2iug Citations

Crystal structure of the PI 3-kinase p85 amino-terminal SH2 domain and its phosphopeptide complexes.

Nat. Struct. Biol. 3 364-74 (1996)
Related entries: 2iuh, 2iui

Cited: 53 times
EuropePMC logo PMID: 8599763


Crystal structures of the amino-terminal SH2 domain of the p85alpha subunit of phosphatidylinositol (PI) 3-kinase, alone and in complex with phosphopeptides bearing pTyr-Met/Val-Xaa-Met motifs, show that phosphopeptides bind in the two-pronged manner seen in high-affinity Lck and Src SH2 complexes, with conserved interactions between the domain and the peptide segment from phosphotyrosine to Met+3. Peptide binding requires the rearrangement of a tyrosyl side chain in the BG loop to create the hydrophobic Met+3 binding pocket. The structures suggest a mechanism for the biological specificity exhibited by PI 3-kinase in its interactions with phosphoprotein partners.

Articles - 2iug mentioned but not cited (1)

Reviews citing this publication (9)

  1. p110α and p110β isoforms of PI3K signaling: are they two sides of the same coin? Singh P, Dar MS, Dar MJ. FEBS Lett. 590 3071-3082 (2016)
  2. Capitalizing on tumor genotyping: towards the design of mutation specific inhibitors of phosphoinsitide-3-kinase. Gabelli SB, Duong-Ly KC, Brower ET, Amzel LM. Adv. Enzyme Regul. 51 273-279 (2011)
  3. Somatic mutations in PI3Kalpha: structural basis for enzyme activation and drug design. Gabelli SB, Mandelker D, Schmidt-Kittler O, Vogelstein B, Amzel LM. Biochim. Biophys. Acta 1804 533-540 (2010)
  4. The regulation of class IA PI 3-kinases by inter-subunit interactions. Backer JM. Curr. Top. Microbiol. Immunol. 346 87-114 (2010)
  5. Viral infection and human disease--insights from minimotifs. Kadaveru K, Vyas J, Schiller MR. Front. Biosci. 13 6455-6471 (2008)
  6. Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Luo J, Manning BD, Cantley LC. Cancer Cell 4 257-262 (2003)
  7. Phosphoinositide kinases. Fruman DA, Meyers RE, Cantley LC. Annu. Rev. Biochem. 67 481-507 (1998)
  8. Structure and function of phosphoinositide 3-kinases. Wymann MP, Pirola L. Biochim. Biophys. Acta 1436 127-150 (1998)
  9. SH2 and PTB domain interactions in tyrosine kinase signal transduction. Shoelson SE. Curr Opin Chem Biol 1 227-234 (1997)

Articles citing this publication (43)

  1. The structure of a human p110alpha/p85alpha complex elucidates the effects of oncogenic PI3Kalpha mutations. Huang CH, Mandelker D, Schmidt-Kittler O, Samuels Y, Velculescu VE, Kinzler KW, Vogelstein B, Gabelli SB, Amzel LM. Science 318 1744-1748 (2007)
  2. Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit. Miled N, Yan Y, Hon WC, Perisic O, Zvelebil M, Inbar Y, Schneidman-Duhovny D, Wolfson HJ, Backer JM, Williams RL. Science 317 239-242 (2007)
  3. Involvement of regulatory and catalytic subunits of phosphoinositide 3-kinase in NF-kappaB activation. Béraud C, Henzel WJ, Baeuerle PA. Proc. Natl. Acad. Sci. U.S.A. 96 429-434 (1999)
  4. Structure of the IRS-1 PTB domain bound to the juxtamembrane region of the insulin receptor. Eck MJ, Dhe-Paganon S, Trüb T, Nolte RT, Shoelson SE. Cell 85 695-705 (1996)
  5. A frequent kinase domain mutation that changes the interaction between PI3Kalpha and the membrane. Mandelker D, Gabelli SB, Schmidt-Kittler O, Zhu J, Cheong I, Huang CH, Kinzler KW, Vogelstein B, Amzel LM. Proc. Natl. Acad. Sci. U.S.A. 106 16996-17001 (2009)
  6. Crystal structures of the XLP protein SAP reveal a class of SH2 domains with extended, phosphotyrosine-independent sequence recognition. Poy F, Yaffe MB, Sayos J, Saxena K, Morra M, Sumegi J, Cantley LC, Terhorst C, Eck MJ. Mol. Cell 4 555-561 (1999)
  7. Tyrosine 1101 of Tie2 is the major site of association of p85 and is required for activation of phosphatidylinositol 3-kinase and Akt. Kontos CD, Stauffer TP, Yang WP, York JD, Huang L, Blanar MA, Meyer T, Peters KG. Mol. Cell. Biol. 18 4131-4140 (1998)
  8. The p85 regulatory subunit of phosphoinositide 3-kinase down-regulates IRS-1 signaling via the formation of a sequestration complex. Luo J, Field SJ, Lee JY, Engelman JA, Cantley LC. J. Cell Biol. 170 455-464 (2005)
  9. Regulation of Class IA PI 3-kinases: C2 domain-iSH2 domain contacts inhibit p85/p110alpha and are disrupted in oncogenic p85 mutants. Wu H, Shekar SC, Flinn RJ, El-Sibai M, Jaiswal BS, Sen KI, Janakiraman V, Seshagiri S, Gerfen GJ, Girvin ME, Backer JM. Proc. Natl. Acad. Sci. U.S.A. 106 20258-20263 (2009)
  10. Dynamics of the phosphoinositide 3-kinase p110δ interaction with p85α and membranes reveals aspects of regulation distinct from p110α. Burke JE, Vadas O, Berndt A, Finegan T, Perisic O, Williams RL. Structure 19 1127-1137 (2011)
  11. Structure and in vivo requirement of the yeast Spt6 SH2 domain. Dengl S, Mayer A, Sun M, Cramer P. J. Mol. Biol. 389 211-225 (2009)
  12. Tyrosine phosphorylation of the Gα-interacting protein GIV promotes activation of phosphoinositide 3-kinase during cell migration. Lin C, Ear J, Pavlova Y, Mittal Y, Kufareva I, Ghassemian M, Abagyan R, Garcia-Marcos M, Ghosh P. Sci Signal 4 ra64 (2011)
  13. Specificity and affinity motifs for Grb2 SH2-ligand interactions. Kessels HW, Ward AC, Schumacher TN. Proc. Natl. Acad. Sci. U.S.A. 99 8524-8529 (2002)
  14. Inhibition of PI3K binding to activators by serine phosphorylation of PI3K regulatory subunit p85alpha Src homology-2 domains. Lee JY, Chiu YH, Asara J, Cantley LC. Proc. Natl. Acad. Sci. U.S.A. 108 14157-14162 (2011)
  15. Mutational investigation of the specificity determining region of the Src SH2 domain. Bradshaw JM, Mitaxov V, Waksman G. J. Mol. Biol. 299 521-535 (2000)
  16. Structural basis for the high affinity of amino-aromatic SH2 phosphopeptide ligands. Rahuel J, García-Echeverría C, Furet P, Strauss A, Caravatti G, Fretz H, Schoepfer J, Gay B. J. Mol. Biol. 279 1013-1022 (1998)
  17. Genome wide analysis of pathogenic SH2 domain mutations. Lappalainen I, Thusberg J, Shen B, Vihinen M. Proteins 72 779-792 (2008)
  18. Dynamic steps in receptor tyrosine kinase mediated activation of class IA phosphoinositide 3-kinases (PI3K) captured by H/D exchange (HDX-MS). Burke JE, Williams RL. Adv Biol Regul 53 97-110 (2013)
  19. A specific A/T polymorphism in Western tyrosine phosphorylation B-motifs regulates Helicobacter pylori CagA epithelial cell interactions. Zhang XS, Tegtmeyer N, Traube L, Jindal S, Perez-Perez G, Sticht H, Backert S, Blaser MJ. PLoS Pathog. 11 e1004621 (2015)
  20. Combinatorial Domain Hunting: An effective approach for the identification of soluble protein domains adaptable to high-throughput applications. Reich S, Puckey LH, Cheetham CL, Harris R, Ali AA, Bhattacharyya U, Maclagan K, Powell KA, Prodromou C, Pearl LH, Driscoll PC, Savva R. Protein Sci. 15 2356-2365 (2006)
  21. Interaction of class I human leukocyte antigen (HLA-I) molecules with insulin receptors and its effect on the insulin-signaling cascade. Ramalingam TS, Chakrabarti A, Edidin M. Mol. Biol. Cell 8 2463-2474 (1997)
  22. Evolving specificity from variability for protein interaction domains. Kaneko T, Sidhu SS, Li SS. Trends Biochem. Sci. 36 183-190 (2011)
  23. Crystal structure of the C-terminal SH2 domain of the p85alpha regulatory subunit of phosphoinositide 3-kinase: an SH2 domain mimicking its own substrate. Hoedemaeker FJ, Siegal G, Roe SM, Driscoll PC, Abrahams JP. J. Mol. Biol. 292 763-770 (1999)
  24. The iSH2 domain of PI 3-kinase is a rigid tether for p110 and not a conformational switch. Fu Z, Aronoff-Spencer E, Wu H, Gerfen GJ, Backer JM. Arch. Biochem. Biophys. 432 244-251 (2004)
  25. Experimental mapping of soluble protein domains using a hierarchical approach. Pedelacq JD, Nguyen HB, Cabantous S, Mark BL, Listwan P, Bell C, Friedland N, Lockard M, Faille A, Mourey L, Terwilliger TC, Waldo GS. Nucleic Acids Res. 39 e125 (2011)
  26. Binding specificity of SH2 domains: insight from free energy simulations. Gan W, Roux B. Proteins 74 996-1007 (2009)
  27. Alternative modes of binding of proteins with tandem SH2 domains. O'Brien R, Rugman P, Renzoni D, Layton M, Handa R, Hilyard K, Waterfield MD, Driscoll PC, Ladbury JE. Protein Sci. 9 570-579 (2000)
  28. CH/pi hydrogen bonds determine the selectivity of the Src homology 2 domain to tyrosine phosphotyrosyl peptides: an ab initio fragment molecular orbital study. Ozawa T, Okazaki K. J Comput Chem 29 2656-2666 (2008)
  29. The structure of the inter-SH2 domain of class IA phosphoinositide 3-kinase determined by site-directed spin labeling EPR and homology modeling. Fu Z, Aronoff-Spencer E, Backer JM, Gerfen GJ. Proc. Natl. Acad. Sci. U.S.A. 100 3275-3280 (2003)
  30. pH titration studies of an SH2 domain-phosphopeptide complex: unusual histidine and phosphate pKa values. Singer AU, Forman-Kay JD. Protein Sci. 6 1910-1919 (1997)
  31. Structural basis for SH2D1A mutations in X-linked lymphoproliferative disease. Lappalainen I, Giliani S, Franceschini R, Bonnefoy JY, Duckett C, Notarangelo LD, Vihinen M. Biochem. Biophys. Res. Commun. 269 124-130 (2000)
  32. Activation of PI3Kα by physiological effectors and by oncogenic mutations: structural and dynamic effects. Gabelli SB, Echeverria I, Alexander M, Duong-Ly KC, Chaves-Moreira D, Brower ET, Vogelstein B, Amzel LM. Biophys Rev 6 89-95 (2014)
  33. ORF-selector ESPRIT: a second generation library screen for soluble protein expression employing precise open reading frame selection. An Y, Yumerefendi H, Mas PJ, Chesneau A, Hart DJ. J. Struct. Biol. 175 189-197 (2011)
  34. Autoinhibition and phosphorylation-induced activation of phospholipase C-γ isozymes. Hajicek N, Charpentier TH, Rush JR, Harden TK, Sondek J. Biochemistry 52 4810-4819 (2013)
  35. The structure of p85ni in class IA phosphoinositide 3-kinase exhibits interdomain disorder. Sen KI, Wu H, Backer JM, Gerfen GJ. Biochemistry 49 2159-2166 (2010)
  36. High resolution crystal structure of the Grb2 SH2 domain with a phosphopeptide derived from CD28. Higo K, Ikura T, Oda M, Morii H, Takahashi J, Abe R, Ito N. PLoS ONE 8 e74482 (2013)
  37. Structural basis of nSH2 regulation and lipid binding in PI3Kα. Miller MS, Schmidt-Kittler O, Bolduc DM, Brower ET, Chaves-Moreira D, Allaire M, Kinzler KW, Jennings IG, Thompson PE, Cole PA, Amzel LM, Vogelstein B, Gabelli SB. Oncotarget 5 5198-5208 (2014)
  38. Two phosphorylation-independent sites on the p85 SH2 domains bind A-Raf kinase. Fang Y, Johnson LM, Mahon ES, Anderson DH. Biochem. Biophys. Res. Commun. 290 1267-1274 (2002)
  39. Assembly and Molecular Architecture of the Phosphoinositide 3-Kinase p85α Homodimer. LoPiccolo J, Kim SJ, Shi Y, Wu B, Wu H, Chait BT, Singer RH, Sali A, Brenowitz M, Bresnick AR, Backer JM. J. Biol. Chem. 290 30390-30405 (2015)
  40. Structural basis for a novel interaction between TXNIP and Vav2. Liu S, Wu X, Zong M, Tempel W, Loppnau P, Liu Y. FEBS Lett. 590 857-865 (2016)
  41. Insights into structure and function of SHIP2-SH2: homology modeling, docking, and molecular dynamics study. Saqib U, Siddiqi MI. J Chem Biol 4 149-158 (2011)
  42. Imaging flow cytometry and GST pulldown assays provide new insights into channel catfish leukocyte immune-type receptor-mediated phagocytic pathways. Zwozdesky MA, Fei C, Lillico DM, Stafford JL. Dev. Comp. Immunol. 67 126-138 (2017)
  43. A Comprehensive Survey of the Roles of Highly Disordered Proteins in Type 2 Diabetes. Du Z, Uversky VN. Int J Mol Sci 18 (2017)