M, Andria G, Parenti G. Mol Ther 20 2201-2211 (2012)
  21. Isofagomine induced stabilization of glucocerebrosidase. Kornhaber GJ, Tropak MB, Maegawa GH, Tuske SJ, Coales SJ, Mahuran DJ, Hamuro Y. Chembiochem 9 2643-2649 (2008)
  22. The Amino Acid Metabolic and Carbohydrate Metabolic Pathway Play Important Roles during Salt-Stress Response in Tomato. Zhang Z, Mao C, Shi Z, Kou X. Front Plant Sci 8 1231 (2017)
  23. Isofagomine in vivo effects in a neuronopathic Gaucher disease mouse. Sun Y, Ran H, Liou B, Quinn B, Zamzow M, Zhang W, Bielawski J, Kitatani K, Setchell KD, Hannun YA, Grabowski GA. PLoS One 6 e19037 (2011)
  24. Quantitative assessment of protein structural models by comparison of H/D exchange MS data with exchange behavior accurately predicted by DXCOREX. Liu T, Pantazatos D, Li S, Hamuro Y, Hilser VJ, Woods VL. J Am Soc Mass Spectrom 23 43-56 (2012)
  25. A chaperone enhances blood α-glucosidase activity in Pompe disease patients treated with enzyme replacement therapy. Parenti G, Fecarotta S, la Marca G, Rossi B, Ascione S, Donati MA, Morandi LO, Ravaglia S, Pichiecchio A, Ombrone D, Sacchini M, Pasanisi MB, De Filippi P, Danesino C, Della Casa R, Romano A, Mollica C, Rosa M, Agovino T, Nusco E, Porto C, Andria G. Mol Ther 22 2004-2012 (2014)
  26. Strategies for stabilizing superoxide dismutase (SOD1), the protein destabilized in the most common form of familial amyotrophic lateral sclerosis. Auclair JR, Boggio KJ, Petsko GA, Ringe D, Agar JN. Proc Natl Acad Sci U S A 107 21394-21399 (2010)
  27. Cyclodextrin-based iminosugar click clusters: the first examples of multivalent pharmacological chaperones for the treatment of lysosomal storage disorders. Decroocq C, Rodríguez-Lucena D, Ikeda K, Asano N, Compain P. Chembiochem 13 661-664 (2012)
  28. Improved management of lysosomal glucosylceramide levels in a mouse model of type 1 Gaucher disease using enzyme and substrate reduction therapy. Marshall J, McEachern KA, Chuang WL, Hutto E, Siegel CS, Shayman JA, Grabowski GA, Scheule RK, Copeland DP, Cheng SH. J Inherit Metab Dis 33 281-289 (2010)
  29. Isofagomine increases lysosomal delivery of exogenous glucocerebrosidase. Shen JS, Edwards NJ, Hong YB, Murray GJ. Biochem Biophys Res Commun 369 1071-1075 (2008)
  30. Glucocerebrosidase in the pathogenesis and treatment of Parkinson disease. Schapira AH, Gegg ME. Proc Natl Acad Sci U S A 110 3214-3215 (2013)
  31. 6-Amino-6-deoxy-5,6-di-N-(N'-octyliminomethylidene)nojirimycin: synthesis, biological evaluation, and crystal structure in complex with acid beta-glucosidase. Brumshtein B, Aguilar-Moncayo M, García-Moreno MI, Ortiz Mellet C, García Fernández JM, Silman I, Shaaltiel Y, Aviezer D, Sussman JL, Futerman AH. Chembiochem 10 1480-1485 (2009)
  32. Insights into Hunter syndrome from the structure of iduronate-2-sulfatase. Demydchuk M, Hill CH, Zhou A, Bunkóczi G, Stein PE, Marchesan D, Deane JE, Read RJ. Nat Commun 8 15786 (2017)
  33. Optimization and validation of two miniaturized glucocerebrosidase enzyme assays for high throughput screening. Urban DJ, Zheng W, Goker-Alpan O, Jadhav A, Lamarca ME, Inglese J, Sidransky E, Austin CP. Comb Chem High Throughput Screen 11 817-824 (2008)
  34. Potential pharmacological chaperones targeting cancer-associated MCL-1 and Parkinson disease-associated α-synuclein. Oh M, Lee JH, Wang W, Lee HS, Lee WS, Burlak C, Im W, Hoang QQ, Lim HS. Proc Natl Acad Sci U S A 111 11007-11012 (2014)
  35. A systematic investigation of iminosugar click clusters as pharmacological chaperones for the treatment of Gaucher disease. Joosten A, Decroocq C, de Sousa J, Schneider JP, Etamé E, Bodlenner A, Butters TD, Compain P. Chembiochem 15 309-319 (2014)
  36. Azasugar inhibitors as pharmacological chaperones for Krabbe disease. Hill CH, Viuff AH, Spratley SJ, Salamone S, Christensen SH, Read RJ, Moriarty NW, Jensen HH, Deane JE. Chem Sci 6 3075-3086 (2015)
  37. Production of active human glucocerebrosidase in seeds of Arabidopsis thaliana complex-glycan-deficient (cgl) plants. He X, Galpin JD, Tropak MB, Mahuran D, Haselhorst T, von Itzstein M, Kolarich D, Packer NH, Miao Y, Jiang L, Grabowski GA, Clarke LA, Kermode AR. Glycobiology 22 492-503 (2012)
  38. Comparative therapeutic effects of velaglucerase alfa and imiglucerase in a Gaucher disease mouse model. Xu YH, Sun Y, Barnes S, Grabowski GA. PLoS One 5 e10750 (2010)
  39. Disulfide Mispairing During Proinsulin Folding in the Endoplasmic Reticulum. Haataja L, Manickam N, Soliman A, Tsai B, Liu M, Arvan P. Diabetes 65 1050-1060 (2016)
  40. Evaluation of quinazoline analogues as glucocerebrosidase inhibitors with chaperone activity. Marugan JJ, Zheng W, Motabar O, Southall N, Goldin E, Westbroek W, Stubblefield BK, Sidransky E, Aungst RA, Lea WA, Simeonov A, Leister W, Austin CP. J Med Chem 54 1033-1058 (2011)
  41. Promising results of the chaperone effect caused by imino sugars and aminocyclitol derivatives on mutant glucocerebrosidases causing Gaucher disease. Sánchez-Ollé G, Duque J, Egido-Gabás M, Casas J, Lluch M, Chabás A, Grinberg D, Vilageliu L. Blood Cells Mol Dis 42 159-166 (2009)
  42. Mechanism of glucocerebrosidase activation and dysfunction in Gaucher disease unraveled by molecular dynamics and deep learning. Romero R, Ramanathan A, Yuen T, Bhowmik D, Mathew M, Munshi LB, Javaid S, Bloch M, Lizneva D, Rahimova A, Khan A, Taneja C, Kim SM, Sun L, New MI, Haider S, Zaidi M. Proc Natl Acad Sci U S A 116 5086-5095 (2019)
  43. Molecular basis of reduced glucosylceramidase activity in the most common Gaucher disease mutant, N370S. Offman MN, Krol M, Silman I, Sussman JL, Futerman AH. J Biol Chem 285 42105-42114 (2010)
  44. Structural snapshots illustrate the catalytic cycle of β-galactocerebrosidase, the defective enzyme in Krabbe disease. Hill CH, Graham SC, Read RJ, Deane JE. Proc Natl Acad Sci U S A 110 20479-20484 (2013)
  45. Binding of 3,4,5,6-tetrahydroxyazepanes to the acid-β-glucosidase active site: implications for pharmacological chaperone design for Gaucher disease. Orwig SD, Tan YL, Grimster NP, Yu Z, Powers ET, Kelly JW, Lieberman RL. Biochemistry 50 10647-10657 (2011)
  46. Cyclodextrin-mediated crystallization of acid β-glucosidase in complex with amphiphilic bicyclic nojirimycin analogues. Brumshtein B, Aguilar-Moncayo M, Benito JM, García Fernandez JM, Silman I, Shaaltiel Y, Aviezer D, Sussman JL, Futerman AH, Ortiz Mellet C. Org Biomol Chem 9 4160-4167 (2011)
  47. An allosteric MALT1 inhibitor is a molecular corrector rescuing function in an immunodeficient patient. Quancard J, Klein T, Fung SY, Renatus M, Hughes N, Israël L, Priatel JJ, Kang S, Blank MA, Viner RI, Blank J, Schlapbach A, Erbel P, Kizhakkedathu J, Villard F, Hersperger R, Turvey SE, Eder J, Bornancin F, Overall CM. Nat Chem Biol 15 304-313 (2019)
  48. Docking study and biological evaluation of pyrrolidine-based iminosugars as pharmacological chaperones for Gaucher disease. Kato A, Nakagome I, Sato K, Yamamoto A, Adachi I, Nash RJ, Fleet GW, Natori Y, Watanabe Y, Imahori T, Yoshimura Y, Takahata H, Hirono S. Org Biomol Chem 14 1039-1048 (2016)
  49. Systemic enzyme delivery by blood-brain barrier-penetrating SapC-DOPS nanovesicles for treatment of neuronopathic Gaucher disease. Sun Y, Liou B, Chu Z, Fannin V, Blackwood R, Peng Y, Grabowski GA, Davis HW, Qi X. EBioMedicine 55 102735 (2020)
  50. In vivo and ex vivo evaluation of L-type calcium channel blockers on acid beta-glucosidase in Gaucher disease mouse models. Sun Y, Liou B, Quinn B, Ran H, Xu YH, Grabowski GA. PLoS One 4 e7320 (2009)
  51. In silico prediction of the effects of mutations in the human UDP-galactose 4'-epimerase gene: towards a predictive framework for type III galactosemia. McCorvie TJ, Timson DJ. Gene 524 95-104 (2013)
  52. Inhibitor screening of pharmacological chaperones for lysosomal β-glucocerebrosidase by capillary electrophoresis. Shanmuganathan M, Britz-McKibbin P. Anal Bioanal Chem 399 2843-2853 (2011)
  53. Synthesis of N-substituted ε-hexonolactams as pharmacological chaperones for the treatment of N370S mutant Gaucher disease. Wang GN, Twigg G, Butters TD, Zhang S, Zhang L, Zhang LH, Ye XS. Org Biomol Chem 10 2923-2927 (2012)
  54. β-Glucocerebrosidase Modulators Promote Dimerization of β-Glucocerebrosidase and Reveal an Allosteric Binding Site. Zheng J, Chen L, Skinner OS, Ysselstein D, Remis J, Lansbury P, Skerlj R, Mrosek M, Heunisch U, Krapp S, Charrow J, Schwake M, Kelleher NL, Silverman RB, Krainc D. J Am Chem Soc 140 5914-5924 (2018)
  55. Crystal structure of the Salmonella enterica serovar typhimurium virulence factor SrfJ, a glycoside hydrolase family enzyme. Kim YG, Kim JH, Kim KJ. J Bacteriol 191 6550-6554 (2009)
  56. Docking and SAR studies of D- and L-isofagomine isomers as human β-glucocerebrosidase inhibitors. Kato A, Miyauchi S, Kato N, Nash RJ, Yoshimura Y, Nakagome I, Hirono S, Takahata H, Adachi I. Bioorg Med Chem 19 3558-3568 (2011)
  57. Stabilization of Glucocerebrosidase by Active Site Occupancy. Ben Bdira F, Kallemeijn WW, Oussoren SV, Scheij S, Bleijlevens B, Florea BI, van Roomen CPAA, Ottenhoff R, van Kooten MJFM, Walvoort MTC, Witte MD, Boot RG, Ubbink M, Overkleeft HS, Aerts JMFG. ACS Chem Biol 12 1830-1841 (2017)
  58. New insights into the pharmacological chaperone activity of c2-substituted glucoimidazoles for the treatment of Gaucher disease. Li Z, Li T, Dai S, Xie X, Ma X, Zhao W, Zhang W, Li J, Wang PG. Chembiochem 14 1239-1247 (2013)
  59. Participation of asparagine 370 and glutamine 235 in the catalysis by acid beta-glucosidase: the enzyme deficient in Gaucher disease. Liou B, Grabowski GA. Mol Genet Metab 97 65-74 (2009)
  60. Comparison of a molecular dynamics model with the X-ray structure of the N370S acid-beta-glucosidase mutant that causes Gaucher disease. Offman MN, Krol M, Rost B, Silman I, Sussman JL, Futerman AH. Protein Eng Des Sel 24 773-775 (2011)
  61. Docking and SAR studies of calystegines: binding orientation and influence on pharmacological chaperone effects for Gaucher's disease. Kato A, Nakagome I, Nakagawa S, Koike Y, Nash RJ, Adachi I, Hirono S. Bioorg Med Chem 22 2435-2441 (2014)
  62. Engineered disulfide bonds restore chaperone-like function of DJ-1 mutants linked to familial Parkinson's disease. Logan T, Clark L, Ray SS. Biochemistry 49 5624-5633 (2010)
  63. Pharmacological chaperones in the age of proteomic pathology. Small SA. Proc Natl Acad Sci U S A 111 12274-12275 (2014)
  64. The GBA p.Trp378Gly mutation is a probable French-Canadian founder mutation causing Gaucher disease and synucleinopathies. Ruskey JA, Zhou S, Santiago R, Franche LA, Alam A, Roncière L, Spiegelman D, Fon EA, Trempe JF, Kalia LV, Postuma RB, Dupre N, Rivard GE, Assouline S, Amato D, Gan-Or Z. Clin Genet 94 339-345 (2018)
  65. Glycosylation is crucial for a proper catalytic site organization in human glucocerebrosidase. Pol-Fachin L, Siebert M, Verli H, Saraiva-Pereira ML. Glycoconj J 33 237-244 (2016)
  66. Selective chaperone effect of aminocyclitol derivatives on G202R and other mutant glucocerebrosidases causing Gaucher disease. Serra-Vinardell J, Díaz L, Gutiérrez-de Terán H, Sánchez-Ollé G, Bujons J, Michelakakis H, Mavridou I, Aerts JM, Delgado A, Grinberg D, Vilageliu L, Casas J. Int J Biochem Cell Biol 54 245-254 (2014)
  67. Dynamic coupling of residues within proteins as a mechanistic foundation of many enigmatic pathogenic missense variants. Ose NJ, Butler BM, Kumar A, Kazan IC, Sanderford M, Kumar S, Ozkan SB. PLoS Comput Biol 18 e1010006 (2022)
  68. Comment Getting into the fold. Brooks DA. Nat Chem Biol 3 84-85 (2007)
  69. Piperidine Azasugars Bearing Lipophilic Chains: Stereoselective Synthesis and Biological Activity as Inhibitors of Glucocerebrosidase (GCase). Clemente F, Matassini C, Giachetti S, Goti A, Morrone A, Martínez-Bailén M, Orta S, Merino P, Cardona F. J Org Chem 86 12745-12761 (2021)
  70. Synthesis of 4-O-glycosylated 1-deoxynojirimycin derivatives as disaccharide mimics-based inhibitors of human beta-glucocerebrosidase. Boucheron C, Toumieux S, Compain P, Martin OR, Ikeda K, Asano N. Carbohydr Res 342 1960-1965 (2007)
  71. Carnitine is a pharmacological allosteric chaperone of the human lysosomal α-glucosidase. Iacono R, Minopoli N, Ferrara MC, Tarallo A, Damiano C, Porto C, Strollo S, Roig-Zamboni V, Peluso G, Sulzenbacher G, Cobucci-Ponzano B, Parenti G, Moracci M. J Enzyme Inhib Med Chem 36 2068-2079 (2021)
  72. Screening, production, optimization and characterization of β-glucosidase using microbes from shellfish waste. Mahapatra S, Vickram AS, Sridharan TB, Parameswari R, Pathy MR. 3 Biotech 6 213 (2016)
  73. Selective Targeting of the Interconversion between Glucosylceramide and Ceramide by Scaffold Tailoring of Iminosugar Inhibitors. Baudoin-Dehoux C, Castellan T, Rodriguez F, Rives A, Stauffert F, Garcia V, Levade T, Compain P, Génisson Y. Molecules 24 E354 (2019)
  74. Sneak peak at galactocerebrosidase, Krabbe disease's lysosomal hydrolase. Lieberman RL. Proc Natl Acad Sci U S A 108 15017-15018 (2011)
  75. Design of a New α-1-C-Alkyl-DAB Derivative Acting as a Pharmacological Chaperone for β-Glucocerebrosidase Using Ligand Docking and Molecular Dynamics Simulation. Nakagome I, Kato A, Yamaotsu N, Yoshida T, Ozawa SI, Adachi I, Hirono S. Molecules 23 E2683 (2018)
  76. Ratiometric and colorimetric near-infrared sensors for multi-channel detection of cyanide ion and their application to measure β-glucosidase. Xing P, Xu Y, Li H, Liu S, Lu A, Sun S. Sci Rep 5 16528 (2015)
  77. Mass spectrometric study of gas-phase ions of acid β-glucosidase (Cerezyme) and iminosugar pharmacological chaperones. Rajabi K. J Mass Spectrom 49 1002-1009 (2014)
  78. Rare Diseases in Glycosphingolipid Metabolism. Zhou H, Wu Z, Wang Y, Wu Q, Hu M, Ma S, Zhou M, Sun Y, Yu B, Ye J, Jiang W, Fu Z, Gong Y. Adv Exp Med Biol 1372 189-213 (2022)
  79. Synthesis of iminoalditol analogues of galactofuranosides and their activities against glycosidases. Sandbhor M, Bhasin M, Williams DT, Hsieh M, Wu SH, Zou W. Carbohydr Res 343 2878-2886 (2008)