2jmo Citations

Structure of the Parkin in-between-ring domain provides insights for E3-ligase dysfunction in autosomal recessive Parkinson's disease.

Proc Natl Acad Sci U S A 104 3095-100 (2007)
Cited: 68 times
EuropePMC logo PMID: 17360614

Abstract

Mutations in Parkin are one of the predominant hereditary factors found in patients suffering from autosomal recessive juvenile Parkinsonism. Parkin is a member of the E3 ubiquitin ligase family that is defined by a tripartite RING1-in-between-ring (IBR)-RING2 motif. In Parkin, the IBR domain has been shown to augment binding of the E2 proteins UbcH7 and UbcH8, and the subsequent ubiquitination of the proteins synphilin-1, Sept5, and SIM2. To facilitate our understanding of Parkin function, the solution structure of the Parkin IBR domain was solved by using NMR spectroscopy. Folding of the IBR domain (residues M327-S378) was found to be zinc dependent, and the structure reveals the domain forms a unique pair scissor-like and GAG knuckle-like zinc-binding sites, different from other zinc-binding motifs such as the RING, LIM, PHD, or B-box motifs. The N terminus of the IBR domain, residues E307-E322, is unstructured. The disease causing mutation T351P causes global unfolding, whereas the mutation R334C causes some structural rearrangement of the domain. In contrast, the protein containing the mutation G328E appears to be properly folded. The structure of the Parkin IBR domain, in combination with mutational data, allows a model to be proposed where the IBR domain facilitates a close arrangement of the adjacent RING1 and RING2 domains to facilitate protein interactions and subsequent ubiquitination.

Reviews - 2jmo mentioned but not cited (3)

Articles - 2jmo mentioned but not cited (5)

  1. Structure of the human Parkin ligase domain in an autoinhibited state. Wauer T, Komander D. EMBO J 32 2099-2112 (2013)
  2. A molecular explanation for the recessive nature of parkin-linked Parkinson's disease. Spratt DE, Martinez-Torres RJ, Noh YJ, Mercier P, Manczyk N, Barber KR, Aguirre JD, Burchell L, Purkiss A, Walden H, Shaw GS. Nat Commun 4 1983 (2013)
  3. Structure of the Parkin in-between-ring domain provides insights for E3-ligase dysfunction in autosomal recessive Parkinson's disease. Beasley SA, Hristova VA, Shaw GS. Proc Natl Acad Sci U S A 104 3095-3100 (2007)
  4. Structure of the HHARI catalytic domain shows glimpses of a HECT E3 ligase. Spratt DE, Mercier P, Shaw GS. PLoS One 8 e74047 (2013)
  5. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)


Reviews citing this publication (13)

  1. Structural insights into the catalysis and regulation of E3 ubiquitin ligases. Buetow L, Huang DT. Nat Rev Mol Cell Biol 17 626-642 (2016)
  2. Exploring the link between glucocerebrosidase mutations and parkinsonism. Westbroek W, Gustafson AM, Sidransky E. Trends Mol Med 17 485-493 (2011)
  3. Ubiquitin/proteasome pathway impairment in neurodegeneration: therapeutic implications. Huang Q, Figueiredo-Pereira ME. Apoptosis 15 1292-1311 (2010)
  4. Parkin structure and function. Seirafi M, Kozlov G, Gehring K. FEBS J 282 2076-2088 (2015)
  5. RING-Between-RING E3 Ligases: Emerging Themes amid the Variations. Dove KK, Klevit RE. J Mol Biol 429 3363-3375 (2017)
  6. Quality control gone wrong: mitochondria, lysosomal storage disorders and neurodegeneration. Osellame LD, Duchen MR. Br J Pharmacol 171 1958-1972 (2014)
  7. Specificity and disease in the ubiquitin system. Chaugule VK, Walden H. Biochem Soc Trans 44 212-227 (2016)
  8. Interaction between Parkin and α-Synuclein in PARK2-Mediated Parkinson's Disease. Madsen DA, Schmidt SI, Blaabjerg M, Meyer M. Cells 10 283 (2021)
  9. Compact Parkin only: insights into the structure of an autoinhibited ubiquitin ligase. Byrd RA, Weissman AM. EMBO J 32 2087-2089 (2013)
  10. Genome-wide analysis of CCHC-type zinc finger (ZCCHC) proteins in yeast, Arabidopsis, and humans. Aceituno-Valenzuela U, Micol-Ponce R, Ponce MR. Cell Mol Life Sci 77 3991-4014 (2020)
  11. Protein clearance strategies for disease intervention. Hommen F, Bilican S, Vilchez D. J Neural Transm (Vienna) 129 141-172 (2022)
  12. Natural Polyphyllins (I, II, D, VI, VII) Reverses Cancer Through Apoptosis, Autophagy, Mitophagy, Inflammation, and Necroptosis. Ahmad B, Gamallat Y, Khan MF, Din SR, Israr M, Ahmad M, Tahir N, Azam N, Rahman KU, Xin W, Zexu W, Linjie P, Su P, Liang W. Onco Targets Ther 14 1821-1841 (2021)
  13. Zooming into the structure-function of RING finger proteins for anti-cancer therapeutic applications. George M, Masamba P, Iwalokun BA, Kappo AP. Am J Cancer Res 13 2773-2789 (2023)

Articles citing this publication (47)

  1. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J, Cookson MR, Youle RJ. PLoS Biol 8 e1000298 (2010)
  2. Structure of parkin reveals mechanisms for ubiquitin ligase activation. Trempe JF, Sauvé V, Grenier K, Seirafi M, Tang MY, Ménade M, Al-Abdul-Wahid S, Krett J, Wong K, Kozlov G, Nagar B, Fon EA, Gehring K. Science 340 1451-1455 (2013)
  3. Somatic mutations of the Parkinson's disease-associated gene PARK2 in glioblastoma and other human malignancies. Veeriah S, Taylor BS, Meng S, Fang F, Yilmaz E, Vivanco I, Janakiraman M, Schultz N, Hanrahan AJ, Pao W, Ladanyi M, Sander C, Heguy A, Holland EC, Paty PB, Mischel PS, Liau L, Cloughesy TF, Mellinghoff IK, Solit DB, Chan TA. Nat Genet 42 77-82 (2010)
  4. Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases. Riley BE, Lougheed JC, Callaway K, Velasquez M, Brecht E, Nguyen L, Shaler T, Walker D, Yang Y, Regnstrom K, Diep L, Zhang Z, Chiou S, Bova M, Artis DR, Yao N, Baker J, Yednock T, Johnston JA. Nat Commun 4 1982 (2013)
  5. Glucocerebrosidase mutations influence the natural history of Parkinson's disease in a community-based incident cohort. Winder-Rhodes SE, Evans JR, Ban M, Mason SL, Williams-Gray CH, Foltynie T, Duran R, Mencacci NE, Sawcer SJ, Barker RA. Brain 136 392-399 (2013)
  6. LUBAC synthesizes linear ubiquitin chains via a thioester intermediate. Stieglitz B, Morris-Davies AC, Koliopoulos MG, Christodoulou E, Rittinger K. EMBO Rep 13 840-846 (2012)
  7. The E3 ligase HOIP specifies linear ubiquitin chain assembly through its RING-IBR-RING domain and the unique LDD extension. Smit JJ, Monteferrario D, Noordermeer SM, van Dijk WJ, van der Reijden BA, Sixma TK. EMBO J 31 3833-3844 (2012)
  8. Parkin is a lipid-responsive regulator of fat uptake in mice and mutant human cells. Kim KY, Stevens MV, Akter MH, Rusk SE, Huang RJ, Cohen A, Noguchi A, Springer D, Bocharov AV, Eggerman TL, Suen DF, Youle RJ, Amar M, Remaley AT, Sack MN. J Clin Invest 121 3701-3712 (2011)
  9. Structural basis for ligase-specific conjugation of linear ubiquitin chains by HOIP. Stieglitz B, Rana RR, Koliopoulos MG, Morris-Davies AC, Schaeffer V, Christodoulou E, Howell S, Brown NR, Dikic I, Rittinger K. Nature 503 422-426 (2013)
  10. Complex I deficiency and dopaminergic neuronal cell loss in parkin-deficient zebrafish (Danio rerio). Flinn L, Mortiboys H, Volkmann K, Köster RW, Ingham PW, Bandmann O. Brain 132 1613-1623 (2009)
  11. A Ubl/ubiquitin switch in the activation of Parkin. Sauvé V, Lilov A, Seirafi M, Vranas M, Rasool S, Kozlov G, Sprules T, Wang J, Trempe JF, Gehring K. EMBO J 34 2492-2505 (2015)
  12. Disruption of the autoinhibited state primes the E3 ligase parkin for activation and catalysis. Kumar A, Aguirre JD, Condos TE, Martinez-Torres RJ, Chaugule VK, Toth R, Sundaramoorthy R, Mercier P, Knebel A, Spratt DE, Barber KR, Shaw GS, Walden H. EMBO J 34 2506-2521 (2015)
  13. SH3 domains from a subset of BAR proteins define a Ubl-binding domain and implicate parkin in synaptic ubiquitination. Trempe JF, Chen CX, Grenier K, Camacho EM, Kozlov G, McPherson PS, Gehring K, Fon EA. Mol Cell 36 1034-1047 (2009)
  14. Structure of HHARI, a RING-IBR-RING ubiquitin ligase: autoinhibition of an Ariadne-family E3 and insights into ligation mechanism. Duda DM, Olszewski JL, Schuermann JP, Kurinov I, Miller DJ, Nourse A, Alpi AF, Schulman BA. Structure 21 1030-1041 (2013)
  15. Mutant Parkin impairs mitochondrial function and morphology in human fibroblasts. Grünewald A, Voges L, Rakovic A, Kasten M, Vandebona H, Hemmelmann C, Lohmann K, Orolicki S, Ramirez A, Schapira AH, Pramstaller PP, Sue CM, Klein C. PLoS One 5 e12962 (2010)
  16. Identification of a novel Zn2+-binding domain in the autosomal recessive juvenile Parkinson-related E3 ligase parkin. Hristova VA, Beasley SA, Rylett RJ, Shaw GS. J Biol Chem 284 14978-14986 (2009)
  17. Structure and Function of Parkin, PINK1, and DJ-1, the Three Musketeers of Neuroprotection. Trempe JF, Fon EA. Front Neurol 4 38 (2013)
  18. S-nitrosylation regulates mitochondrial quality control via activation of parkin. Ozawa K, Komatsubara AT, Nishimura Y, Sawada T, Kawafune H, Tsumoto H, Tsuji Y, Zhao J, Kyotani Y, Tanaka T, Takahashi R, Yoshizumi M. Sci Rep 3 2202 (2013)
  19. Parkin Regulates Mitosis and Genomic Stability through Cdc20/Cdh1. Lee SB, Kim JJ, Nam HJ, Gao B, Yin P, Qin B, Yi SY, Ham H, Evans D, Kim SH, Zhang J, Deng M, Liu T, Zhang H, Billadeau DD, Wang L, Giaime E, Shen J, Pang YP, Jen J, van Deursen JM, Lou Z. Mol Cell 60 21-34 (2015)
  20. Molecular insights into RBR E3 ligase ubiquitin transfer mechanisms. Dove KK, Stieglitz B, Duncan ED, Rittinger K, Klevit RE. EMBO Rep 17 1221-1235 (2016)
  21. Parkin-phosphoubiquitin complex reveals cryptic ubiquitin-binding site required for RBR ligase activity. Kumar A, Chaugule VK, Condos TEC, Barber KR, Johnson C, Toth R, Sundaramoorthy R, Knebel A, Shaw GS, Walden H. Nat Struct Mol Biol 24 475-483 (2017)
  22. Functional diversification of the RING finger and other binuclear treble clef domains in prokaryotes and the early evolution of the ubiquitin system. Burroughs AM, Iyer LM, Aravind L. Mol Biosyst 7 2261-2277 (2011)
  23. USP33 deubiquitinates PRKN/parkin and antagonizes its role in mitophagy. Niu K, Fang H, Chen Z, Zhu Y, Tan Q, Wei D, Li Y, Balajee AS, Zhao Y. Autophagy 16 724-734 (2020)
  24. Polyphyllin I induces mitophagic and apoptotic cell death in human breast cancer cells by increasing mitochondrial PINK1 levels. Li GB, Fu RQ, Shen HM, Zhou J, Hu XY, Liu YX, Li YN, Zhang HW, Liu X, Zhang YH, Huang C, Zhang R, Gao N. Oncotarget 8 10359-10374 (2017)
  25. Selective recruitment of an E2~ubiquitin complex by an E3 ubiquitin ligase. Spratt DE, Wu K, Kovacev J, Pan ZQ, Shaw GS. J Biol Chem 287 17374-17385 (2012)
  26. Parkin analysis in early onset Parkinson's disease. Sironi F, Primignani P, Zini M, Tunesi S, Ruffmann C, Ricca S, Brambilla T, Antonini A, Tesei S, Canesi M, Zecchinelli A, Mariani C, Meucci N, Sacilotto G, Cilia R, Isaias IU, Garavaglia B, Ghezzi D, Travi M, Decarli A, Coviello DA, Pezzoli G, Goldwurm S. Parkinsonism Relat Disord 14 326-333 (2008)
  27. RBR ubiquitin ligases: Diversification and streamlining in animal lineages. Marín I. J Mol Evol 69 54-64 (2009)
  28. Diversification and Specialization of Plant RBR Ubiquitin Ligases. Marín I. PLoS One 5 e11579 (2010)
  29. Interaction between RING1 (R1) and the Ubiquitin-like (UBL) Domains Is Critical for the Regulation of Parkin Activity. Ham SJ, Lee SY, Song S, Chung JR, Choi S, Chung J. J Biol Chem 291 1803-1816 (2016)
  30. Dysregulation of Parkin-mediated mitophagy in thyroid Hürthle cell tumors. Lee J, Ham S, Lee MH, Kim SJ, Park JH, Lee SE, Chang JY, Joung KH, Kim TY, Kim JM, Sul HJ, Kweon GR, Jo YS, Kim KS, Shong YK, Gasparre G, Chung JK, Porcelli AM, Shong M. Carcinogenesis 36 1407-1418 (2015)
  31. Impact of autosomal recessive juvenile Parkinson's disease mutations on the structure and interactions of the parkin ubiquitin-like domain. Safadi SS, Barber KR, Shaw GS. Biochemistry 50 2603-2610 (2011)
  32. Overexpression of a soybean ariadne-like ubiquitin ligase gene GmARI1 enhances aluminum tolerance in Arabidopsis. Zhang X, Wang N, Chen P, Gao M, Liu J, Wang Y, Zhao T, Li Y, Gai J. PLoS One 9 e111120 (2014)
  33. Differential regulation of PML-RARα stability by the ubiquitin ligases SIAH1/SIAH2 and TRIAD1. Pietschmann K, Buchwald M, Müller S, Knauer SK, Kögl M, Heinzel T, Krämer OH. Int J Biochem Cell Biol 44 132-138 (2012)
  34. Parkin, A Top Level Manager in the Cell's Sanitation Department. Rankin CA, Roy A, Zhang Y, Richter M. Open Biochem J 5 9-26 (2011)
  35. Polyubiquitination of apurinic/apyrimidinic endonuclease 1 by Parkin. Scott TL, Wicker CA, Suganya R, Dhar B, Pittman T, Horbinski C, Izumi T. Mol Carcinog 56 325-336 (2017)
  36. Impact of altered phosphorylation on loss of function of juvenile Parkinsonism-associated genetic variants of the E3 ligase parkin. Aguirre JD, Dunkerley KM, Lam R, Rusal M, Shaw GS. J Biol Chem 293 6337-6348 (2018)
  37. Large-Scale Analysis of Redox-Sensitive Conditionally Disordered Protein Regions Reveals Their Widespread Nature and Key Roles in High-Level Eukaryotic Processes. Erdős G, Mészáros B, Reichmann D, Dosztányi Z. Proteomics 19 e1800070 (2019)
  38. Parkinson's Disease in Saudi Patients: A Genetic Study. Al-Mubarak BR, Bohlega SA, Alkhairallah TS, Magrashi AI, AlTurki MI, Khalil DS, AlAbdulaziz BS, Abou Al-Shaar H, Mustafa AE, Alyemni EA, Alsaffar BA, Tahir AI, Al Tassan NA. PLoS One 10 e0135950 (2015)
  39. Linking a compound-heterozygous Parkin mutant (Q311R and A371T) to Parkinson's disease by using proteomic and molecular approaches. Ozgul S, Kasap M, Akpinar G, Kanli A, Güzel N, Karaosmanoglu K, Baykal AT, Iseri P. Neurochem Int 85-86 1-13 (2015)
  40. Dual Function of Phosphoubiquitin in E3 Activation of Parkin. Walinda E, Morimoto D, Sugase K, Shirakawa M. J Biol Chem 291 16879-16891 (2016)
  41. PARK2 variability in Polish Parkinson's disease patients--interaction with mitochondrial haplogroups. Gaweda-Walerych K, Safranow K, Jasinska-Myga B, Bialecka M, Klodowska-Duda G, Rudzinska M, Czyzewski K, Cobb SA, Slawek J, Styczynska M, Opala G, Drozdzik M, Nishioka K, Farrer MJ, Ross OA, Wszolek ZK, Barcikowska M, Zekanowski C. Parkinsonism Relat Disord 18 520-524 (2012)
  42. Genome-wide identification and characterization of RBR ubiquitin ligase genes in soybean. Chen P, Zhang X, Zhao T, Li Y, Gai J. PLoS One 9 e87282 (2014)
  43. Genome-Wide Identification and Analysis of Ariadne Gene Family Reveal Its Genetic Effects on Agronomic Traits of Brassica napus. Wahid S, Xie M, Sarfraz S, Liu J, Zhao C, Bai Z, Tong C, Cheng X, Gao F, Liu S. Int J Mol Sci 23 6265 (2022)
  44. Solution NMR structure of the TRIM21 B-box2 and identification of residues involved in its interaction with the RING domain. Wallenhammar A, Anandapadamanaban M, Lemak A, Mirabello C, Lundström P, Wallner B, Sunnerhagen M. PLoS One 12 e0181551 (2017)
  45. A comprehensive computational study on pathogenic mis-sense mutations spanning the RING2 and REP domains of Parkin protein. Biswas R, Bagchi A. Gene 610 49-58 (2017)
  46. Porcine dorfin: molecular cloning of the RNF19 gene, sequence comparison, mapping and expression analysis. Larsen K, Madsen LB, Bendixen C. Mol Biol Rep 39 10053-10062 (2012)
  47. Zinc finger protein 831 promotes apoptosis and enhances chemosensitivity in breast cancer by acting as a novel transcriptional repressor targeting the STAT3/Bcl2 signaling pathway. Fan J, Zhang Z, Chen H, Chen D, Yuan W, Li J, Zeng Y, Zhou S, Zhang S, Zhang G, Xiong J, Zhou L, Xu J, Liu W, Xu Y. Genes Dis 11 430-448 (2024)