2kn5 Citations

A correspondence between solution-state dynamics of an individual protein and the sequence and conformational diversity of its family.

PLoS Comput Biol 5 e1000393 (2009)
Cited: 48 times
EuropePMC logo PMID: 19478996

Abstract

Conformational ensembles are increasingly recognized as a useful representation to describe fundamental relationships between protein structure, dynamics and function. Here we present an ensemble of ubiquitin in solution that is created by sampling conformational space without experimental information using "Backrub" motions inspired by alternative conformations observed in sub-Angstrom resolution crystal structures. Backrub-generated structures are then selected to produce an ensemble that optimizes agreement with nuclear magnetic resonance (NMR) Residual Dipolar Couplings (RDCs). Using this ensemble, we probe two proposed relationships between properties of protein ensembles: (i) a link between native-state dynamics and the conformational heterogeneity observed in crystal structures, and (ii) a relation between dynamics of an individual protein and the conformational variability explored by its natural family. We show that the Backrub motional mechanism can simultaneously explore protein native-state dynamics measured by RDCs, encompass the conformational variability present in ubiquitin complex structures and facilitate sampling of conformational and sequence variability matching those occurring in the ubiquitin protein family. Our results thus support an overall relation between protein dynamics and conformational changes enabling sequence changes in evolution. More practically, the presented method can be applied to improve protein design predictions by accounting for intrinsic native-state dynamics.

Articles - 2kn5 mentioned but not cited (3)

  1. Protein structure validation and refinement using amide proton chemical shifts derived from quantum mechanics. Christensen AS, Linnet TE, Borg M, Boomsma W, Lindorff-Larsen K, Hamelryck T, Jensen JH. PLoS One 8 e84123 (2013)
  2. Assessing the native state conformational distribution of ubiquitin by peptide acidity. Hernández G, Anderson JS, LeMaster DM. Biophys Chem 153 70-82 (2010)
  3. Ubiquitin and a charged loop regulate the ubiquitin E3 ligase activity of Ark2C. Paluda A, Middleton AJ, Rossig C, Mace PD, Day CL. Nat Commun 13 1181 (2022)


Reviews citing this publication (7)

  1. The interface of protein structure, protein biophysics, and molecular evolution. Liberles DA, Teichmann SA, Bahar I, Bastolla U, Bloom J, Bornberg-Bauer E, Colwell LJ, de Koning AP, Dokholyan NV, Echave J, Elofsson A, Gerloff DL, Goldstein RA, Grahnen JA, Holder MT, Lakner C, Lartillot N, Lovell SC, Naylor G, Perica T, Pollock DD, Pupko T, Regan L, Roger A, Rubinstein N, Shakhnovich E, Sjölander K, Sunyaev S, Teufel AI, Thorne JL, Thornton JW, Weinreich DM, Whelan S. Protein Sci 21 769-785 (2012)
  2. Computer-aided design of functional protein interactions. Mandell DJ, Kortemme T. Nat Chem Biol 5 797-807 (2009)
  3. Backbone flexibility in computational protein design. Mandell DJ, Kortemme T. Curr Opin Biotechnol 20 420-428 (2009)
  4. Parallel dynamics and evolution: Protein conformational fluctuations and assembly reflect evolutionary changes in sequence and structure. Marsh JA, Teichmann SA. Bioessays 36 209-218 (2014)
  5. Evolution of protein structures and interactions from the perspective of residue contact networks. Zhang X, Perica T, Teichmann SA. Curr Opin Struct Biol 23 954-963 (2013)
  6. Recent advances in de novo protein design: Principles, methods, and applications. Pan X, Kortemme T. J Biol Chem 296 100558 (2021)
  7. Chemical specificity and conformational flexibility in proteinase-inhibitor interaction: scaffolds for promiscuous binding. Vishwanath S, Srinivasan N. Prog Biophys Mol Biol 116 151-157 (2014)

Articles citing this publication (38)

  1. Serverification of molecular modeling applications: the Rosetta Online Server that Includes Everyone (ROSIE). Lyskov S, Chou FC, Conchúir SÓ, Der BS, Drew K, Kuroda D, Xu J, Weitzner BD, Renfrew PD, Sripakdeevong P, Borgo B, Havranek JJ, Kuhlman B, Kortemme T, Bonneau R, Gray JJ, Das R. PLoS One 8 e63906 (2013)
  2. Conformational selection and induced fit mechanism underlie specificity in noncovalent interactions with ubiquitin. Wlodarski T, Zagrovic B. Proc Natl Acad Sci U S A 106 19346-19351 (2009)
  3. Biophysics of protein evolution and evolutionary protein biophysics. Sikosek T, Chan HS. J R Soc Interface 11 20140419 (2014)
  4. Evol and ProDy for bridging protein sequence evolution and structural dynamics. Bakan A, Dutta A, Mao W, Liu Y, Chennubhotla C, Lezon TR, Bahar I. Bioinformatics 30 2681-2683 (2014)
  5. RosettaBackrub--a web server for flexible backbone protein structure modeling and design. Lauck F, Smith CA, Friedland GF, Humphris EL, Kortemme T. Nucleic Acids Res 38 W569-75 (2010)
  6. Conformational stabilization of ubiquitin yields potent and selective inhibitors of USP7. Zhang Y, Zhou L, Rouge L, Phillips AH, Lam C, Liu P, Sandoval W, Helgason E, Murray JM, Wertz IE, Corn JE. Nat Chem Biol 9 51-58 (2013)
  7. Predicting the tolerated sequences for proteins and protein interfaces using RosettaBackrub flexible backbone design. Smith CA, Kortemme T. PLoS One 6 e20451 (2011)
  8. Tradeoff between stability and multispecificity in the design of promiscuous proteins. Fromer M, Shifman JM. PLoS Comput Biol 5 e1000627 (2009)
  9. Portrayal of complex dynamic properties of sugarcane defensin 5 by NMR: multiple motions associated with membrane interaction. de Paula VS, Razzera G, Barreto-Bergter E, Almeida FC, Valente AP. Structure 19 26-36 (2011)
  10. De novo design of a hyperstable non-natural protein-ligand complex with sub-Å accuracy. Polizzi NF, Wu Y, Lemmin T, Maxwell AM, Zhang SQ, Rawson J, Beratan DN, Therien MJ, DeGrado WF. Nat Chem 9 1157-1164 (2017)
  11. In silico elucidation of the recognition dynamics of ubiquitin. Long D, Brüschweiler R. PLoS Comput Biol 7 e1002035 (2011)
  12. Accessing ns-micros side chain dynamics in ubiquitin with methyl RDCs. Farès C, Lakomek NA, Walter KF, Frank BT, Meiler J, Becker S, Griesinger C. J Biomol NMR 45 23-44 (2009)
  13. Flexible backbone sampling methods to model and design protein alternative conformations. Ollikainen N, Smith CA, Fraser JS, Kortemme T. Methods Enzymol 523 61-85 (2013)
  14. Assessment of flexible backbone protein design methods for sequence library prediction in the therapeutic antibody Herceptin-HER2 interface. Babor M, Mandell DJ, Kortemme T. Protein Sci 20 1082-1089 (2011)
  15. Protein conformational diversity modulates sequence divergence. Juritz E, Palopoli N, Fornasari MS, Fernandez-Alberti S, Parisi G. Mol Biol Evol 30 79-87 (2013)
  16. Toward a predictive understanding of slow methyl group dynamics in proteins. Long D, Li DW, Walter KF, Griesinger C, Brüschweiler R. Biophys J 101 910-915 (2011)
  17. Versatility and invariance in the evolution of homologous heteromeric interfaces. Andreani J, Faure G, Guerois R. PLoS Comput Biol 8 e1002677 (2012)
  18. A new model for pore formation by cholesterol-dependent cytolysins. Reboul CF, Whisstock JC, Dunstone MA. PLoS Comput Biol 10 e1003791 (2014)
  19. Comparison of Rosetta flexible-backbone computational protein design methods on binding interactions. Loshbaugh AL, Kortemme T. Proteins 88 206-226 (2020)
  20. PCDB: a database of protein conformational diversity. Juritz EI, Alberti SF, Parisi GD. Nucleic Acids Res 39 D475-9 (2011)
  21. The role of local backrub motions in evolved and designed mutations. Keedy DA, Georgiev I, Triplett EB, Donald BR, Richardson DC, Richardson JS. PLoS Comput Biol 8 e1002629 (2012)
  22. Computational protein design quantifies structural constraints on amino acid covariation. Ollikainen N, Kortemme T. PLoS Comput Biol 9 e1003313 (2013)
  23. Prediction of mutational tolerance in HIV-1 protease and reverse transcriptase using flexible backbone protein design. Humphris-Narayanan E, Akiva E, Varela R, Ó Conchúir S, Kortemme T. PLoS Comput Biol 8 e1002639 (2012)
  24. Thermal adaptation of conformational dynamics in ribonuclease H. Stafford KA, Robustelli P, Palmer AG. PLoS Comput Biol 9 e1003218 (2013)
  25. Using entropy maximization to understand the determinants of structural dynamics beyond native contact topology. Lezon TR, Bahar I. PLoS Comput Biol 6 e1000816 (2010)
  26. BP-Dock: a flexible docking scheme for exploring protein-ligand interactions based on unbound structures. Bolia A, Gerek ZN, Ozkan SB. J Chem Inf Model 54 913-925 (2014)
  27. Amino-acid site variability among natural and designed proteins. Jackson EL, Ollikainen N, Covert AW, Kortemme T, Wilke CO. PeerJ 1 e211 (2013)
  28. Protein conformational space populated in solution probed with aromatic residual dipolar (13) C-(1) H couplings. Sathyamoorthy B, Singarapu KK, Garcia AE, Szyperski T. Chembiochem 14 684-688 (2013)
  29. Proteome-wide prediction of overlapping small molecule and protein binding sites using structure. Davis FP. Mol Biosyst 7 545-557 (2011)
  30. Ensembler: Enabling High-Throughput Molecular Simulations at the Superfamily Scale. Parton DL, Grinaway PB, Hanson SM, Beauchamp KA, Chodera JD. PLoS Comput Biol 12 e1004728 (2016)
  31. Multi-state design of flexible proteins predicts sequences optimal for conformational change. Sauer MF, Sevy AM, Crowe JE, Meiler J. PLoS Comput Biol 16 e1007339 (2020)
  32. Correlation between local structural dynamics of proteins inferred from NMR ensembles and evolutionary dynamics of homologues of known structure. Mahajan S, de Brevern AG, Offmann B, Srinivasan N. J Biomol Struct Dyn 32 751-758 (2014)
  33. Fine-tuning the extent and dynamics of binding cleft opening as a potential general regulatory mechanism in parvulin-type peptidyl prolyl isomerases. Czajlik A, Kovács B, Permi P, Gáspári Z. Sci Rep 7 44504 (2017)
  34. Chimeric Fatty Acyl-Acyl Carrier Protein Thioesterases Provide Mechanistic Insight into Enzyme Specificity and Expression. Ziesack M, Rollins N, Shah A, Dusel B, Webster G, Silver PA, Way JC. Appl Environ Microbiol 84 (2018)
  35. Opposites Attract: Escherichia coli Heptosyltransferase I Conformational Changes Induced by Interactions between the Substrate and Positively Charged Residues. Cote JM, Hecht CJS, Patel KR, Ramirez-Mondragon CA, Sham YY, Taylor EA. Biochemistry 59 3135-3147 (2020)
  36. Protein backbone ensemble generation explores the local structural space of unseen natural homologs. Schenkelberg CD, Bystroff C. Bioinformatics 32 1454-1461 (2016)
  37. Deep mutational scanning reveals the functional constraints and evolutionary potential of the influenza A virus PB1 protein. Li Y, Arcos S, Sabsay KR, Te Velthuis AJW, Lauring AS. J Virol 97 e0132923 (2023)
  38. Recapturing the Correlated Motions of Protein Using Coarse- Grained Models. Lu Y, Salsbury FR. Protein Pept Lett 22 654-659 (2015)