2n3w Citations

Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome.

Abstract

Hundreds of pathways for degradation converge at ubiquitin recognition by a proteasome. Here, we found that the five known proteasomal ubiquitin receptors in yeast are collectively nonessential for ubiquitin recognition and identified a sixth receptor, Rpn1. A site ( T1: ) in the Rpn1 toroid recognized ubiquitin and ubiquitin-like ( UBL: ) domains of substrate shuttling factors. T1 structures with monoubiquitin or lysine 48 diubiquitin show three neighboring outer helices engaging two ubiquitins. T1 contributes a distinct substrate-binding pathway with preference for lysine 48-linked chains. Proximal to T1 within the Rpn1 toroid is a second UBL-binding site ( T2: ) that assists in ubiquitin chain disassembly, by binding the UBL of deubiquitinating enzyme Ubp6. Thus, a two-site recognition domain intrinsic to the proteasome uses distinct ubiquitin-fold ligands to assemble substrates, shuttling factors, and a deubiquitinating enzyme.

Articles - 2n3w mentioned but not cited (3)

  1. Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome. Shi Y, Chen X, Elsasser S, Stocks BB, Tian G, Lee BH, Shi Y, Zhang N, de Poot SA, Tuebing F, Sun S, Vannoy J, Tarasov SG, Engen JR, Finley D, Walters KJ. Science 351 aad9421 (2016)
  2. An Extended Conformation for K48 Ubiquitin Chains Revealed by the hRpn2:Rpn13:K48-Diubiquitin Structure. Lu X, Ebelle DL, Matsuo H, Walters KJ. Structure 28 495-506.e3 (2020)
  3. A novel recognition site for polyubiquitin and ubiquitin-like signals in an unexpected region of proteasomal subunit Rpn1. Boughton AJ, Liu L, Lavy T, Kleifeld O, Fushman D. J Biol Chem 297 101052 (2021)


Reviews citing this publication (51)

  1. Structure and Function of the 26S Proteasome. Bard JAM, Goodall EA, Greene ER, Jonsson E, Dong KC, Martin A. Annu Rev Biochem 87 697-724 (2018)
  2. Breaking the chains: deubiquitylating enzyme specificity begets function. Clague MJ, Urbé S, Komander D. Nat Rev Mol Cell Biol 20 338-352 (2019)
  3. Regulation of proteasome assembly and activity in health and disease. Rousseau A, Bertolotti A. Nat Rev Mol Cell Biol 19 697-712 (2018)
  4. Proteasome Structure and Assembly. Budenholzer L, Cheng CL, Li Y, Hochstrasser M. J Mol Biol 429 3500-3524 (2017)
  5. The life cycle of the 26S proteasome: from birth, through regulation and function, and onto its death. Livneh I, Cohen-Kaplan V, Cohen-Rosenzweig C, Avni N, Ciechanover A. Cell Res 26 869-885 (2016)
  6. Dynamic Regulation of the 26S Proteasome: From Synthesis to Degradation. Marshall RS, Vierstra RD. Front Mol Biosci 6 40 (2019)
  7. Recognition of Client Proteins by the Proteasome. Yu H, Matouschek A. Annu Rev Biophys 46 149-173 (2017)
  8. Reversible phosphorylation of the 26S proteasome. Guo X, Huang X, Chen MJ. Protein Cell 8 255-272 (2017)
  9. Regulation of Proteasome Activity by (Post-)transcriptional Mechanisms. Kors S, Geijtenbeek K, Reits E, Schipper-Krom S. Front Mol Biosci 6 48 (2019)
  10. The Proteasome and Its Network: Engineering for Adaptability. Finley D, Prado MA. Cold Spring Harb Perspect Biol 12 a033985 (2020)
  11. Interplay Between the Autophagy-Lysosomal Pathway and the Ubiquitin-Proteasome System: A Target for Therapeutic Development in Alzheimer's Disease. Bustamante HA, González AE, Cerda-Troncoso C, Shaughnessy R, Otth C, Soza A, Burgos PV. Front Cell Neurosci 12 126 (2018)
  12. Dynamic Regulation of Proteasome Expression. Motosugi R, Murata S. Front Mol Biosci 6 30 (2019)
  13. Understanding the 26S proteasome molecular machine from a structural and conformational dynamics perspective. Greene ER, Dong KC, Martin A. Curr Opin Struct Biol 61 33-41 (2020)
  14. AAA-ATPases in Protein Degradation. Yedidi RS, Wendler P, Enenkel C. Front Mol Biosci 4 42 (2017)
  15. Mechanisms of substrate recognition by the 26S proteasome. Davis C, Spaller BL, Matouschek A. Curr Opin Struct Biol 67 161-169 (2021)
  16. Roles of ubiquitin in autophagy and cell death. Gómez-Díaz C, Ikeda F. Semin Cell Dev Biol 93 125-135 (2019)
  17. Monoubiquitination joins polyubiquitination as an esteemed proteasomal targeting signal. Livneh I, Kravtsova-Ivantsiv Y, Braten O, Kwon YT, Ciechanover A. Bioessays 39 (2017)
  18. USP14: Structure, Function, and Target Inhibition. Wang F, Ning S, Yu B, Wang Y. Front Pharmacol 12 801328 (2021)
  19. AAA+ ATPases in Protein Degradation: Structures, Functions and Mechanisms. Zhang S, Mao Y. Biomolecules 10 E629 (2020)
  20. Deubiquitination Reactions on the Proteasome for Proteasome Versatility. Shin JY, Muniyappan S, Tran NN, Park H, Lee SB, Lee BH. Int J Mol Sci 21 E5312 (2020)
  21. Substrate selection by the proteasome through initiation regions. Tomita T, Matouschek A. Protein Sci 28 1222-1232 (2019)
  22. Complementarity of Hydrogen/Deuterium Exchange Mass Spectrometry and Cryo-Electron Microscopy. Engen JR, Komives EA. Trends Biochem Sci 45 906-918 (2020)
  23. Proteasome interaction with ubiquitinated substrates: from mechanisms to therapies. Chen X, Htet ZM, López-Alfonzo E, Martin A, Walters KJ. FEBS J 288 5231-5251 (2021)
  24. Nuclear Transport of Yeast Proteasomes. Wendler P, Enenkel C. Front Mol Biosci 6 34 (2019)
  25. Proteasome in action: substrate degradation by the 26S proteasome. Sahu I, Glickman MH. Biochem Soc Trans 49 629-644 (2021)
  26. Transcriptional regulation of the 26S proteasome by Nrf1. Koizumi S, Hamazaki J, Murata S. Proc Jpn Acad Ser B Phys Biol Sci 94 325-336 (2018)
  27. Co-Chaperones in Targeting and Delivery of Misfolded Proteins to the 26S Proteasome. Abildgaard AB, Gersing SK, Larsen-Ledet S, Nielsen SV, Stein A, Lindorff-Larsen K, Hartmann-Petersen R. Biomolecules 10 E1141 (2020)
  28. The proteasome and its role in the nervous system. Türker F, Cook EK, Margolis SS. Cell Chem Biol 28 903-917 (2021)
  29. Immunoproteasome Function in Normal and Malignant Hematopoiesis. Tubío-Santamaría N, Ebstein F, Heidel FH, Krüger E. Cells 10 1577 (2021)
  30. Proteasome dynamics between proliferation and quiescence stages of Saccharomyces cerevisiae. Yedidi RS, Fatehi AK, Enenkel C. Crit Rev Biochem Mol Biol 51 497-512 (2016)
  31. Tuning the proteasome to brighten the end of the journey. Mayor T, Sharon M, Glickman MH. Am J Physiol Cell Physiol 311 C793-C804 (2016)
  32. Interactions of the super complexes: When mTORC1 meets the proteasome. Adegoke OAJ, Beatty BE, Kimball SR, Wing SS. Int J Biochem Cell Biol 117 105638 (2019)
  33. Substrate receptors of proteasomes. Jiang TX, Zhao M, Qiu XB. Biol Rev Camb Philos Soc 93 1765-1777 (2018)
  34. UBQLN proteins in health and disease with a focus on UBQLN2 in ALS/FTD. Lin BC, Higgins NR, Phung TH, Monteiro MJ. FEBS J 289 6132-6153 (2022)
  35. Mechanisms Regulating the UPS-ALS Crosstalk: The Role of Proteaphagy. Quinet G, Gonzalez-Santamarta M, Louche C, Rodriguez MS. Molecules 25 E2352 (2020)
  36. Mechanisms That Activate 26S Proteasomes and Enhance Protein Degradation. Goldberg AL, Kim HT, Lee D, Collins GA. Biomolecules 11 779 (2021)
  37. Deubiquitylating enzymes in neuronal health and disease. Amer-Sarsour F, Kordonsky A, Berdichevsky Y, Prag G, Ashkenazi A. Cell Death Dis 12 120 (2021)
  38. How the 26S Proteasome Degrades Ubiquitinated Proteins in the Cell. Coll-Martínez B, Crosas B. Biomolecules 9 E395 (2019)
  39. Functional Differences between Proteasome Subtypes. Abi Habib J, Lesenfants J, Vigneron N, Van den Eynde BJ. Cells 11 421 (2022)
  40. Small-Molecule Inhibitors of the Proteasome's Regulatory Particle. Muli CS, Tian W, Trader DJ. Chembiochem 20 1739-1753 (2019)
  41. Cdk8 Kinase Module: A Mediator of Life and Death Decisions in Times of Stress. Friedson B, Cooper KF. Microorganisms 9 2152 (2021)
  42. Multi-Step Ubiquitin Decoding Mechanism for Proteasomal Degradation. Tsuchiya H, Endo A, Saeki Y. Pharmaceuticals (Basel) 13 E128 (2020)
  43. Proteostasis in aging-associated ocular disease. Weinberg J, Gaur M, Swaroop A, Taylor A. Mol Aspects Med 88 101157 (2022)
  44. Proteasome Biology: Chemistry and Bioengineering Insights. Račková L, Csekes E. Polymers (Basel) 12 E2909 (2020)
  45. Proteasome substrate receptors and their therapeutic potential. Osei-Amponsa V, Walters KJ. Trends Biochem Sci 47 950-964 (2022)
  46. Research Progress of DUB Enzyme in Hepatocellular Carcinoma. Zhao J, Guo J, Wang Y, Ma Q, Shi Y, Cheng F, Lu Q, Fu W, Ouyang G, Zhang J, Xu Q, Hu X. Front Oncol 12 920287 (2022)
  47. Targeting ubiquitin specific proteases (USPs) in cancer immunotherapy: from basic research to preclinical application. Gao H, Yin J, Ji C, Yu X, Xue J, Guan X, Zhang S, Liu X, Xing F. J Exp Clin Cancer Res 42 225 (2023)
  48. The Ubiquitin-26S Proteasome Pathway and Its Role in the Ripening of Fleshy Fruits. Jia W, Liu G, Zhang P, Li H, Peng Z, Wang Y, Jemrić T, Fu D. Int J Mol Sci 24 2750 (2023)
  49. To Kill or to Be Killed: How Does the Battle between the UPS and Autophagy Maintain the Intracellular Homeostasis in Eukaryotes? Yu P, Hua Z. Int J Mol Sci 24 2221 (2023)
  50. Ubiquitin-Dependent and Independent Proteasomal Degradation in Host-Pathogen Interactions. Bialek W, Collawn JF, Bartoszewski R. Molecules 28 6740 (2023)
  51. Wiggle and Shake: Managing and Exploiting Conformational Dynamics during Proteasome Biogenesis. Betancourt D, Lawal T, Tomko RJ. Biomolecules 13 1223 (2023)

Articles citing this publication (84)

  1. Cryo-EM structures and dynamics of substrate-engaged human 26S proteasome. Dong Y, Zhang S, Wu Z, Li X, Wang WL, Zhu Y, Stoilova-McPhie S, Lu Y, Finley D, Mao Y. Nature 565 49-55 (2019)
  2. Structure of the human 26S proteasome at a resolution of 3.9 Å. Schweitzer A, Aufderheide A, Rudack T, Beck F, Pfeifer G, Plitzko JM, Sakata E, Schulten K, Förster F, Baumeister W. Proc Natl Acad Sci U S A 113 7816-7821 (2016)
  3. Structural insights into the functional cycle of the ATPase module of the 26S proteasome. Wehmer M, Rudack T, Beck F, Aufderheide A, Pfeifer G, Plitzko JM, Förster F, Schulten K, Baumeister W, Sakata E. Proc Natl Acad Sci U S A 114 1305-1310 (2017)
  4. Autophagic Turnover of Inactive 26S Proteasomes in Yeast Is Directed by the Ubiquitin Receptor Cue5 and the Hsp42 Chaperone. Marshall RS, McLoughlin F, Vierstra RD. Cell Rep 16 1717-1732 (2016)
  5. Dual RING E3 Architectures Regulate Multiubiquitination and Ubiquitin Chain Elongation by APC/C. Brown NG, VanderLinden R, Watson ER, Weissmann F, Ordureau A, Wu KP, Zhang W, Yu S, Mercredi PY, Harrison JS, Davidson IF, Qiao R, Lu Y, Dube P, Brunner MR, Grace CRR, Miller DJ, Haselbach D, Jarvis MA, Yamaguchi M, Yanishevski D, Petzold G, Sidhu SS, Kuhlman B, Kirschner MW, Harper JW, Peters JM, Stark H, Schulman BA. Cell 165 1440-1453 (2016)
  6. Ubiquitin Linkage-Specific Affimers Reveal Insights into K6-Linked Ubiquitin Signaling. Michel MA, Swatek KN, Hospenthal MK, Komander D. Mol Cell 68 233-246.e5 (2017)
  7. Molecular Details Underlying Dynamic Structures and Regulation of the Human 26S Proteasome. Wang X, Cimermancic P, Yu C, Schweitzer A, Chopra N, Engel JL, Greenberg C, Huszagh AS, Beck F, Sakata E, Yang Y, Novitsky EJ, Leitner A, Nanni P, Kahraman A, Guo X, Dixon JE, Rychnovsky SD, Aebersold R, Baumeister W, Sali A, Huang L. Mol Cell Proteomics 16 840-854 (2017)
  8. The 26S Proteasome Utilizes a Kinetic Gateway to Prioritize Substrate Degradation. Bard JAM, Bashore C, Dong KC, Martin A. Cell 177 286-298.e15 (2019)
  9. The proteasome 19S cap and its ubiquitin receptors provide a versatile recognition platform for substrates. Martinez-Fonts K, Davis C, Tomita T, Elsasser S, Nager AR, Shi Y, Finley D, Matouschek A. Nat Commun 11 477 (2020)
  10. Structure of the Rpn13-Rpn2 complex provides insights for Rpn13 and Uch37 as anticancer targets. Lu X, Nowicka U, Sridharan V, Liu F, Randles L, Hymel D, Dyba M, Tarasov SG, Tarasova NI, Zhao XZ, Hamazaki J, Murata S, Burke TR, Walters KJ. Nat Commun 8 15540 (2017)
  11. Structures of Rpn1 T1:Rad23 and hRpn13:hPLIC2 Reveal Distinct Binding Mechanisms between Substrate Receptors and Shuttle Factors of the Proteasome. Chen X, Randles L, Shi K, Tarasov SG, Aihara H, Walters KJ. Structure 24 1257-1270 (2016)
  12. Structure of the Cdc48 ATPase with its ubiquitin-binding cofactor Ufd1-Npl4. Bodnar NO, Kim KH, Ji Z, Wales TE, Svetlov V, Nudler E, Engen JR, Walz T, Rapoport TA. Nat Struct Mol Biol 25 616-622 (2018)
  13. The deubiquitinating enzyme Usp14 allosterically inhibits multiple proteasomal activities and ubiquitin-independent proteolysis. Kim HT, Goldberg AL. J Biol Chem 292 9830-9839 (2017)
  14. The proteasome as a druggable target with multiple therapeutic potentialities: Cutting and non-cutting edges. Tundo GR, Sbardella D, Santoro AM, Coletta A, Oddone F, Grasso G, Milardi D, Lacal PM, Marini S, Purrello R, Graziani G, Coletta M. Pharmacol Ther 213 107579 (2020)
  15. The Proteasome Ubiquitin Receptor hRpn13 and Its Interacting Deubiquitinating Enzyme Uch37 Are Required for Proper Cell Cycle Progression. Randles L, Anchoori RK, Roden RB, Walters KJ. J Biol Chem 291 8773-8783 (2016)
  16. Ubiquitin-like domains can target to the proteasome but proteolysis requires a disordered region. Yu H, Kago G, Yellman CM, Matouschek A. EMBO J 35 1522-1536 (2016)
  17. Conserved Sequence Preferences Contribute to Substrate Recognition by the Proteasome. Yu H, Singh Gautam AK, Wilmington SR, Wylie D, Martinez-Fonts K, Kago G, Warburton M, Chavali S, Inobe T, Finkelstein IJ, Babu MM, Matouschek A. J Biol Chem 291 14526-14539 (2016)
  18. UBL domain of Usp14 and other proteins stimulates proteasome activities and protein degradation in cells. Kim HT, Goldberg AL. Proc Natl Acad Sci U S A 115 E11642-E11650 (2018)
  19. A single MIU motif of MINDY-1 recognizes K48-linked polyubiquitin chains. Kristariyanto YA, Abdul Rehman SA, Weidlich S, Knebel A, Kulathu Y. EMBO Rep 18 392-402 (2017)
  20. TRIM11 activates the proteasome and promotes overall protein degradation by regulating USP14. Chen L, Zhu G, Johns EM, Yang X. Nat Commun 9 1223 (2018)
  21. Branching via K11 and K48 Bestows Ubiquitin Chains with a Unique Interdomain Interface and Enhanced Affinity for Proteasomal Subunit Rpn1. Boughton AJ, Krueger S, Fushman D. Structure 28 29-43.e6 (2020)
  22. Ddi1 is a ubiquitin-dependent protease. Yip MCJ, Bodnar NO, Rapoport TA. Proc Natl Acad Sci U S A 117 7776-7781 (2020)
  23. High-resolution cryo-EM structure of the proteasome in complex with ADP-AlFx. Ding Z, Fu Z, Xu C, Wang Y, Wang Y, Li J, Kong L, Chen J, Li N, Zhang R, Cong Y. Cell Res 27 373-385 (2017)
  24. Proteasome-Bound UCH37/UCHL5 Debranches Ubiquitin Chains to Promote Degradation. Deol KK, Crowe SO, Du J, Bisbee HA, Guenette RG, Strieter ER. Mol Cell 80 796-809.e9 (2020)
  25. Proteins containing ubiquitin-like (Ubl) domains not only bind to 26S proteasomes but also induce their activation. Collins GA, Goldberg AL. Proc Natl Acad Sci U S A 117 4664-4674 (2020)
  26. Characterization of Dynamic UbR-Proteasome Subcomplexes by In vivo Cross-linking (X) Assisted Bimolecular Tandem Affinity Purification (XBAP) and Label-free Quantitation. Yu C, Yang Y, Wang X, Guan S, Fang L, Liu F, Walters KJ, Kaiser P, Huang L. Mol Cell Proteomics 15 2279-2292 (2016)
  27. FMN reduces Amyloid-β toxicity in yeast by regulating redox status and cellular metabolism. Chen X, Ji B, Hao X, Li X, Eisele F, Nyström T, Petranovic D. Nat Commun 11 867 (2020)
  28. Ubiquilin1 promotes antigen-receptor mediated proliferation by eliminating mislocalized mitochondrial proteins. Whiteley AM, Prado MA, Peng I, Abbas AR, Haley B, Paulo JA, Reichelt M, Katakam A, Sagolla M, Modrusan Z, Lee DY, Roose-Girma M, Kirkpatrick DS, McKenzie BS, Gygi SP, Finley D, Brown EJ. Elife 6 e26435 (2017)
  29. Phosphorylation of the C-terminal tail of proteasome subunit α7 is required for binding of the proteasome quality control factor Ecm29. Wani PS, Suppahia A, Capalla X, Ondracek A, Roelofs J. Sci Rep 6 27873 (2016)
  30. Substrate Ubiquitination Controls the Unfolding Ability of the Proteasome. Reichard EL, Chirico GG, Dewey WJ, Nassif ND, Bard KE, Millas NE, Kraut DA. J Biol Chem 291 18547-18561 (2016)
  31. PSMD1 and PSMD2 regulate HepG2 cell proliferation and apoptosis via modulating cellular lipid droplet metabolism. Tan Y, Jin Y, Wu X, Ren Z. BMC Mol Biol 20 24 (2019)
  32. Reversible phosphorylation of Rpn1 regulates 26S proteasome assembly and function. Liu X, Xiao W, Zhang Y, Wiley SE, Zuo T, Zheng Y, Chen N, Chen L, Wang X, Zheng Y, Huang L, Lin S, Murphy AN, Dixon JE, Xu P, Guo X. Proc Natl Acad Sci U S A 117 328-336 (2020)
  33. Structure of E3 ligase E6AP with a proteasome-binding site provided by substrate receptor hRpn10. Buel GR, Chen X, Chari R, O'Neill MJ, Ebelle DL, Jenkins C, Sridharan V, Tarasov SG, Tarasova NI, Andresson T, Walters KJ. Nat Commun 11 1291 (2020)
  34. Novel TDP2-ubiquitin interactions and their importance for the repair of topoisomerase II-mediated DNA damage. Rao T, Gao R, Takada S, Al Abo M, Chen X, Walters KJ, Pommier Y, Aihara H. Nucleic Acids Res 44 10201-10215 (2016)
  35. Ubiquitin receptors are required for substrate-mediated activation of the proteasome's unfolding ability. Cundiff MD, Hurley CM, Wong JD, Boscia JA, Bashyal A, Rosenberg J, Reichard EL, Nassif ND, Brodbelt JS, Kraut DA. Sci Rep 9 14506 (2019)
  36. A Systematic Protein Turnover Map for Decoding Protein Degradation. Christiano R, Arlt H, Kabatnik S, Mejhert N, Lai ZW, Farese RV, Walther TC. Cell Rep 33 108378 (2020)
  37. Neuroprotective Effects of Betulin in Pharmacological and Transgenic Caenorhabditis elegans Models of Parkinson's Disease. Tsai CW, Tsai RT, Liu SP, Chen CS, Tsai MC, Chien SH, Hung HS, Lin SZ, Shyu WC, Fu RH. Cell Transplant 26 1903-1918 (2017)
  38. Unstructured Biology of Proteins from Ubiquitin-Proteasome System: Roles in Cancer and Neurodegenerative Diseases. Gadhave K, Kumar P, Kapuganti SK, Uversky VN, Giri R. Biomolecules 10 E796 (2020)
  39. Impact of Losing hRpn13 Pru or UCHL5 on Proteasome Clearance of Ubiquitinated Proteins and RA190 Cytotoxicity. Osei-Amponsa V, Sridharan V, Tandon M, Evans CN, Klarmann K, Cheng KT, Lack J, Chari R, Walters KJ. Mol Cell Biol 40 e00122-20 (2020)
  40. Phospholipase Lpl1 links lipid droplet function with quality control protein degradation. Weisshaar N, Welsch H, Guerra-Moreno A, Hanna J. Mol Biol Cell 28 716-725 (2017)
  41. Ubiquitin-proteasome-mediated cyclin C degradation promotes cell survival following nitrogen starvation. Willis SD, Hanley SE, Beishke T, Tati PD, Cooper KF. Mol Biol Cell 31 1015-1031 (2020)
  42. A balance of deubiquitinating enzymes controls cell cycle entry. Mapa CE, Arsenault HE, Conti MM, Poti KE, Benanti JA. Mol Biol Cell 29 2821-2834 (2018)
  43. Cryo-EM Reveals Unanchored M1-Ubiquitin Chain Binding at hRpn11 of the 26S Proteasome. Chen X, Dorris Z, Shi D, Huang RK, Khant H, Fox T, de Val N, Williams D, Zhang P, Walters KJ. Structure 28 1206-1217.e4 (2020)
  44. Global proteomics of Ubqln2-based murine models of ALS. Whiteley AM, Prado MA, de Poot SAH, Paulo JA, Ashton M, Dominguez S, Weber M, Ngu H, Szpyt J, Jedrychowski MP, Easton A, Gygi SP, Kurz T, Monteiro MJ, Brown EJ, Finley D. J Biol Chem 296 100153 (2021)
  45. Native Gel Approaches in Studying Proteasome Assembly and Chaperones. Roelofs J, Suppahia A, Waite KA, Park S. Methods Mol Biol 1844 237-260 (2018)
  46. USP14-regulated allostery of the human proteasome by time-resolved cryo-EM. Zhang S, Zou S, Yin D, Zhao L, Finley D, Wu Z, Mao Y. Nature 605 567-574 (2022)
  47. Ubiquitin-dependent switch during assembly of the proteasomal ATPases mediated by Not4 ubiquitin ligase. Fu X, Sokolova V, Webb KJ, Old W, Park S. Proc Natl Acad Sci U S A 115 13246-13251 (2018)
  48. Mode of targeting to the proteasome determines GFP fate. Bragança CE, Kraut DA. J Biol Chem 295 15892-15901 (2020)
  49. Recombinant Expression, Unnatural Amino Acid Incorporation, and Site-Specific Labeling of 26S Proteasomal Subcomplexes. Bard JAM, Martin A. Methods Mol Biol 1844 219-236 (2018)
  50. Branched ubiquitin chain binding and deubiquitination by UCH37 facilitate proteasome clearance of stress-induced inclusions. Song A, Hazlett Z, Abeykoon D, Dortch J, Dillon A, Curtiss J, Martinez SB, Hill CP, Yu C, Huang L, Fushman D, Cohen RE, Yao T. Elife 10 e72798 (2021)
  51. Methods to Rapidly Prepare Mammalian 26S Proteasomes for Biochemical Analysis. Kuo CL, Collins GA, Goldberg AL. Methods Mol Biol 1844 277-288 (2018)
  52. Ubiquitin Chains Bearing Genetically Encoded Photo-Cross-Linkers Enable Efficient Covalent Capture of (Poly)ubiquitin-Binding Domains. Braxton CN, Quartner E, Pawloski W, Fushman D, Cropp TA. Biochemistry 58 883-886 (2019)
  53. Allosteric control of Ubp6 and the proteasome via a bidirectional switch. Hung KYS, Klumpe S, Eisele MR, Elsasser S, Tian G, Sun S, Moroco JA, Cheng TC, Joshi T, Seibel T, Van Dalen D, Feng XH, Lu Y, Ovaa H, Engen JR, Lee BH, Rudack T, Sakata E, Finley D. Nat Commun 13 838 (2022)
  54. Measurement of the Multiple Activities of 26S Proteasomes. Kim HT, Collins GA, Goldberg AL. Methods Mol Biol 1844 289-308 (2018)
  55. Letter TRIM24 mediates the interaction of the retinoic acid receptor alpha with the proteasome. Carrier M, Lutzing R, Gaouar S, Rochette-Egly C. FEBS Lett 592 1426-1433 (2018)
  56. TcpC inhibits toll-like receptor signaling pathway by serving as an E3 ubiquitin ligase that promotes degradation of myeloid differentiation factor 88. Fang JQ, Ou Q, Pan J, Fang J, Zhang DY, Qiu MQ, Li YQ, Wang XH, Yang XY, Chi Z, Gao W, Guo JP, Miethke T, Pan JP. PLoS Pathog 17 e1009481 (2021)
  57. Polyubiquitin and ubiquitin-like signals share common recognition sites on proteasomal subunit Rpn1. Boughton AJ, Zhang D, Singh RK, Fushman D. J Biol Chem 296 100450 (2021)
  58. Structure-guided bifunctional molecules hit a DEUBAD-lacking hRpn13 species upregulated in multiple myeloma. Lu X, Sabbasani VR, Osei-Amponsa V, Evans CN, King JC, Tarasov SG, Dyba M, Das S, Chan KC, Schwieters CD, Choudhari S, Fromont C, Zhao Y, Tran B, Chen X, Matsuo H, Andresson T, Chari R, Swenson RE, Tarasova NI, Walters KJ. Nat Commun 12 7318 (2021)
  59. A context-dependent and disordered ubiquitin-binding motif. Dreier JE, Prestel A, Martins JM, Brøndum SS, Nielsen O, Garbers AE, Suga H, Boomsma W, Rogers JM, Hartmann-Petersen R, Kragelund BB. Cell Mol Life Sci 79 484 (2022)
  60. Proteasome Inhibition Is an Effective Treatment Strategy for Microsporidia Infection in Honey Bees. Huntsman EM, Cho RM, Kogan HV, McNamara-Bordewick NK, Tomko RJ, Snow JW. Biomolecules 11 1600 (2021)
  61. Proteasome activator Blm10 levels and autophagic degradation directly impact the proteasome landscape. Burris A, Waite KA, Reuter Z, Ockerhausen S, Roelofs J. J Biol Chem 296 100468 (2021)
  62. Structural basis of prokaryotic ubiquitin-like protein engagement and translocation by the mycobacterial Mpa-proteasome complex. Kavalchuk M, Jomaa A, Jomaa A, Müller AU, Weber-Ban E. Nat Commun 13 276 (2022)
  63. Ubiquitin modulates 26S proteasome conformational dynamics and promotes substrate degradation. Jonsson E, Htet ZM, Bard JAM, Dong KC, Martin A. Sci Adv 8 eadd9520 (2022)
  64. Ubiquitin receptor PSMD4/Rpn10 is a novel therapeutic target in multiple myeloma. Du T, Song Y, Ray A, Wan X, Yao Y, Samur MK, Shen C, Penailillo J, Sewastianik T, Tai YT, Fulciniti M, Munshi NC, Wu H, Carrasco RD, Chauhan D, Anderson KC. Blood 141 2599-2614 (2023)
  65. (1)H, (15)N, (13)C resonance assignments for Saccharomyces cerevisiae Rad23 UBL domain. Chen X, Walters KJ. Biomol NMR Assign 10 291-295 (2016)
  66. An empirical energy landscape reveals mechanism of proteasome in polypeptide translocation. Fang R, Hon J, Zhou M, Lu Y. Elife 11 e71911 (2022)
  67. Analysis of the Dynamic Proteasome Structure by Cross-Linking Mass Spectrometry. Mendes ML, Dittmar G. Biomolecules 11 505 (2021)
  68. Assembly checkpoint of the proteasome regulatory particle is activated by coordinated actions of proteasomal ATPase chaperones. Nahar A, Sokolova V, Sekaran S, Orth JD, Park S. Cell Rep 39 110918 (2022)
  69. Cryo-EM structure of the plant 26S proteasome. Kandolf S, Grishkovskaya I, Belačić K, Bolhuis DL, Amann S, Foster B, Imre R, Mechtler K, Schleiffer A, Tagare HD, Zhong ED, Meinhart A, Brown NG, Haselbach D. Plant Commun 3 100310 (2022)
  70. HECT ubiquitin ligases as accessory proteins of the plant proteasome. Wang Z, Spoel SH. Essays Biochem 66 135-145 (2022)
  71. Targeted degradation via direct 26S proteasome recruitment. Bashore C, Prakash S, Johnson MC, Conrad RJ, Kekessie IA, Scales SJ, Ishisoko N, Kleinheinz T, Liu PS, Popovych N, Wecksler AT, Zhou L, Tam C, Zilberleyb I, Srinivasan R, Blake RA, Song A, Staben ST, Zhang Y, Arnott D, Fairbrother WJ, Foster SA, Wertz IE, Ciferri C, Dueber EC. Nat Chem Biol 19 55-63 (2023)
  72. Yeast PI31 inhibits the proteasome by a direct multisite mechanism. Rawson S, Walsh RM, Velez B, Schnell HM, Jiao F, Blickling M, Ang J, Bhanu MK, Huang L, Hanna J. Nat Struct Mol Biol 29 791-800 (2022)
  73. An engineered cell line with a hRpn1-attached handle to isolate proteasomes. Negi H, Osei-Amponsa V, Ibrahim B, Evans CN, Sullenberger C, Loncarek J, Chari R, Walters KJ. J Biol Chem 299 104948 (2023)
  74. FAT10 and NUB1L cooperate to activate the 26S proteasome. Brockmann F, Catone N, Wünsch C, Offensperger F, Scheffner M, Schmidtke G, Aichem A. Life Sci Alliance 6 e202201463 (2023)
  75. High-Throughput Assay for Characterizing Rpn11 Deubiquitinase Activity. Xie G, Dong KC, Worden EJ, Martin A. Methods Mol Biol 2591 79-100 (2023)
  76. Kinetic Constraints in the Specific Interaction between Phosphorylated Ubiquitin and Proteasomal Shuttle Factors. Qin LY, Gong Z, Liu K, Dong X, Tang C. Biomolecules 11 1008 (2021)
  77. Molecular mechanism for activation of the 26S proteasome by ZFAND5. Lee D, Zhu Y, Colson L, Wang X, Chen S, Tkacik E, Huang L, Ouyang Q, Goldberg AL, Lu Y. Mol Cell 83 2959-2975.e7 (2023)
  78. PSMD2 contributes to the progression of esophageal squamous cell carcinoma by repressing autophagy. Liu Y, Wu M, Xu S, Niu X, Liu W, Miao C, Lin A, Xu Y, Yu L. Cell Biosci 13 67 (2023)
  79. RPNs Levels Are Prognostic and Diagnostic Markers for Hepatocellular Carcinoma. Zheng W, Zheng Y, Bai X, Zhou Y, Yu L, Ji D, Leng K, Meng N, Wang H, Huang Z, Xu Y, Cui Y. J Oncol 2022 7270541 (2022)
  80. SDR enzymes oxidize specific lipidic alkynylcarbinols into cytotoxic protein-reactive species. Demange P, Joly E, Marcoux J, Zanon PRA, Listunov D, Rullière P, Barthes C, Noirot C, Izquierdo JB, Rozié A, Pradines K, Hee R, de Brito MV, Marcellin M, Serre RF, Bouchez O, Burlet-Schiltz O, Oliveira MCF, Ballereau S, Bernardes-Génisson V, Maraval V, Calsou P, Hacker SM, Génisson Y, Chauvin R, Britton S. Elife 11 e73913 (2022)
  81. Structure of HIV-1 Vpr in complex with the human nucleotide excision repair protein hHR23A. Byeon IL, Calero G, Wu Y, Byeon CH, Jung J, DeLucia M, Zhou X, Weiss S, Ahn J, Hao C, Skowronski J, Gronenborn AM. Nat Commun 12 6864 (2021)
  82. Synthetic ubiquitinated proteins meet the proteasome: Distinct roles of ubiquitin in a chain. van der Heden van Noort GJ, Gan J, Ovaa H. Proc Natl Acad Sci U S A 116 7614-7616 (2019)
  83. The penultimate step of proteasomal ATPase assembly is mediated by a switch dependent on the chaperone Nas2. Sekaran S, Park S. J Biol Chem 299 102870 (2023)
  84. Ubiquitin receptors play redundant roles in the proteasomal degradation of the p53 repressor MDM2. Sparks A, Kelly CJ, Saville MK. FEBS Lett 596 2746-2767 (2022)