2j79 Citations

Glycosidase inhibition: an assessment of the binding of 18 putative transition-state mimics.

J Am Chem Soc 129 2345-54 (2007)
Related entries: 2j75, 2j77, 2j78, 2j7b, 2j7c, 2j7d, 2j7e, 2j7f, 2j7g, 2j7h

Cited: 58 times
EuropePMC logo PMID: 17279749

Abstract

The inhibition of glycoside hydrolases, through transition-state mimicry, is important both as a probe of enzyme mechanism and in the continuing quest for new drugs, notably in the treatment of cancer, HIV, influenza, and diabetes. The high affinity with which these enzymes are known to bind the transition state provides a framework upon which to design potent inhibitors. Recent work [for example, Bülow, A. et al. J. Am. Chem. Soc. 2000, 122, 8567-8568; Zechel, D. L. et al. J. Am. Chem. Soc. 2003, 125, 14313-14323] has revealed quite confusing and counter-intuitive patterns of inhibition for a number of glycosidase inhibitors. Here we describe a synergistic approach for analysis of inhibitors with a single enzyme 'model system', the Thermotoga maritima family 1 beta-glucosidase, TmGH1. The pH dependence of enzyme activity and inhibition has been determined, structures of inhibitor complexes have been solved by X-ray crystallography, with data up to 1.65 A resolution, and isothermal titration calorimetry was used to establish the thermodynamic signature. This has allowed the characterization of 18 compounds, all putative transition-state mimics, in order to build an 'inhibition profile' that provides an insight into what governs binding. In contrast to our preconceptions, there is little correlation of inhibitor chemistry with the calorimetric dissection of thermodynamics. The ensemble of inhibitors shows strong enthalpy-entropy compensation, and the random distribution of similar inhibitors across the plot of DeltaH degrees a vs TDeltaS degrees a likely reflects the enormous contribution of solvation and desolvation effects on ligand binding.

Articles - 2j79 mentioned but not cited (1)



Reviews citing this publication (13)

  1. β-Glucosidases. Ketudat Cairns JR, Esen A. Cell Mol Life Sci 67 3389-3405 (2010)
  2. Mechanistic insights into glycosidase chemistry. Vocadlo DJ, Davies GJ. Curr Opin Chem Biol 12 539-555 (2008)
  3. Glycosidase inhibition: assessing mimicry of the transition state. Gloster TM, Davies GJ. Org Biomol Chem 8 305-320 (2010)
  4. Developing inhibitors of glycan processing enzymes as tools for enabling glycobiology. Gloster TM, Vocadlo DJ. Nat Chem Biol 8 683-694 (2012)
  5. Covalent inhibitors of glycosidases and their applications in biochemistry and biology. Rempel BP, Withers SG. Glycobiology 18 570-586 (2008)
  6. Tetrazoles via Multicomponent Reactions. Neochoritis CG, Zhao T, Dömling A. Chem Rev 119 1970-2042 (2019)
  7. Recent developments in design and synthesis of bicyclic azasugars, carbasugars and related molecules as glycosidase inhibitors. Lahiri R, Ansari AA, Vankar YD. Chem Soc Rev 42 5102-5118 (2013)
  8. Glycosyltransferases, glycoside hydrolases: surprise, surprise! Henrissat B, Sulzenbacher G, Bourne Y. Curr Opin Struct Biol 18 527-533 (2008)
  9. A survey of the year 2007 literature on applications of isothermal titration calorimetry. Bjelić S, Jelesarov I. J Mol Recognit 21 289-312 (2008)
  10. Dissecting the catalytic mechanism of a plant beta-D-glucan glucohydrolase through structural biology using inhibitors and substrate analogues. Hrmova M, Fincher GB. Carbohydr Res 342 1613-1623 (2007)
  11. Synthesis and biological activity of naturally occurring α-glucosidase inhibitors. Wardrop DJ, Waidyarachchi SL. Nat Prod Rep 27 1431-1468 (2010)
  12. Development of inhibitors as research tools for carbohydrate-processing enzymes. Gloster TM. Biochem Soc Trans 40 913-928 (2012)
  13. Plant-derived Glycosides with α-Glucosidase Inhibitory Activity: Current Standing and Future Prospects. Khan H, Amin S, Tewari D, Nabavi SM, Atanasov AG. Endocr Metab Immune Disord Drug Targets 19 391-401 (2019)

Articles citing this publication (44)

  1. Structural and biochemical evidence for a boat-like transition state in beta-mannosidases. Tailford LE, Offen WA, Smith NL, Dumon C, Morland C, Gratien J, Heck MP, Stick RV, Blériot Y, Vasella A, Gilbert HJ, Davies GJ. Nat Chem Biol 4 306-312 (2008)
  2. The effect of electrostatic interactions on conformational equilibria of multiply substituted tetrahydropyran oxocarbenium ions. Yang MT, Woerpel KA. J Org Chem 74 545-553 (2009)
  3. Inhibition of O-GlcNAcase using a potent and cell-permeable inhibitor does not induce insulin resistance in 3T3-L1 adipocytes. Macauley MS, He Y, Gloster TM, Stubbs KA, Davies GJ, Vocadlo DJ. Chem Biol 17 937-948 (2010)
  4. Rapid assembly of a library of lipophilic iminosugars via the thiol-ene reaction yields promising pharmacological chaperones for the treatment of Gaucher disease. Goddard-Borger ED, Tropak MB, Yonekawa S, Tysoe C, Mahuran DJ, Withers SG. J Med Chem 55 2737-2745 (2012)
  5. Glycosidase inhibition by ring-modified castanospermine analogues: tackling enzyme selectivity by inhibitor tailoring. Aguilar-Moncayo M, Gloster TM, Turkenburg JP, García-Moreno MI, Ortiz Mellet C, Davies GJ, García Fernández JM. Org Biomol Chem 7 2738-2747 (2009)
  6. Mechanism, Structure, and Inhibition of O-GlcNAc Processing Enzymes. Gloster TM, Vocadlo DJ. Curr Signal Transduct Ther 5 74-91 (2010)
  7. Structure of the two-subsite beta-d-xylosidase from Selenomonas ruminantium in complex with 1,3-bis[tris(hydroxymethyl)methylamino]propane. Brunzelle JS, Jordan DB, McCaslin DR, Olczak A, Wawrzak Z. Arch Biochem Biophys 474 157-166 (2008)
  8. 1,6-Cyclophellitol Cyclosulfates: A New Class of Irreversible Glycosidase Inhibitor. Artola M, Wu L, Ferraz MJ, Kuo CL, Raich L, Breen IZ, Offen WA, Codée JDC, van der Marel GA, Rovira C, Aerts JMFG, Davies GJ, Overkleeft HS. ACS Cent Sci 3 784-793 (2017)
  9. Ring opening of donor-acceptor cyclopropanes with the azide ion: a tool for construction of N-heterocycles. Ivanov KL, Villemson EV, Budynina EM, Ivanova OA, Trushkov IV, Melnikov MY. Chemistry 21 4975-4987 (2015)
  10. Chitin oligosaccharide binding to a family GH19 chitinase from the moss Bryum coronatum. Ohnuma T, Sørlie M, Fukuda T, Kawamoto N, Taira T, Fukamizo T. FEBS J 278 3991-4001 (2011)
  11. Influence of Side Chain Conformation on the Activity of Glycosidase Inhibitors. Tseng PS, Ande C, Moremen KW, Crich D. Angew Chem Int Ed Engl 62 e202217809 (2023)
  12. Molecular basis for beta-glucosidase inhibition by ring-modified calystegine analogues. Aguilar M, Gloster TM, García-Moreno MI, Ortiz Mellet C, Davies GJ, Llebaria A, Casas J, Egido-Gabás M, García Fernandez JM. Chembiochem 9 2612-2618 (2008)
  13. New Labdane diterpenes as intestinal alpha-glucosidase inhibitor from antihyperglycemic extract of Hedychium spicatum (Ham. Ex Smith) rhizomes. Prabhakar Reddy P, Tiwari AK, Ranga Rao R, Madhusudhana K, Rama Subba Rao V, Ali AZ, Suresh Babu K, Madhusudana Rao J. Bioorg Med Chem Lett 19 2562-2565 (2009)
  14. Plausible Transition States for glycosylation reactions. Whitfield DM. Carbohydr Res 356 180-190 (2012)
  15. Structural basis of alpha-fucosidase inhibition by iminocyclitols with K(i) values in the micro- to picomolar range. Wu HJ, Ho CW, Ko TP, Popat SD, Lin CH, Wang AH. Angew Chem Int Ed Engl 49 337-340 (2010)
  16. Correlation analyses on binding affinity of sialic acid analogues and anti-influenza drugs with human neuraminidase using ab initio MO calculations on their complex structures--LERE-QSAR analysis (IV). Hitaoka S, Matoba H, Harada M, Yoshida T, Tsuji D, Hirokawa T, Itoh K, Chuman H. J Chem Inf Model 51 2706-2716 (2011)
  17. Inhibition of the glucosyltransferase activity of clostridial Rho/Ras-glucosylating toxins by castanospermine. Jank T, Ziegler MO, Schulz GE, Aktories K. FEBS Lett 582 2277-2282 (2008)
  18. Diastereoselective nitrenium ion-mediated cyclofunctionalization: total synthesis of (+)-castanospermine. Bowen EG, Wardrop DJ. Org Lett 12 5330-5333 (2010)
  19. Dihydroxyacetone phosphate aldolase catalyzed synthesis of structurally diverse polyhydroxylated pyrrolidine derivatives and evaluation of their glycosidase inhibitory properties. Calveras J, Egido-Gabás M, Gómez L, Casas J, Parella T, Joglar J, Bujons J, Clapés P. Chemistry 15 7310-7328 (2009)
  20. Carba-cyclophellitols Are Neutral Retaining-Glucosidase Inhibitors. Beenakker TJM, Wander DPA, Offen WA, Artola M, Raich L, Ferraz MJ, Li KY, Houben JHPM, van Rijssel ER, Hansen T, van der Marel GA, Codée JDC, Aerts JMFG, Rovira C, Davies GJ, Overkleeft HS. J Am Chem Soc 139 6534-6537 (2017)
  21. DFT studies of the ionization of alpha and beta glycopyranosyl donors. Whitfield DM. Carbohydr Res 342 1726-1740 (2007)
  22. Synthesis and glycosidase inhibitory activity of noeurostegine-a new and potent inhibitor of beta-glucoside hydrolases. Rasmussen TS, Jensen HH. Org Biomol Chem 8 433-441 (2010)
  23. Aglycone specificity of Thermotoga neapolitana β-glucosidase 1A modified by mutagenesis, leading to increased catalytic efficiency in quercetin-3-glucoside hydrolysis. Khan S, Pozzo T, Megyeri M, Lindahl S, Sundin A, Turner C, Karlsson EN. BMC Biochem 12 11 (2011)
  24. Structural and thermodynamic analyses of α-L-fucosidase inhibitors. Lammerts van Bueren A, Popat SD, Lin CH, Davies GJ. Chembiochem 11 1971-1974 (2010)
  25. Thermodynamic characterization of pyrazole and azaindole derivatives binding to p38 mitogen-activated protein kinase using Biacore T100 technology and van't Hoff analysis. Papalia GA, Giannetti AM, Arora N, Myszka DG. Anal Biochem 383 255-264 (2008)
  26. Inhibition of a bacterial O-GlcNAcase homologue by lactone and lactam derivatives: structural, kinetic and thermodynamic analyses. He Y, Bubb AK, Stubbs KA, Gloster TM, Davies GJ. Amino Acids 40 829-839 (2011)
  27. Binding of sulfonium-ion analogues of di-epi-swainsonine and 8-epi-lentiginosine to Drosophila Golgi alpha-mannosidase II: the role of water in inhibitor binding. Kumar NS, Kuntz DA, Wen X, Pinto BM, Rose DR. Proteins 71 1484-1496 (2008)
  28. Structure-activity relationships in a series of C2-substituted gluco-configured tetrahydroimidazopyridines as β-glucosidase inhibitors. Li T, Guo L, Zhang Y, Wang J, Zhang Z, Li J, Zhang W, Lin J, Zhao W, Wang PG. Bioorg Med Chem 19 2136-2144 (2011)
  29. Enzyme inhibition by iminosugars: analysis and insight into the glycosidase-iminosugar dependency of pH. López Ó, Qing FL, Pedersen CM, Bols M. Bioorg Med Chem 21 4755-4761 (2013)
  30. Fmoc-protected iminosugar modified asparagine derivatives as building blocks for glycomimetics-containing peptides. Nuti F, Paolini I, Cardona F, Chelli M, Lolli F, Brandi A, Goti A, Rovero P, Papini AM. Bioorg Med Chem 15 3965-3973 (2007)
  31. Inhibition of the family 20 glycoside hydrolase catalytic modules in the Streptococcus pneumoniae exo-β-D-N-acetylglucosaminidase, StrH. Pluvinage B, Stubbs KA, Hattie M, Vocadlo DJ, Boraston AB. Org Biomol Chem 11 7907-7915 (2013)
  32. New antihyperglycemic, alpha-glucosidase inhibitory, and cytotoxic derivatives of benzimidazoles. Kumar JA, Tiwari AK, Ali AZ, Madhusudhana K, Reddy BS, Ramakrishna S, China Raju B. J Enzyme Inhib Med Chem 25 80-86 (2010)
  33. Side Chain Conformation Restriction in the Catalysis of Glycosidic Bond Formation by Leloir Glycosyltransferases, Glycoside Phosphorylases, and Transglycosidases. Quirke JCK, Crich D. ACS Catal 11 5069-5078 (2021)
  34. A fluorescence study of isofagomine protonation in β-glucosidase. Lindbäck E, Laursen BW, Poulsen JC, Kilså K, Pedersen CM, Bols M. Org Biomol Chem 13 6562-6566 (2015)
  35. Design, Synthesis and Structural Analysis of Glucocerebrosidase Imaging Agents. Rowland RJ, Chen Y, Breen I, Wu L, Offen WA, Beenakker TJ, Su Q, van den Nieuwendijk AMCH, Aerts JMFG, Artola M, Overkleeft HS, Davies GJ. Chemistry 27 16377-16388 (2021)
  36. Determination of protonation states of iminosugar-enzyme complexes using photoinduced electron transfer. Wang B, Olsen JI, Laursen BW, Navarro Poulsen JC, Bols M. Chem Sci 8 7383-7393 (2017)
  37. Structure of a GH51 α-L-arabinofuranosidase from Meripilus giganteus: conserved substrate recognition from bacteria to fungi. McGregor NGS, Turkenburg JP, Mørkeberg Krogh KBR, Nielsen JE, Artola M, Stubbs KA, Overkleeft HS, Davies GJ. Acta Crystallogr D Struct Biol 76 1124-1133 (2020)
  38. α-L-Arabinofuranosylated pyrrolidines as arabinanase inhibitors. Goddard-Borger ED, Carapito R, Jeltsch JM, Phalip V, Stick RV, Varrot A. Chem Commun (Camb) 47 9684-9686 (2011)
  39. Characterization of the PLP-dependent transaminase initiating azasugar biosynthesis. Arciola JM, Horenstein NA. Biochem J 475 2241-2256 (2018)
  40. Synthesis of novel mono and bis-indole conduritol derivatives and their α/β-glycosidase inhibitory effects. Çavdar H, Talaz O, Ekinci D. Bioorg Med Chem Lett 22 7499-7503 (2012)
  41. Probing the beta-1,3:1,4 glucanase, CtLic26A, with a thio-oligosaccharide and enzyme variants. Money VA, Cartmell A, Guerreiro CI, Ducros VM, Fontes CM, Gilbert HJ, Davies GJ. Org Biomol Chem 6 851-853 (2008)
  42. Synthesis of N-Substituted Iminosugar Derivatives and Evaluation of Their Immunosuppressive Activities. Lv Z, Song C, Niu Y, Li Q, Ye XS. ChemMedChem 13 338-351 (2018)
  43. Allylic Carbocyclic Inhibitors Covalently Bind Glycoside Hydrolases. Grayfer TD, Yamani K, Jung E, Chesnokov GA, Ferrara I, Hsiao CC, Georgiou A, Michel J, Bailly A, Sieber S, Eberl L, Gademann K. JACS Au 3 1151-1161 (2023)
  44. Investigation of the enantioselectivity of acetylcholinesterase and butyrylcholinesterase upon inhibition by tacrine-iminosugar heterodimers. Vaaland IC, López Ó, Puerta A, Fernandes MX, Padrón JM, Fernández-Bolaños JG, Sydnes MO, Lindbäck E. J Enzyme Inhib Med Chem 38 349-360 (2023)