2j7q Citations

Structure of a herpesvirus-encoded cysteine protease reveals a unique class of deubiquitinating enzymes.

Abstract

All members of the herpesviridae contain within their large tegument protein a cysteine protease module that displays deubiquitinating activity. We report the crystal structure of the cysteine protease domain of murine cytomegalovirus M48 (M48(USP)) in a complex with a ubiquitin (Ub)-based suicide substrate. M48(USP) adopts a papain-like fold, with the active-site cysteine forming a thioether linkage to the suicide substrate. The Ub core participates in an extensive hydrophobic interaction with an exposed beta hairpin loop of M48(USP). This Ub binding mode contributes to Ub specificity and is distinct from that observed in other deubiquitinating enzymes. Both the arrangement of active-site residues and the architecture of the interface with Ub lead us to classify this domain as the founding member of a previously unknown class of deubiquitinating enzymes.

Reviews - 2j7q mentioned but not cited (2)

  1. Structure and Function of Viral Deubiquitinating Enzymes. Bailey-Elkin BA, Knaap RCM, Kikkert M, Mark BL. J Mol Biol 429 3441-3470 (2017)
  2. Synthetic and semi-synthetic strategies to study ubiquitin signaling. van Tilburg GB, Elhebieshy AF, Ovaa H. Curr Opin Struct Biol 38 92-101 (2016)

Articles - 2j7q mentioned but not cited (10)

  1. Enzymatic blockade of the ubiquitin-proteasome pathway. Ernst R, Claessen JH, Mueller B, Sanyal S, Spooner E, van der Veen AG, Kirak O, Schlieker CD, Weihofen WA, Ploegh HL. PLoS Biol 8 e1000605 (2011)
  2. A bacterial type III effector family uses the papain-like hydrolytic activity to arrest the host cell cycle. Yao Q, Cui J, Zhu Y, Wang G, Hu L, Long C, Cao R, Liu X, Huang N, Chen S, Liu L, Shao F. Proc Natl Acad Sci U S A 106 3716-3721 (2009)
  3. Structure of ubiquitin-fold modifier 1-specific protease UfSP2. Ha BH, Jeon YJ, Shin SC, Tatsumi K, Komatsu M, Tanaka K, Watson CM, Wallis G, Chung CH, Kim EE. J Biol Chem 286 10248-10257 (2011)
  4. 14-3-3 scaffold proteins mediate the inactivation of trim25 and inhibition of the type I interferon response by herpesvirus deconjugases. Gupta S, Ylä-Anttila P, Sandalova T, Sun R, Achour A, Masucci MG. PLoS Pathog 15 e1008146 (2019)
  5. Torsin ATPase deficiency leads to defects in nuclear pore biogenesis and sequestration of MLF2. Rampello AJ, Laudermilch E, Vishnoi N, Prophet SM, Shao L, Zhao C, Lusk CP, Schlieker C. J Cell Biol 219 e201910185 (2020)
  6. Stabilization of an unusual salt bridge in ubiquitin by the extra C-terminal domain of the proteasome-associated deubiquitinase UCH37 as a mechanism of its exo specificity. Morrow ME, Kim MI, Ronau JA, Sheedlo MJ, White RR, Chaney J, Paul LN, Lill MA, Artavanis-Tsakonas K, Das C. Biochemistry 52 3564-3578 (2013)
  7. Interaction With 14-3-3 Correlates With Inactivation of the RIG-I Signalosome by Herpesvirus Ubiquitin Deconjugases. Gupta S, Ylä-Anttila P, Sandalova T, Achour A, Masucci MG. Front Immunol 11 437 (2020)
  8. Makes caterpillars floppy-like effector-containing MARTX toxins require host ADP-ribosylation factor (ARF) proteins for systemic pathogenicity. Lee Y, Kim BS, Choi S, Lee EY, Park S, Hwang J, Kwon Y, Hyun J, Lee C, Kim JF, Eom SH, Kim MH. Proc Natl Acad Sci U S A 116 18031-18040 (2019)
  9. A widely distributed family of eukaryotic and bacterial deubiquitinases related to herpesviral large tegument proteins. Erven I, Abraham E, Hermanns T, Baumann U, Hofmann K. Nat Commun 13 7643 (2022)
  10. A cysteine protease-like domain enhances the cytotoxic effects of the Photorhabdus asymbiotica toxin PaTox. Bogdanovic X, Schneider S, Levanova N, Wirth C, Trillhaase C, Steinemann M, Hunte C, Aktories K, Jank T. J Biol Chem 294 1035-1044 (2019)


Reviews citing this publication (17)

  1. Ubiquitination, ubiquitin-like modifiers, and deubiquitination in viral infection. Isaacson MK, Ploegh HL. Cell Host Microbe 5 559-570 (2009)
  2. Viral avoidance and exploitation of the ubiquitin system. Randow F, Lehner PJ. Nat Cell Biol 11 527-534 (2009)
  3. RBR E3 ubiquitin ligases: new structures, new insights, new questions. Spratt DE, Walden H, Shaw GS. Biochem J 458 421-437 (2014)
  4. Mechanisms, biology and inhibitors of deubiquitinating enzymes. Love KR, Catic A, Schlieker C, Ploegh HL. Nat Chem Biol 3 697-705 (2007)
  5. Current progress in antiviral strategies. Lou Z, Sun Y, Rao Z. Trends Pharmacol Sci 35 86-102 (2014)
  6. Targeting ubiquitin specific proteases for drug discovery. Daviet L, Colland F. Biochimie 90 270-283 (2008)
  7. Reverse the curse--the role of deubiquitination in cell cycle control. Song L, Rape M. Curr Opin Cell Biol 20 156-163 (2008)
  8. DUBs, the regulation of cell identity and disease. Heideker J, Wertz IE. Biochem J 465 1-26 (2015)
  9. Chemical and semisynthetic approaches to study and target deubiquitinases. Gopinath P, Ohayon S, Nawatha M, Brik A. Chem Soc Rev 45 4171-4198 (2016)
  10. Structures of proteases for ubiqutin and ubiquitin-like modifiers. Ha BH, Kim EE. BMB Rep 41 435-443 (2008)
  11. Targeting Deubiquitinating Enzymes in Glioblastoma Multiforme: Expectations and Challenges. Jin WL, Mao XY, Qiu GZ. Med Res Rev 37 627-661 (2017)
  12. Assembly and Egress of an Alphaherpesvirus Clockwork. Smith GA. Adv Anat Embryol Cell Biol 223 171-193 (2017)
  13. Microtubule-Dependent Trafficking of Alphaherpesviruses in the Nervous System: The Ins and Outs. Diwaker D, Wilson DW. Viruses 11 E1165 (2019)
  14. Role of Virally-Encoded Deubiquitinating Enzymes in Regulation of the Virus Life Cycle. Proulx J, Borgmann K, Park IW. Int J Mol Sci 22 4438 (2021)
  15. Viral Ubiquitin and Ubiquitin-Like Deconjugases-Swiss Army Knives for Infection. Masucci MG. Biomolecules 10 E1137 (2020)
  16. Ubiquitin-targeted bacterial effectors: rule breakers of the ubiquitin system. Roberts CG, Franklin TG, Pruneda JN. EMBO J 42 e114318 (2023)
  17. Viral deubiquitinases and innate antiviral immune response in livestock and poultry. Zhou Z, Xu J, Li Z, Lv Y, Wu S, Zhang H, Song Y, Ai Y. J Vet Med Sci 84 102-113 (2022)

Articles citing this publication (60)

  1. A noncovalent class of papain-like protease/deubiquitinase inhibitors blocks SARS virus replication. Ratia K, Pegan S, Takayama J, Sleeman K, Coughlin M, Baliji S, Chaudhuri R, Fu W, Prabhakar BS, Johnson ME, Baker SC, Ghosh AK, Mesecar AD. Proc Natl Acad Sci U S A 105 16119-16124 (2008)
  2. Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases. Riley BE, Lougheed JC, Callaway K, Velasquez M, Brecht E, Nguyen L, Shaler T, Walker D, Yang Y, Regnstrom K, Diep L, Zhang Z, Chiou S, Bova M, Artis DR, Yao N, Baker J, Yednock T, Johnston JA. Nat Commun 4 1982 (2013)
  3. The otubain YOD1 is a deubiquitinating enzyme that associates with p97 to facilitate protein dislocation from the ER. Ernst R, Mueller B, Ploegh HL, Schlieker C. Mol Cell 36 28-38 (2009)
  4. Inhibition of RIG-I-mediated signaling by Kaposi's sarcoma-associated herpesvirus-encoded deubiquitinase ORF64. Inn KS, Lee SH, Rathbun JY, Wong LY, Toth Z, Machida K, Ou JH, Jung JU. J Virol 85 10899-10904 (2011)
  5. TRIM25 Enhances the Antiviral Action of Zinc-Finger Antiviral Protein (ZAP). Li MM, Lau Z, Cheung P, Aguilar EG, Schneider WM, Bozzacco L, Molina H, Buehler E, Takaoka A, Rice CM, Felsenfeld DP, MacDonald MR. PLoS Pathog 13 e1006145 (2017)
  6. Evidence for bidentate substrate binding as the basis for the K48 linkage specificity of otubain 1. Wang T, Yin L, Cooper EM, Lai MY, Dickey S, Pickart CM, Fushman D, Wilkinson KD, Cohen RE, Wolberger C. J Mol Biol 386 1011-1023 (2009)
  7. A single ubiquitin is sufficient for cargo protein entry into MVBs in the absence of ESCRT ubiquitination. Stringer DK, Piper RC. J Cell Biol 192 229-242 (2011)
  8. Herpes simplex virus 1 ubiquitin-specific protease UL36 inhibits beta interferon production by deubiquitinating TRAF3. Wang S, Wang K, Li J, Zheng C. J Virol 87 11851-11860 (2013)
  9. Epstein-Barr virus large tegument protein BPLF1 contributes to innate immune evasion through interference with toll-like receptor signaling. van Gent M, Braem SG, de Jong A, Delagic N, Peeters JG, Boer IG, Moynagh PN, Kremmer E, Wiertz EJ, Ovaa H, Griffin BD, Ressing ME. PLoS Pathog 10 e1003960 (2014)
  10. A functional proteomics approach links the ubiquitin-related modifier Urm1 to a tRNA modification pathway. Schlieker CD, Van der Veen AG, Damon JR, Spooner E, Ploegh HL. Proc Natl Acad Sci U S A 105 18255-18260 (2008)
  11. A deneddylase encoded by Epstein-Barr virus promotes viral DNA replication by regulating the activity of cullin-RING ligases. Gastaldello S, Hildebrand S, Faridani O, Callegari S, Palmkvist M, Di Guglielmo C, Masucci MG. Nat Cell Biol 12 351-361 (2010)
  12. A Pseudomonas aeruginosa toxin that hijacks the host ubiquitin proteolytic system. Bomberger JM, Ye S, Maceachran DP, Koeppen K, Barnaby RL, O'Toole GA, Stanton BA. PLoS Pathog 7 e1001325 (2011)
  13. Structural basis for ubiquitin recognition by the Otu1 ovarian tumor domain protein. Messick TE, Russell NS, Iwata AJ, Sarachan KL, Shiekhattar R, Shanks JR, Reyes-Turcu FE, Wilkinson KD, Marmorstein R. J Biol Chem 283 11038-11049 (2008)
  14. A herpesvirus ubiquitin-specific protease is critical for efficient T cell lymphoma formation. Jarosinski K, Kattenhorn L, Kaufer B, Ploegh H, Osterrieder N. Proc Natl Acad Sci U S A 104 20025-20030 (2007)
  15. Epstein-Barr virus BPLF1 deubiquitinates PCNA and attenuates polymerase η recruitment to DNA damage sites. Whitehurst CB, Vaziri C, Shackelford J, Pagano JS. J Virol 86 8097-8106 (2012)
  16. The ubiquitin-conjugating system: multiple roles in viral replication and infection. Calistri A, Munegato D, Carli I, Parolin C, Palù G. Cells 3 386-417 (2014)
  17. Cleavage specificity of the UL48 deubiquitinating protease activity of human cytomegalovirus and the growth of an active-site mutant virus in cultured cells. Kim ET, Oh SE, Lee YO, Gibson W, Ahn JH. J Virol 83 12046-12056 (2009)
  18. Josephin domain of ataxin-3 contains two distinct ubiquitin-binding sites. Nicastro G, Masino L, Esposito V, Menon RP, De Simone A, Fraternali F, Pastore A. Biopolymers 91 1203-1214 (2009)
  19. Ubiquitin C-terminal electrophiles are activity-based probes for identification and mechanistic study of ubiquitin conjugating machinery. Love KR, Pandya RK, Spooner E, Ploegh HL. ACS Chem Biol 4 275-287 (2009)
  20. A Nuclear localization signal in herpesvirus protein VP1-2 is essential for infection via capsid routing to the nuclear pore. Abaitua F, Hollinshead M, Bolstad M, Crump CM, O'Hare P. J Virol 86 8998-9014 (2012)
  21. The MEROPS batch BLAST: a tool to detect peptidases and their non-peptidase homologues in a genome. Rawlings ND, Morton FR. Biochimie 90 243-259 (2008)
  22. Thiopurine analogue inhibitors of severe acute respiratory syndrome-coronavirus papain-like protease, a deubiquitinating and deISGylating enzyme. Chen X, Chou CY, Chang GG. Antivir Chem Chemother 19 151-156 (2009)
  23. Structural analysis of a viral ovarian tumor domain protease from the Crimean-Congo hemorrhagic fever virus in complex with covalently bonded ubiquitin. Capodagli GC, McKercher MA, Baker EA, Masters EM, Brunzelle JS, Pegan SD. J Virol 85 3621-3630 (2011)
  24. Papain-like protease 1 from transmissible gastroenteritis virus: crystal structure and enzymatic activity toward viral and cellular substrates. Wojdyla JA, Manolaridis I, van Kasteren PB, Kikkert M, Snijder EJ, Gorbalenya AE, Tucker PA. J Virol 84 10063-10073 (2010)
  25. Substrate filtering by the active site crossover loop in UCHL3 revealed by sortagging and gain-of-function mutations. Popp MW, Artavanis-Tsakonas K, Ploegh HL. J Biol Chem 284 3593-3602 (2009)
  26. A viral deubiquitylating enzyme targets viral RNA-dependent RNA polymerase and affects viral infectivity. Chenon M, Camborde L, Cheminant S, Jupin I. EMBO J 31 741-753 (2012)
  27. Diversity of ubiquitin and ISG15 specificity among nairoviruses' viral ovarian tumor domain proteases. Capodagli GC, Deaton MK, Baker EA, Lumpkin RJ, Pegan SD. J Virol 87 3815-3827 (2013)
  28. Characterization and structural studies of the Plasmodium falciparum ubiquitin and Nedd8 hydrolase UCHL3. Artavanis-Tsakonas K, Weihofen WA, Antos JM, Coleman BI, Comeaux CA, Duraisingh MT, Gaudet R, Ploegh HL. J Biol Chem 285 6857-6866 (2010)
  29. Identification of functional domains within the essential large tegument protein pUL36 of pseudorabies virus. Böttcher S, Granzow H, Maresch C, Möhl B, Klupp BG, Mettenleiter TC. J Virol 81 13403-13411 (2007)
  30. Pseudomonas aeruginosa Cif protein enhances the ubiquitination and proteasomal degradation of the transporter associated with antigen processing (TAP) and reduces major histocompatibility complex (MHC) class I antigen presentation. Bomberger JM, Ely KH, Bangia N, Ye S, Green KA, Green WR, Enelow RI, Stanton BA. J Biol Chem 289 152-162 (2014)
  31. A herpesvirus encoded deubiquitinase is a novel neuroinvasive determinant. Lee JI, Sollars PJ, Baver SB, Pickard GE, Leelawong M, Smith GA. PLoS Pathog 5 e1000387 (2009)
  32. A single mutation responsible for temperature-sensitive entry and assembly defects in the VP1-2 protein of herpes simplex virus. Abaitua F, Daikoku T, Crump CM, Bolstad M, O'Hare P. J Virol 85 2024-2036 (2011)
  33. Crystal structure of the herpesvirus inner tegument protein UL37 supports its essential role in control of viral trafficking. Pitts JD, Klabis J, Richards AL, Smith GA, Heldwein EE. J Virol 88 5462-5473 (2014)
  34. Epstein-barr virus encodes three bona fide ubiquitin-specific proteases. Sompallae R, Gastaldello S, Hildebrand S, Zinin N, Hassink G, Lindsten K, Haas J, Persson B, Masucci MG. J Virol 82 10477-10486 (2008)
  35. A functional ubiquitin-specific protease embedded in the large tegument protein (ORF64) of murine gammaherpesvirus 68 is active during the course of infection. Gredmark S, Schlieker C, Quesada V, Spooner E, Ploegh HL. J Virol 81 10300-10309 (2007)
  36. Autocatalytic activity of the ubiquitin-specific protease domain of herpes simplex virus 1 VP1-2. Bolstad M, Abaitua F, Crump CM, O'Hare P. J Virol 85 8738-8751 (2011)
  37. Cooperative inhibition of RIP1-mediated NF-κB signaling by cytomegalovirus-encoded deubiquitinase and inactive homolog of cellular ribonucleotide reductase large subunit. Kwon KM, Oh SE, Kim YE, Han TH, Ahn JH. PLoS Pathog 13 e1006423 (2017)
  38. The Rad6/18 ubiquitin complex interacts with the Epstein-Barr virus deubiquitinating enzyme, BPLF1, and contributes to virus infectivity. Kumar R, Whitehurst CB, Pagano JS. J Virol 88 6411-6422 (2014)
  39. A gammaherpesvirus ubiquitin-specific protease is involved in the establishment of murine gammaherpesvirus 68 infection. Gredmark-Russ S, Isaacson MK, Kattenhorn L, Cheung EJ, Watson N, Ploegh HL. J Virol 83 10644-10652 (2009)
  40. Conserved Tryptophan Motifs in the Large Tegument Protein pUL36 Are Required for Efficient Secondary Envelopment of Herpes Simplex Virus Capsids. Ivanova L, Buch A, Döhner K, Pohlmann A, Binz A, Prank U, Sandbaumhüter M, Bauerfeind R, Sodeik B. J Virol 90 5368-5383 (2016)
  41. Toward a three-dimensional view of protein networks between species. Franzosa EA, Garamszegi S, Xia Y. Front Microbiol 3 428 (2012)
  42. Functional Interaction Between the ESCRT-I Component TSG101 and the HSV-1 Tegument Ubiquitin Specific Protease. Calistri A, Munegato D, Toffoletto M, Celestino M, Franchin E, Comin A, Sartori E, Salata C, Parolin C, Palù G. J Cell Physiol 230 1794-1806 (2015)
  43. A mobile loop near the active site acts as a switch between the dual activities of a viral protease/deubiquitinase. Jupin I, Ayach M, Jomat L, Fieulaine S, Bressanelli S. PLoS Pathog 13 e1006714 (2017)
  44. Herpes Simplex Virus Capsid-Organelle Association in the Absence of the Large Tegument Protein UL36p. Kharkwal H, Furgiuele SS, Smith CG, Wilson DW. J Virol 89 11372-11382 (2015)
  45. Geometric similarities of protein-protein interfaces at atomic resolution are only observed within homologous families: an exhaustive structural classification study. Kinjo AR, Nakamura H. J Mol Biol 399 526-540 (2010)
  46. Nedd8 hydrolysis by UCH proteases in Plasmodium parasites. Karpiyevich M, Adjalley S, Mol M, Ascher DB, Mason B, van der Heden van Noort GJ, Laman H, Ovaa H, Lee MCS, Artavanis-Tsakonas K. PLoS Pathog 15 e1008086 (2019)
  47. Insights into herpesvirus tegument organization from structural analyses of the 970 central residues of HSV-1 UL36 protein. Scrima N, Lepault J, Boulard Y, Pasdeloup D, Bressanelli S, Roche S. J Biol Chem 290 8820-8833 (2015)
  48. Atypical nuclear envelope condensates linked to neurological disorders reveal nucleoporin-directed chaperone activities. Prophet SM, Rampello AJ, Niescier RF, Gentile JE, Mallik S, Koleske AJ, Schlieker C. Nat Cell Biol 24 1630-1641 (2022)
  49. Functional analysis of nuclear localization signals in VP1-2 homologues from all herpesvirus subfamilies. Hennig T, Abaitua F, O'Hare P. J Virol 88 5391-5405 (2014)
  50. Marek's disease virus (MDV) ubiquitin-specific protease (USP) performs critical functions beyond its enzymatic activity during virus replication. Veiga IB, Jarosinski KW, Kaufer BB, Osterrieder N. Virology 437 110-117 (2013)
  51. DALI shines a light on remote homologs: One hundred discoveries. Holm L, Laiho A, Törönen P, Salgado M. Protein Sci 32 e4519 (2023)
  52. Helinoto, a Helitron2 transposon from the icefish Chionodraco hamatus, contains a region with three deubiquitinase-like domains that exhibit transcriptional activity. Capriglione T, De Paolo S, Cocca E. Comp Biochem Physiol Part D Genomics Proteomics 11 49-58 (2014)
  53. Small molecule screening identifies inhibitors of the Epstein-Barr virus deubiquitinating enzyme, BPLF1. Atkins SL, Motaib S, Wiser LC, Hopcraft SE, Hardy PB, Shackelford J, Foote P, Wade AH, Damania B, Pagano JS, Pearce KH, Whitehurst CB. Antiviral Res 173 104649 (2020)
  54. Monitoring Target Engagement of Deubiquitylating Enzymes Using Activity Probes: Past, Present, and Future. Harrigan J, Jacq X. Methods Mol Biol 1449 395-410 (2016)
  55. Rigid-body motions of interacting proteins dominate multispecific binding of ubiquitin in a shape-dependent manner. Dasgupta B, Nakamura H, Kinjo AR. Proteins 82 77-89 (2014)
  56. A versatile new tool derived from a bacterial deubiquitylase to detect and purify ubiquitylated substrates and their interacting proteins. Zhang M, Berk JM, Mehrtash AB, Kanyo J, Hochstrasser M. PLoS Biol 20 e3001501 (2022)
  57. Letter Structural basis for Ufm1 recognition by UfSP. Kim KH, Ha BH, Kim EE. FEBS Lett 592 263-273 (2018)
  58. Identification and classification of papain-like cysteine proteinases. Ozhelvaci F, Steczkiewicz K. J Biol Chem 299 104801 (2023)
  59. Bioinformatical Approaches to the Discovery and Classification of Novel Deubiquitinases. Hermanns T, Hofmann K. Methods Mol Biol 2591 135-149 (2023)
  60. Historical Article Hidde Ploegh: immunologist, journeyman. Interview by Nicole LeBrasseur. Ploegh H. J Cell Biol 179 364-365 (2007)