2nna Citations

A structural and immunological basis for the role of human leukocyte antigen DQ8 in celiac disease.

Abstract

The risk of celiac disease is strongly associated with human leukocyte antigen (HLA) DQ2 and to a lesser extent with HLA DQ8. Although the pathogenesis of HLA-DQ2-mediated celiac disease is established, the underlying basis for HLA-DQ8-mediated celiac disease remains unclear. We showed that T helper 1 (Th1) responses in HLA-DQ8-associated celiac pathology were indeed HLA DQ8 restricted and that multiple, mostly deamidated peptides derived from protease-sensitive sites of gliadin were recognized. This pattern of reactivity contrasted with the more absolute deamidation dependence and relative protease resistance of the dominant gliadin peptide in DQ2-mediated disease. We provided a structural basis for the selection of HLA-DQ8-restricted, deamidated gliadin peptides. The data established that the molecular mechanisms underlying HLA-DQ8-mediated celiac disease differed markedly from the HLA-DQ2-mediated form of the disease. Accordingly, nondietary therapeutic interventions in celiac disease might need to be tailored to the genotype of the individual.

Reviews - 2nna mentioned but not cited (6)

Articles - 2nna mentioned but not cited (22)

  1. NetMHCIIpan-3.0, a common pan-specific MHC class II prediction method including all three human MHC class II isotypes, HLA-DR, HLA-DP and HLA-DQ. Karosiene E, Rasmussen M, Blicher T, Lund O, Buus S, Nielsen M. Immunogenetics 65 711-724 (2013)
  2. HLA-DQA1-HLA-DRB1 variants confer susceptibility to pancreatitis induced by thiopurine immunosuppressants. Heap GA, Weedon MN, Bewshea CM, Singh A, Chen M, Satchwell JB, Vivian JP, So K, Dubois PC, Andrews JM, Annese V, Bampton P, Barnardo M, Bell S, Cole A, Connor SJ, Creed T, Cummings FR, D'Amato M, Daneshmend TK, Fedorak RN, Florin TH, Gaya DR, Greig E, Halfvarson J, Hart A, Irving PM, Jones G, Karban A, Lawrance IC, Lee JC, Lees C, Lev-Tzion R, Lindsay JO, Mansfield J, Mawdsley J, Mazhar Z, Parkes M, Parnell K, Orchard TR, Radford-Smith G, Russell RK, Reffitt D, Satsangi J, Silverberg MS, Sturniolo GC, Tremelling M, Tsianos EV, van Heel DA, Walsh A, Watermeyer G, Weersma RK, Zeissig S, Rossjohn J, Holden AL, International Serious Adverse Events Consortium, IBD Pharmacogenetics Study Group, Ahmad T. Nat Genet 46 1131-1134 (2014)
  3. Guidance on allergenicity assessment of genetically modified plants. EFSA Panel on Genetically Modified Organisms (GMO), Naegeli H, Birch AN, Casacuberta J, De Schrijver A, Gralak MA, Guerche P, Jones H, Manachini B, Messéan A, Nielsen EE, Nogué F, Robaglia C, Rostoks N, Sweet J, Tebbe C, Visioli F, Wal JM, Eigenmann P, Epstein M, Hoffmann-Sommergruber K, Koning F, Lovik M, Mills C, Moreno FJ, van Loveren H, Selb R, Fernandez Dumont A. EFSA J 15 e04862 (2017)
  4. Cell-surface MHC density profiling reveals instability of autoimmunity-associated HLA. Miyadera H, Ohashi J, Lernmark Å, Kitamura T, Tokunaga K. J Clin Invest 125 275-291 (2015)
  5. Structural and functional studies of trans-encoded HLA-DQ2.3 (DQA1*03:01/DQB1*02:01) protein molecule. Tollefsen S, Hotta K, Chen X, Simonsen B, Swaminathan K, Mathews II, Sollid LM, Kim CY. J Biol Chem 287 13611-13619 (2012)
  6. PREDIVAC: CD4+ T-cell epitope prediction for vaccine design that covers 95% of HLA class II DR protein diversity. Oyarzún P, Ellis JJ, Bodén M, Kobe B. BMC Bioinformatics 14 52 (2013)
  7. Combination of In Silico Methods in the Search for Potential CD4(+) and CD8(+) T Cell Epitopes in the Proteome of Leishmania braziliensis. E Silva Rde F, Ferreira LF, Hernandes MZ, de Brito ME, de Oliveira BC, da Silva AA, de-Melo-Neto OP, Rezende AM, Pereira VR. Front Immunol 7 327 (2016)
  8. Antigen Targeting to Human HLA Class II Molecules Increases Efficacy of DNA Vaccination. Grodeland G, Fredriksen AB, Løset GÅ, Vikse E, Fugger L, Bogen B. J Immunol 197 3575-3585 (2016)
  9. Towards universal structure-based prediction of class II MHC epitopes for diverse allotypes. Bordner AJ. PLoS One 5 e14383 (2010)
  10. Predicting Humoral Alloimmunity from Differences in Donor and Recipient HLA Surface Electrostatic Potential. Mallon DH, Kling C, Robb M, Ellinghaus E, Bradley JA, Taylor CJ, Kabelitz D, Kosmoliaptsis V. J Immunol 201 3780-3792 (2018)
  11. The production and crystallization of the human leukocyte antigen class II molecules HLA-DQ2 and HLA-DQ8 complexed with deamidated gliadin peptides implicated in coeliac disease. Henderson KN, Reid HH, Borg NA, Broughton SE, Huyton T, Anderson RP, McCluskey J, Rossjohn J. Acta Crystallogr Sect F Struct Biol Cryst Commun 63 1021-1025 (2007)
  12. Unraveling the structural basis for the unusually rich association of human leukocyte antigen DQ2.5 with class-II-associated invariant chain peptides. Nguyen TB, Jayaraman P, Bergseng E, Madhusudhan MS, Kim CY, Sollid LM. J Biol Chem 292 9218-9228 (2017)
  13. Effect of External Electric Field Stress on Gliadin Protein Conformation. Singh A, Munshi S, Raghavan V. Proteomes 1 25-39 (2013)
  14. Structural Perspective of Gliadin Peptides Active in Celiac Disease. Falcigno L, Calvanese L, Conte M, Nanayakkara M, Barone MV, D'Auria G. Int J Mol Sci 21 E9301 (2020)
  15. Structural Insights Into HLA-DM Mediated MHC II Peptide Exchange. Painter CA, Stern LJ. Curr Top Biochem Res 13 39-55 (2011)
  16. Amino acid signatures in the HLA class II peptide-binding region associated with protection/susceptibility to the severe West Nile Virus disease. Sarri CA, Papadopoulos GE, Papa A, Tsakris A, Pervanidou D, Baka A, Politis C, Billinis C, Hadjichristodoulou C, Mamuris Z, MALWEST project. PLoS One 13 e0205557 (2018)
  17. An automated framework for understanding structural variations in the binding grooves of MHC class II molecules. Yeturu K, Utriainen T, Kemp GJ, Chandra N. BMC Bioinformatics 11 Suppl 1 S55 (2010)
  18. Highly conserved hemagglutinin peptides of H1N1 influenza virus elicit immune response. Lohia N, Baranwal M. 3 Biotech 8 492 (2018)
  19. Transamidation Down-Regulates Intestinal Immunity of Recombinant α-Gliadin in HLA-DQ8 Transgenic Mice. Rossi S, Giordano D, Mazzeo MF, Maurano F, Luongo D, Facchiano A, Siciliano RA, Rossi M. Int J Mol Sci 22 7019 (2021)
  20. Amino acid polymorphisms in human histocompatibility leukocyte antigen class II and proinsulin epitope have impacts on type 1 diabetes mellitus induced by immune-checkpoint inhibitors. Inaba H, Morita S, Kosugi D, Asai Y, Kaido Y, Ito S, Hirobata T, Inoue G, Yamamoto Y, Jinnin M, Kimura H, Ota M, Okudaira Y, Nakatani H, Kobayashi T, Iwama S, Arima H, Matsuoka T. Front Immunol 14 1165004 (2023)
  21. Assessment of Novel Proteins Triggering Celiac Disease via Docking-Based Approach. Atanasova M, Dimitrov I, Fernandez A, Moreno J, Koning F, Doytchinova I. Molecules 29 138 (2023)
  22. Identification of CD4+ T cell epitopes from Staphylococcus aureus secretome using immunoinformatic prediction and molecular docking. Francis D, Kumar A, Chittalakkottu S. BioTechnologia (Pozn) 102 43-54 (2021)


Reviews citing this publication (40)

  1. Integration of genetic and immunological insights into a model of celiac disease pathogenesis. Abadie V, Sollid LM, Barreiro LB, Jabri B. Annu Rev Immunol 29 493-525 (2011)
  2. Nomenclature and listing of celiac disease relevant gluten T-cell epitopes restricted by HLA-DQ molecules. Sollid LM, Qiao SW, Anderson RP, Gianfrani C, Koning F. Immunogenetics 64 455-460 (2012)
  3. Gluten sensitivity: from gut to brain. Hadjivassiliou M, Sanders DS, Grünewald RA, Woodroofe N, Boscolo S, Aeschlimann D. Lancet Neurol 9 318-330 (2010)
  4. Tissue-mediated control of immunopathology in coeliac disease. Jabri B, Sollid LM. Nat Rev Immunol 9 858-870 (2009)
  5. IL-15: a central regulator of celiac disease immunopathology. Abadie V, Jabri B. Immunol Rev 260 221-234 (2014)
  6. HLA-DQA1 and HLA-DQB1 in Celiac disease predisposition: practical implications of the HLA molecular typing. Megiorni F, Pizzuti A. J Biomed Sci 19 88 (2012)
  7. Understanding the drivers of MHC restriction of T cell receptors. La Gruta NL, Gras S, Daley SR, Thomas PG, Rossjohn J. Nat Rev Immunol 18 467-478 (2018)
  8. Drug hypersensitivity and human leukocyte antigens of the major histocompatibility complex. Bharadwaj M, Illing P, Theodossis A, Purcell AW, Rossjohn J, McCluskey J. Annu Rev Pharmacol Toxicol 52 401-431 (2012)
  9. Celiac disease: how complicated can it get? Tjon JM, van Bergen J, Koning F. Immunogenetics 62 641-651 (2010)
  10. Celiac disease and transglutaminase 2: a model for posttranslational modification of antigens and HLA association in the pathogenesis of autoimmune disorders. Sollid LM, Jabri B. Curr Opin Immunol 23 732-738 (2011)
  11. The fidelity, occasional promiscuity, and versatility of T cell receptor recognition. Godfrey DI, Rossjohn J, McCluskey J. Immunity 28 304-314 (2008)
  12. Pathophysiology of celiac disease. Kupfer SS, Jabri B. Gastrointest Endosc Clin N Am 22 639-660 (2012)
  13. Structural basis for self-recognition by autoimmune T-cell receptors. Yin Y, Li Y, Mariuzza RA. Immunol Rev 250 32-48 (2012)
  14. Novel therapies for coeliac disease. Sollid LM, Khosla C. J Intern Med 269 604-613 (2011)
  15. Molecular mechanisms of HLA association with autoimmune diseases. Caillat-Zucman S. Tissue Antigens 73 1-8 (2009)
  16. The genetics of celiac disease: A comprehensive review of clinical implications. Dieli-Crimi R, Cénit MC, Núñez C. J Autoimmun 64 26-41 (2015)
  17. Post-translationally modified T cell epitopes: immune recognition and immunotherapy. Petersen J, Purcell AW, Rossjohn J. J Mol Med (Berl) 87 1045-1051 (2009)
  18. The adaptive immune response in celiac disease. Qiao SW, Iversen R, Ráki M, Sollid LM. Semin Immunopathol 34 523-540 (2012)
  19. Antigen presentation in celiac disease. Qiao SW, Sollid LM, Blumberg RS. Curr Opin Immunol 21 111-117 (2009)
  20. Coeliac disease and rheumatoid arthritis: similar mechanisms, different antigens. Koning F, Thomas R, Rossjohn J, Toes RE. Nat Rev Rheumatol 11 450-461 (2015)
  21. Celiac Disease: A Review of Current Concepts in Pathogenesis, Prevention, and Novel Therapies. Tye-Din JA, Galipeau HJ, Agardh D. Front Pediatr 6 350 (2018)
  22. The case for an autoimmune aetiology of type 1 diabetes. Mannering SI, Pathiraja V, Kay TW. Clin Exp Immunol 183 8-15 (2016)
  23. Innate immunity: actuating the gears of celiac disease pathogenesis. Kim SM, Mayassi T, Jabri B. Best Pract Res Clin Gastroenterol 29 425-435 (2015)
  24. Understanding the complexity and malleability of T-cell recognition. Miles JJ, McCluskey J, Rossjohn J, Gras S. Immunol Cell Biol 93 433-441 (2015)
  25. Celiac disease: quantity matters. Koning F. Semin Immunopathol 34 541-549 (2012)
  26. Coeliac disease: a unique model for investigating broken tolerance in autoimmunity. Hardy MY, Tye-Din JA. Clin Transl Immunology 5 e112 (2016)
  27. Therapeutic approaches for celiac disease. Plugis NM, Khosla C. Best Pract Res Clin Gastroenterol 29 503-521 (2015)
  28. Advances in the treatment of coeliac disease: an immunopathogenic perspective. Kaukinen K, Lindfors K, Mäki M. Nat Rev Gastroenterol Hepatol 11 36-44 (2014)
  29. On Peptides and Altered Peptide Ligands: From Origin, Mode of Action and Design to Clinical Application (Immunotherapy). Candia M, Kratzer B, Pickl WF. Int Arch Allergy Immunol 170 211-233 (2016)
  30. Coeliac disease: current approach and future prospects. Anderson RP. Intern Med J 38 790-799 (2008)
  31. Recent advances in coeliac disease. Armstrong MJ, Robins GG, Howdle PD. Curr Opin Gastroenterol 25 100-109 (2009)
  32. The versatility of the αβ T-cell antigen receptor. Bhati M, Cole DK, McCluskey J, Sewell AK, Rossjohn J. Protein Sci 23 260-272 (2014)
  33. Molecular Interactions Governing Autoantigen Presentation in Type 1 Diabetes. Nakayama M, Simmons KM, Michels AW. Curr Diab Rep 15 113 (2015)
  34. Does gluten cause gastrointestinal symptoms in subjects without coeliac disease? Newnham ED. J Gastroenterol Hepatol 26 Suppl 3 132-134 (2011)
  35. IL-17 producing T cells in celiac disease: angels or devils? Ortega C, Fernández S, Estévez OA, Aguado R, Molina IJ, Santamaría M. Int Rev Immunol 32 534-543 (2013)
  36. The Gluten Gene: Unlocking the Understanding of Gluten Sensitivity and Intolerance. Asri N, Rostami-Nejad M, Anderson RP, Rostami K. Appl Clin Genet 14 37-50 (2021)
  37. The immunopathogenesis of celiac disease reveals possible therapies beyond the gluten-free diet. McAllister CS, Kagnoff MF. Semin Immunopathol 34 581-600 (2012)
  38. IL-17 and limits of success. Omidian Z, Ahmed R, Giwa A, Donner T, Hamad ARA. Cell Immunol 339 33-40 (2019)
  39. The epitopes in wheat proteins for defining toxic units relevant to human health. Juhász A, Gell G, Békés F, Balázs E. Funct Integr Genomics 12 585-598 (2012)
  40. Celiac disease: from etiological factors to evolving diagnostic approaches. Kaur A, Shimoni O, Wallach M. J Gastroenterol 52 1001-1012 (2017)

Articles citing this publication (53)

  1. Multiple common variants for celiac disease influencing immune gene expression. Dubois PC, Trynka G, Franke L, Hunt KA, Romanos J, Curtotti A, Zhernakova A, Heap GA, Adány R, Aromaa A, Bardella MT, van den Berg LH, Bockett NA, de la Concha EG, Dema B, Fehrmann RS, Fernández-Arquero M, Fiatal S, Grandone E, Green PM, Groen HJ, Gwilliam R, Houwen RH, Hunt SE, Kaukinen K, Kelleher D, Korponay-Szabo I, Kurppa K, MacMathuna P, Mäki M, Mazzilli MC, McCann OT, Mearin ML, Mein CA, Mirza MM, Mistry V, Mora B, Morley KI, Mulder CJ, Murray JA, Núñez C, Oosterom E, Ophoff RA, Polanco I, Peltonen L, Platteel M, Rybak A, Salomaa V, Schweizer JJ, Sperandeo MP, Tack GJ, Turner G, Veldink JH, Verbeek WH, Weersma RK, Wolters VM, Urcelay E, Cukrowska B, Greco L, Neuhausen SL, McManus R, Barisani D, Deloukas P, Barrett JC, Saavalainen P, Wijmenga C, van Heel DA. Nat Genet 42 295-302 (2010)
  2. Gluten causes gastrointestinal symptoms in subjects without celiac disease: a double-blind randomized placebo-controlled trial. Biesiekierski JR, Newnham ED, Irving PM, Barrett JS, Haines M, Doecke JD, Shepherd SJ, Muir JG, Gibson PR. Am J Gastroenterol 106 508-14; quiz 515 (2011)
  3. A molecular basis for the association of the HLA-DRB1 locus, citrullination, and rheumatoid arthritis. Scally SW, Petersen J, Law SC, Dudek NL, Nel HJ, Loh KL, Wijeyewickrema LC, Eckle SB, van Heemst J, Pike RN, McCluskey J, Toes RE, La Gruta NL, Purcell AW, Reid HH, Thomas R, Rossjohn J. J Exp Med 210 2569-2582 (2013)
  4. Human leukocyte antigen class I-restricted activation of CD8+ T cells provides the immunogenetic basis of a systemic drug hypersensitivity. Chessman D, Kostenko L, Lethborg T, Purcell AW, Williamson NA, Chen Z, Kjer-Nielsen L, Mifsud NA, Tait BD, Holdsworth R, Almeida CA, Nolan D, Macdonald WA, Archbold JK, Kellerher AD, Marriott D, Mallal S, Bharadwaj M, Rossjohn J, McCluskey J. Immunity 28 822-832 (2008)
  5. Citrullinated peptide dendritic cell immunotherapy in HLA risk genotype-positive rheumatoid arthritis patients. Benham H, Nel HJ, Law SC, Mehdi AM, Street S, Ramnoruth N, Pahau H, Lee BT, Ng J, Brunck ME, Hyde C, Trouw LA, Dudek NL, Purcell AW, O'Sullivan BJ, Connolly JE, Paul SK, Lê Cao KA, Thomas R. Sci Transl Med 7 290ra87 (2015)
  6. T-cell receptor recognition of HLA-DQ2-gliadin complexes associated with celiac disease. Petersen J, Montserrat V, Mujico JR, Loh KL, Beringer DX, van Lummel M, Thompson A, Mearin ML, Schweizer J, Kooy-Winkelaar Y, van Bergen J, Drijfhout JW, Kan WT, La Gruta NL, Anderson RP, Reid HH, Koning F, Rossjohn J. Nat Struct Mol Biol 21 480-488 (2014)
  7. Biased T cell receptor usage directed against human leukocyte antigen DQ8-restricted gliadin peptides is associated with celiac disease. Broughton SE, Petersen J, Theodossis A, Scally SW, Loh KL, Thompson A, van Bergen J, Kooy-Winkelaar Y, Henderson KN, Beddoe T, Tye-Din JA, Mannering SI, Purcell AW, McCluskey J, Anderson RP, Koning F, Reid HH, Rossjohn J. Immunity 37 611-621 (2012)
  8. Differences in the risk of celiac disease associated with HLA-DQ2.5 or HLA-DQ2.2 are related to sustained gluten antigen presentation. Fallang LE, Bergseng E, Hotta K, Berg-Larsen A, Kim CY, Sollid LM. Nat Immunol 10 1096-1101 (2009)
  9. HLA-DQ and risk gradient for celiac disease. Megiorni F, Mora B, Bonamico M, Barbato M, Nenna R, Maiella G, Lulli P, Mazzilli MC. Hum Immunol 70 55-59 (2009)
  10. The role of HLA-DQ8 beta57 polymorphism in the anti-gluten T-cell response in coeliac disease. Hovhannisyan Z, Weiss A, Martin A, Wiesner M, Tollefsen S, Yoshida K, Ciszewski C, Curran SA, Murray JA, David CS, Sollid LM, Koning F, Teyton L, Jabri B. Nature 456 534-538 (2008)
  11. Accurate and robust genomic prediction of celiac disease using statistical learning. Abraham G, Tye-Din JA, Bhalala OG, Kowalczyk A, Zobel J, Inouye M. PLoS Genet 10 e1004137 (2014)
  12. A novel serogenetic approach determines the community prevalence of celiac disease and informs improved diagnostic pathways. Anderson RP, Henry MJ, Taylor R, Duncan EL, Danoy P, Costa MJ, Addison K, Tye-Din JA, Kotowicz MA, Knight RE, Pollock W, Nicholson GC, Toh BH, Brown MA, Pasco JA. BMC Med 11 188 (2013)
  13. Large-scale characterization of natural ligands explains the unique gluten-binding properties of HLA-DQ2. Stepniak D, Wiesner M, de Ru AH, Moustakas AK, Drijfhout JW, Papadopoulos GK, van Veelen PA, Koning F. J Immunol 180 3268-3278 (2008)
  14. T-cell response to gluten in patients with HLA-DQ2.2 reveals requirement of peptide-MHC stability in celiac disease. Bodd M, Kim CY, Lundin KE, Sollid LM. Gastroenterology 142 552-561 (2012)
  15. The interplay between citrullination and HLA-DRB1 polymorphism in shaping peptide binding hierarchies in rheumatoid arthritis. Ting YT, Petersen J, Ramarathinam SH, Scally SW, Loh KL, Thomas R, Suri A, Baker DG, Purcell AW, Reid HH, Rossjohn J. J Biol Chem 293 3236-3251 (2018)
  16. Human leukocyte antigen class II associations with hepatitis C virus clearance and virus-specific CD4 T cell response among Caucasians and African Americans. Harris RA, Sugimoto K, Kaplan DE, Ikeda F, Kamoun M, Chang KM. Hepatology 48 70-79 (2008)
  17. Letter A subset of HLA-DP molecules serve as ligands for the natural cytotoxicity receptor NKp44. Niehrs A, Garcia-Beltran WF, Norman PJ, Watson GM, Hölzemer A, Chapel A, Richert L, Pommerening-Röser A, Körner C, Ozawa M, Martrus G, Rossjohn J, Lee JH, Berry R, Carrington M, Altfeld M. Nat Immunol 20 1129-1137 (2019)
  18. T cell receptor cross-reactivity between gliadin and bacterial peptides in celiac disease. Petersen J, Ciacchi L, Tran MT, Loh KL, Kooy-Winkelaar Y, Croft NP, Hardy MY, Chen Z, McCluskey J, Anderson RP, Purcell AW, Tye-Din JA, Koning F, Reid HH, Rossjohn J. Nat Struct Mol Biol 27 49-61 (2020)
  19. The cellular redox environment alters antigen presentation. Trujillo JA, Croft NP, Dudek NL, Channappanavar R, Theodossis A, Webb AI, Dunstone MA, Illing PT, Butler NS, Fett C, Tscharke DC, Rossjohn J, Perlman S, Purcell AW. J Biol Chem 289 27979-27991 (2014)
  20. The copolymer P(HEMA-co-SS) binds gluten and reduces immune response in gluten-sensitized mice and human tissues. Pinier M, Fuhrmann G, Galipeau HJ, Rivard N, Murray JA, David CS, Drasarova H, Tuckova L, Leroux JC, Verdu EF. Gastroenterology 142 316-25.e1-12 (2012)
  21. Gluten-specific T cells cross-react between HLA-DQ8 and the HLA-DQ2α/DQ8β transdimer. Kooy-Winkelaar Y, van Lummel M, Moustakas AK, Schweizer J, Mearin ML, Mulder CJ, Roep BO, Drijfhout JW, Papadopoulos GK, van Bergen J, Koning F. J Immunol 187 5123-5129 (2011)
  22. A molecular basis for the T cell response in HLA-DQ2.2 mediated celiac disease. Ting YT, Dahal-Koirala S, Kim HSK, Qiao SW, Neumann RS, Lundin KEA, Petersen J, Reid HH, Sollid LM, Rossjohn J. Proc Natl Acad Sci U S A 117 3063-3073 (2020)
  23. Determinants of gliadin-specific T cell selection in celiac disease. Petersen J, van Bergen J, Loh KL, Kooy-Winkelaar Y, Beringer DX, Thompson A, Bakker SF, Mulder CJ, Ladell K, McLaren JE, Price DA, Rossjohn J, Reid HH, Koning F. J Immunol 194 6112-6122 (2015)
  24. Celiac disease T-cell epitopes from gamma-gliadins: immunoreactivity depends on the genome of origin, transcript frequency, and flanking protein variation. Salentijn EM, Mitea DC, Goryunova SV, van der Meer IM, Padioleau I, Gilissen LJ, Koning F, Smulders MJ. BMC Genomics 13 277 (2012)
  25. Influence of HLA-DQ2 and DQ8 on severity in celiac Disease. Biagi F, Bianchi PI, Vattiato C, Marchese A, Trotta L, Badulli C, De Silvestri A, Martinetti M, Corazza GR. J Clin Gastroenterol 46 46-50 (2012)
  26. Prediction of HLA-DQ8beta cell peptidome using a computational program and its relationship to autoreactive T cells. Chang KY, Unanue ER. Int Immunol 21 705-713 (2009)
  27. No evidence of circulating autoantibodies against osteoprotegerin in patients with celiac disease. Larussa T, Suraci E, Nazionale I, Leone I, Montalcini T, Abenavoli L, Imeneo M, Pujia A, Luzza F. World J Gastroenterol 18 1622-1627 (2012)
  28. Appropriate clinical use of human leukocyte antigen typing for coeliac disease: an Australasian perspective. Tye-Din JA, Cameron DJ, Daveson AJ, Day AS, Dellsperger P, Hogan C, Newnham ED, Shepherd SJ, Steele RH, Wienholt L, Varney MD. Intern Med J 45 441-450 (2015)
  29. Quantitative and qualitative differences in celiac disease epitopes among durum wheat varieties identified through deep RNA-amplicon sequencing. Salentijn EM, Esselink DG, Goryunova SV, van der Meer IM, Gilissen LJ, Smulders MJ. BMC Genomics 14 905 (2013)
  30. HLA-DQ genotyping combined with serological markers for the diagnosis of celiac disease: is intestinal biopsy still mandatory? Clouzeau-Girard H, Rebouissoux L, Taupin JL, Le Bail B, Kalach N, Michaud L, Dabadie A, Olives JP, Blanco P, Morali A, Moreau JF, Lamireau T. J Pediatr Gastroenterol Nutr 52 729-733 (2011)
  31. The molecular basis for peptide repertoire selection in the human leucocyte antigen (HLA) C*06:02 molecule. Mobbs JI, Illing PT, Dudek NL, Brooks AG, Baker DG, Purcell AW, Rossjohn J, Vivian JP. J Biol Chem 292 17203-17215 (2017)
  32. Identification of Native and Posttranslationally Modified HLA-B*57:01-Restricted HIV Envelope Derived Epitopes Using Immunoproteomics. Ramarathinam SH, Gras S, Alcantara S, Yeung AWS, Mifsud NA, Sonza S, Illing PT, Glaros EN, Center RJ, Thomas SR, Kent SJ, Ternette N, Purcell DFJ, Rossjohn J, Purcell AW. Proteomics 18 e1700253 (2018)
  33. Immunopathogenesis of celiac disease. Tye-Din J, Anderson R. Curr Gastroenterol Rep 10 458-465 (2008)
  34. Society for the Study of Celiac Disease position statement on gaps and opportunities in coeliac disease. Pinto-Sanchez MI, Silvester JA, Lebwohl B, Leffler DA, Anderson RP, Therrien A, Kelly CP, Verdu EF. Nat Rev Gastroenterol Hepatol 18 875-884 (2021)
  35. Structural basis for the specific recognition of the major antigenic peptide from the Japanese cedar pollen allergen Cry j 1 by HLA-DP5. Kusano S, Kukimoto-Niino M, Satta Y, Ohsawa N, Uchikubo-Kamo T, Wakiyama M, Ikeda M, Terada T, Yamamoto K, Nishimura Y, Shirouzu M, Sasazuki T, Yokoyama S. J Mol Biol 426 3016-3027 (2014)
  36. T cell receptor recognition of hybrid insulin peptides bound to HLA-DQ8. Tran MT, Faridi P, Lim JJ, Ting YT, Onwukwe G, Bhattacharjee P, Jones CM, Tresoldi E, Cameron FJ, La Gruta NL, Purcell AW, Mannering SI, Rossjohn J, Reid HH. Nat Commun 12 5110 (2021)
  37. Efficient chemo-enzymatic gluten detoxification: reducing toxic epitopes for celiac patients improving functional properties. Ribeiro M, Nunes FM, Guedes S, Domingues P, Silva AM, Carrillo JM, Rodriguez-Quijano M, Branlard G, Igrejas G. Sci Rep 5 18041 (2015)
  38. research-article Gluten measurement and its relationship to food toxicity for celiac disease patients. Lester DR. Plant Methods 4 26 (2008)
  39. HLA Typing and Celiac Disease in Moroccans. Piancatelli D, Ben El Barhdadi I, Oumhani K, Sebastiani P, Colanardi A, Essaid A. Med Sci (Basel) 5 E2 (2017)
  40. Exploring T cell reactivity to gliadin in young children with newly diagnosed celiac disease. Liu E, McDaniel K, Case S, Yu L, Gerhartz B, Ostermann N, Fankhauser G, Hungerford V, Zou C, Luyten M, Seidl KJ, Michels AW. Autoimmune Dis 2014 927190 (2014)
  41. Despite sequence homologies to gluten, salivary proline-rich proteins do not elicit immune responses central to the pathogenesis of celiac disease. Tian N, Leffler DA, Kelly CP, Hansen J, Marietta EV, Murray JA, Schuppan D, Helmerhorst EJ. Am J Physiol Gastrointest Liver Physiol 309 G910-7 (2015)
  42. Structural insights on P31-43, a gliadin peptide able to promote an innate but not an adaptive response in celiac disease. Calvanese L, Nanayakkara M, Aitoro R, Sanseverino M, Tornesello AL, Falcigno L, D'Auria G, Barone MV. J Pept Sci 25 e3161 (2019)
  43. Genome-wide genetic and transcriptomic investigation of variation in antibody response to dietary antigens. Rubicz R, Yolken R, Alaedini A, Drigalenko E, Charlesworth JC, Carless MA, Severance EG, Krivogorsky B, Dyer TD, Kent JW, Curran JE, Johnson MP, Cole SA, Almasy L, Moses EK, Blangero J, Göring HH. Genet Epidemiol 38 439-446 (2014)
  44. Immunogenetics of three novel HLA-Class II alleles: DRB1*03:112, DQB1*03:02:16 and DQB1*03:139. Street J, Johnson J, Lemin AJ, Harvey C, Darke C. Int J Immunogenet 43 40-44 (2016)
  45. Questionable expression of unstable DQ heterodimer containing HLA-DQA1*01:07. Miyadera H, Bungener LB, Kusano S, Yokoyama S, Tokunaga K, Hepkema BG. Tissue Antigens 86 413-418 (2015)
  46. Risk variation in celiac disease in a population from Southern Spain: evaluating the influence of the DQB1*02:02 allele frequency. Cabrera CM, Méndez-López IM, Caballero A. Scand J Gastroenterol 53 266-272 (2018)
  47. Development of a Sequence Searchable Database of Celiac Disease-Associated Peptides and Proteins for Risk Assessment of Novel Food Proteins. Amnuaycheewa P, Abdelmoteleb M, Wise J, Bohle B, Ferreira F, Tetteh AO, Taylor SL, Goodman RE. Front Allergy 3 900573 (2022)
  48. Glutamine deamidation does not increase the immunogenicity of C-peptide in people with type 1 diabetes. Foster A, Bhattacharjee P, Tresoldi E, Pakusch M, Cameron FJ, Mannering SI. J Transl Autoimmun 6 100180 (2023)
  49. HLA-DQ Typing Kits in Diagnosis and Screening for Celiac Disease. Rouvroye MD, van Zijtveld S, Bonnet P, Spierings E, Bontkes HJ. Genet Test Mol Biomarkers 23 418-422 (2019)
  50. Structural basis of T cell receptor specificity and cross-reactivity of two HLA-DQ2.5-restricted gluten epitopes in celiac disease. Ciacchi L, Farenc C, Dahal-Koirala S, Petersen J, Sollid LM, Reid HH, Rossjohn J. J Biol Chem 298 101619 (2022)
  51. A combination of HLA-DP α and β chain polymorphisms paired with a SNP in the DPB1 3' UTR region, denoting expression levels, are associated with atopic dermatitis. Margolis DJ, Duke JL, Mitra N, Berna RA, Hoffstad OJ, Wasserman JR, Dinou A, Damianos G, Kotsopoulou I, Tairis N, Ferriola DA, Mosbruger TL, Hayeck TJ, Yan AC, Monos DS. Front Genet 14 1004138 (2023)
  52. Computational Alanine Scanning Reveals Common Features of TCR/pMHC Recognition in HLA-DQ8-Associated Celiac Disease. Qiu L, Song J, Zhang JZH. Methods Mol Biol 2385 293-312 (2022)
  53. TRAV26-2 T-Cell Receptor Expression Is Associated With Mucosal Lymphocyte Response to Wheat Proteins in Patients With Functional Dyspepsia. Burns GL, Potter M, Mathe A, Bruce J, Minahan K, Barnes JL, Pryor J, Nieva C, Sherwin S, Cuskelly A, Fairlie T, Cameron R, Bollipo S, Irani MZ, Foster R, Gan LT, Shah A, Koloski N, Foster PS, Horvat JC, Walker MM, Powell N, Veysey M, Duncanson K, Holtmann G, Talley NJ, Keely S. Clin Transl Gastroenterol 14 e00638 (2023)