2irv Citations

Structural basis for intramembrane proteolysis by rhomboid serine proteases.

Proc Natl Acad Sci U S A 104 462-6 (2007)
Cited: 115 times
EuropePMC logo PMID: 17190827

Abstract

Intramembrane proteases catalyze peptide bond cleavage of integral membrane protein substrates. This activity is crucial for many biological and pathological processes. Rhomboids are evolutionarily widespread intramembrane serine proteases. Here, we present the 2.3-A-resolution crystal structure of a rhomboid from Escherichia coli. The enzyme has six transmembrane helices, five of which surround a short TM4, which starts deep within the membrane at the catalytic serine residue. Thus, the catalytic serine is in an externally exposed cavity, which provides a hydrophilic environment for proteolysis. Our results reveal a mechanism to enable water-dependent catalysis at the depth of the hydrophobic milieu of the membrane and suggest how substrates gain access to the sequestered rhomboid active site.

Reviews - 2irv mentioned but not cited (4)

  1. Taking the plunge: integrating structural, enzymatic and computational insights into a unified model for membrane-immersed rhomboid proteolysis. Urban S. Biochem. J. 425 501-512 (2010)
  2. Hydrogen bond dynamics in membrane protein function. Bondar AN, White SH. Biochim. Biophys. Acta 1818 942-950 (2012)
  3. The expanding diversity of serine hydrolases. Botos I, Wlodawer A. Curr. Opin. Struct. Biol. 17 683-690 (2007)
  4. Phosphatidylglyerol Lipid Binding at the Active Site of an Intramembrane Protease. Bondar AN. J Membr Biol 253 563-576 (2020)

Articles - 2irv mentioned but not cited (10)

  1. Structural basis for intramembrane proteolysis by rhomboid serine proteases. Ben-Shem A, Fass D, Bibi E. Proc. Natl. Acad. Sci. U.S.A. 104 462-466 (2007)
  2. Rhomboid protease dynamics and lipid interactions. Bondar AN, del Val C, White SH. Structure 17 395-405 (2009)
  3. Open-cap conformation of intramembrane protease GlpG. Wang Y, Ha Y. Proc. Natl. Acad. Sci. U.S.A. 104 2098-2102 (2007)
  4. Catalytic mechanism of rhomboid protease GlpG probed by 3,4-dichloroisocoumarin and diisopropyl fluorophosphonate. Xue Y, Ha Y. J. Biol. Chem. 287 3099-3107 (2012)
  5. An internal water-retention site in the rhomboid intramembrane protease GlpG ensures catalytic efficiency. Zhou Y, Moin SM, Urban S, Zhang Y. Structure 20 1255-1263 (2012)
  6. Structural and mechanistic basis of Parl activity and regulation. Jeyaraju DV, McBride HM, Hill RB, Pellegrini L. Cell Death Differ. 18 1531-1539 (2011)
  7. Extension of a protein docking algorithm to membranes and applications to amyloid precursor protein dimerization. Viswanath S, Dominguez L, Foster LS, Straub JE, Elber R. Proteins 83 2170-2185 (2015)
  8. Improved detection of remote homologues using cascade PSI-BLAST: influence of neighbouring protein families on sequence coverage. Kaushik S, Mutt E, Chellappan A, Sankaran S, Srinivasan N, Sowdhamini R. PLoS ONE 8 e56449 (2013)
  9. Membrane-embedded protease poses for photoshoot. Lieberman RL, Wolfe MS. Proc. Natl. Acad. Sci. U.S.A. 104 401-402 (2007)
  10. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Chem. Rev. 119 5607-5774 (2019)


Reviews citing this publication (43)

  1. Substrate specificity of gamma-secretase and other intramembrane proteases. Beel AJ, Sanders CR. Cell. Mol. Life Sci. 65 1311-1334 (2008)
  2. Biophysical dissection of membrane proteins. White SH. Nature 459 344-346 (2009)
  3. Unconventional serine proteases: variations on the catalytic Ser/His/Asp triad configuration. Ekici OD, Paetzel M, Dalbey RE. Protein Sci. 17 2023-2037 (2008)
  4. Rhomboid proteases and their biological functions. Freeman M. Annu. Rev. Genet. 42 191-210 (2008)
  5. Making the cut: central roles of intramembrane proteolysis in pathogenic microorganisms. Urban S. Nat. Rev. Microbiol. 7 411-423 (2009)
  6. Intramembrane proteolysis. Wolfe MS. Chem. Rev. 109 1599-1612 (2009)
  7. Regulated intramembrane proteolysis: signaling pathways and biological functions. Lal M, Caplan M. Physiology (Bethesda) 26 34-44 (2011)
  8. Membrane proteases in the bacterial protein secretion and quality control pathway. Dalbey RE, Wang P, van Dijl JM. Microbiol. Mol. Biol. Rev. 76 311-330 (2012)
  9. Complex regulatory pathways coordinate cell-cycle progression and development in Caulobacter crescentus. Brown PJ, Hardy GG, Trimble MJ, Brun YV. Adv. Microb. Physiol. 54 1-101 (2009)
  10. The role of protease activity in ErbB biology. Blobel CP, Carpenter G, Freeman M. Exp. Cell Res. 315 671-682 (2009)
  11. How intramembrane proteases bury hydrolytic reactions in the membrane. Erez E, Fass D, Bibi E. Nature 459 371-378 (2009)
  12. Intramembrane-cleaving proteases. Wolfe MS. J. Biol. Chem. 284 13969-13973 (2009)
  13. The rhomboid-like superfamily: molecular mechanisms and biological roles. Freeman M. Annu. Rev. Cell Dev. Biol. 30 235-254 (2014)
  14. Structures of membrane proteins. Vinothkumar KR, Henderson R. Q. Rev. Biophys. 43 65-158 (2010)
  15. The rhomboid protease family: a decade of progress on function and mechanism. Urban S, Dickey SW. Genome Biol. 12 231 (2011)
  16. A glimpse of structural biology through X-ray crystallography. Shi Y. Cell 159 995-1014 (2014)
  17. Toward structural elucidation of the gamma-secretase complex. Li H, Wolfe MS, Selkoe DJ. Structure 17 326-334 (2009)
  18. Cutting proteins within lipid bilayers: rhomboid structure and mechanism. Lemberg MK, Freeman M. Mol. Cell 28 930-940 (2007)
  19. Structure and mechanism of intramembrane protease. Ha Y. Semin. Cell Dev. Biol. 20 240-250 (2009)
  20. Rhomboids: 7 years of a new protease family. Freeman M. Semin. Cell Dev. Biol. 20 231-239 (2009)
  21. Structure, mechanism and inhibition of gamma-secretase and presenilin-like proteases. Wolfe MS. Biol. Chem. 391 839-847 (2010)
  22. Core principles of intramembrane proteolysis: comparison of rhomboid and site-2 family proteases. Urban S, Shi Y. Curr. Opin. Struct. Biol. 18 432-441 (2008)
  23. The PARL family of mitochondrial rhomboid proteases. Hill RB, Pellegrini L. Semin. Cell Dev. Biol. 21 582-592 (2010)
  24. The roles of intramembrane proteases in protozoan parasites. Sibley LD. Biochim. Biophys. Acta 1828 2908-2915 (2013)
  25. Toward the structure of presenilin/γ-secretase and presenilin homologs. Wolfe MS. Biochim. Biophys. Acta 1828 2886-2897 (2013)
  26. Membrane Protein Structure, Function, and Dynamics: a Perspective from Experiments and Theory. Cournia Z, Allen TW, Andricioaei I, Antonny B, Baum D, Brannigan G, Buchete NV, Deckman JT, Delemotte L, Del Val C, Friedman R, Gkeka P, Hege HC, Hénin J, Kasimova MA, Kolocouris A, Klein ML, Khalid S, Lemieux MJ, Lindow N, Roy M, Selent J, Tarek M, Tofoleanu F, Vanni S, Urban S, Wales DJ, Smith JC, Bondar AN. J. Membr. Biol. 248 611-640 (2015)
  27. Structural and mechanistic principles of intramembrane proteolysis--lessons from rhomboids. Strisovsky K. FEBS J. 280 1579-1603 (2013)
  28. From protein sequences to 3D-structures and beyond: the example of the UniProt knowledgebase. Hinz U, UniProt Consortium. Cell. Mol. Life Sci. 67 1049-1064 (2010)
  29. Structure and mechanism of rhomboid protease. Ha Y, Akiyama Y, Xue Y. J. Biol. Chem. 288 15430-15436 (2013)
  30. Bioinformatics perspective on rhomboid intramembrane protease evolution and function. Kinch LN, Grishin NV. Biochim. Biophys. Acta 1828 2937-2943 (2013)
  31. Untangling structure-function relationships in the rhomboid family of intramembrane proteases. Brooks CL, Lemieux MJ. Biochim. Biophys. Acta 1828 2862-2872 (2013)
  32. Why cells need intramembrane proteases - a mechanistic perspective. Strisovsky K. FEBS J. 283 1837-1845 (2016)
  33. Intramembrane proteolysis by rhomboids: catalytic mechanisms and regulatory principles. Vinothkumar KR, Freeman M. Curr. Opin. Struct. Biol. 23 851-858 (2013)
  34. Role of rhomboid proteases in bacteria. Rather P. Biochim. Biophys. Acta 1828 2849-2854 (2013)
  35. Structural principles of intramembrane proteases. Ha Y. Curr. Opin. Struct. Biol. 17 405-411 (2007)
  36. Rhomboid proteases in mitochondria and plastids: keeping organelles in shape. Jeyaraju DV, Sood A, Laforce-Lavoie A, Pellegrini L. Biochim. Biophys. Acta 1833 371-380 (2013)
  37. Substrates and physiological functions of secretase rhomboid proteases. Lastun VL, Grieve AG, Freeman M. Semin. Cell Dev. Biol. 60 10-18 (2016)
  38. Biology of rhomboid proteases in infectious diseases. Dogga SK, Soldati-Favre D. Semin. Cell Dev. Biol. 60 38-45 (2016)
  39. Biophysical mechanism of rhomboid proteolysis: Setting a foundation for therapeutics. Bondar AN. Semin. Cell Dev. Biol. 60 46-51 (2016)
  40. Rhomboid proteases in plants - still in square one? Knopf RR, Adam Z. Physiol Plant 145 41-51 (2012)
  41. Membrane properties that shape the evolution of membrane enzymes. Sanders CR, Hutchison JM. Curr. Opin. Struct. Biol. 51 80-91 (2018)
  42. Rce1: mechanism and inhibition. Hampton SE, Dore TM, Schmidt WK. Crit. Rev. Biochem. Mol. Biol. 53 157-174 (2018)
  43. Substrate-Enzyme Interactions in Intramembrane Proteolysis: γ-Secretase as the Prototype. Liu X, Zhao J, Zhang Y, Ubarretxena-Belandia I, Forth S, Lieberman RL, Wang C. Front Mol Neurosci 13 65 (2020)

Articles citing this publication (58)

  1. Three-dimensional structure of human γ-secretase. Lu P, Bai XC, Ma D, Xie T, Yan C, Sun L, Yang G, Zhao Y, Zhou R, Scheres SHW, Shi Y. Nature 512 166-170 (2014)
  2. Structure of a site-2 protease family intramembrane metalloprotease. Feng L, Yan H, Wu Z, Yan N, Wang Z, Jeffrey PD, Shi Y. Science 318 1608-1612 (2007)
  3. Functional and evolutionary implications of enhanced genomic analysis of rhomboid intramembrane proteases. Lemberg MK, Freeman M. Genome Res. 17 1634-1646 (2007)
  4. Structure of a presenilin family intramembrane aspartate protease. Li X, Dang S, Yan C, Gong X, Wang J, Shi Y. Nature 493 56-61 (2013)
  5. Cryoelectron microscopy structure of purified gamma-secretase at 12 A resolution. Osenkowski P, Li H, Ye W, Li D, Aeschbach L, Fraering PC, Wolfe MS, Selkoe DJ, Li H. J. Mol. Biol. 385 642-652 (2009)
  6. Enzymatic analysis of a rhomboid intramembrane protease implicates transmembrane helix 5 as the lateral substrate gate. Baker RP, Young K, Feng L, Shi Y, Urban S. Proc. Natl. Acad. Sci. U.S.A. 104 8257-8262 (2007)
  7. The role of L1 loop in the mechanism of rhomboid intramembrane protease GlpG. Wang Y, Maegawa S, Akiyama Y, Ha Y. J. Mol. Biol. 374 1104-1113 (2007)
  8. The structural basis for catalysis and substrate specificity of a rhomboid protease. Vinothkumar KR, Strisovsky K, Andreeva A, Christova Y, Verhelst S, Freeman M. EMBO J. 29 3797-3809 (2010)
  9. Mechanism of farnesylated CAAX protein processing by the intramembrane protease Rce1. Manolaridis I, Kulkarni K, Dodd RB, Ogasawara S, Zhang Z, Bineva G, Reilly NO, Hanrahan SJ, Thompson AJ, Cronin N, Iwata S, Barford D. Nature 504 301-305 (2013)
  10. An Entamoeba histolytica rhomboid protease with atypical specificity cleaves a surface lectin involved in phagocytosis and immune evasion. Baxt LA, Baker RP, Singh U, Urban S. Genes Dev. 22 1636-1646 (2008)
  11. Architectural and thermodynamic principles underlying intramembrane protease function. Baker RP, Urban S. Nat. Chem. Biol. 8 759-768 (2012)
  12. Sequence features of substrates required for cleavage by GlpG, an Escherichia coli rhomboid protease. Akiyama Y, Maegawa S. Mol. Microbiol. 64 1028-1037 (2007)
  13. A C-terminal region of signal peptide peptidase defines a functional domain for intramembrane aspartic protease catalysis. Narayanan S, Sato T, Wolfe MS. J. Biol. Chem. 282 20172-20179 (2007)
  14. Rhomboid cleaves Star to regulate the levels of secreted Spitz. Tsruya R, Wojtalla A, Carmon S, Yogev S, Reich A, Bibi E, Merdes G, Schejter E, Shilo BZ. EMBO J. 26 1211-1220 (2007)
  15. Structure of rhomboid protease in a lipid environment. Vinothkumar KR. J. Mol. Biol. 407 232-247 (2011)
  16. The intramembrane active site of GlpG, an E. coli rhomboid protease, is accessible to water and hydrolyses an extramembrane peptide bond of substrates. Maegawa S, Koide K, Ito K, Akiyama Y. Mol. Microbiol. 64 435-447 (2007)
  17. Rapid purification of active gamma-secretase, an intramembrane protease implicated in Alzheimer's disease. Cacquevel M, Aeschbach L, Osenkowski P, Li D, Ye W, Wolfe MS, Li H, Selkoe DJ, Fraering PC. J. Neurochem. 104 210-220 (2008)
  18. Allosteric regulation of rhomboid intramembrane proteolysis. Arutyunova E, Panwar P, Skiba PM, Gale N, Mak MW, Lemieux MJ. EMBO J. 33 1869-1881 (2014)
  19. Drosophila EGFR signalling is modulated by differential compartmentalization of Rhomboid intramembrane proteases. Yogev S, Schejter ED, Shilo BZ. EMBO J. 27 1219-1230 (2008)
  20. Loss-of-function analyses defines vital and redundant functions of the Plasmodium rhomboid protease family. Lin JW, Meireles P, Prudêncio M, Engelmann S, Annoura T, Sajid M, Chevalley-Maurel S, Ramesar J, Nahar C, Avramut CM, Koster AJ, Matuschewski K, Waters AP, Janse CJ, Mair GR, Khan SM. Mol. Microbiol. 88 318-338 (2013)
  21. Conformational change in rhomboid protease GlpG induced by inhibitor binding to its S' subsites. Xue Y, Chowdhury S, Liu X, Akiyama Y, Ellman J, Ha Y. Biochemistry 51 3723-3731 (2012)
  22. Expansion of type II CAAX proteases reveals evolutionary origin of γ-secretase subunit APH-1. Pei J, Mitchell DA, Dixon JE, Grishin NV. J. Mol. Biol. 410 18-26 (2011)
  23. Substrate binding and specificity of rhomboid intramembrane protease revealed by substrate-peptide complex structures. Zoll S, Stanchev S, Began J, Skerle J, Lepšík M, Peclinovská L, Majer P, Strisovsky K. EMBO J. 33 2408-2421 (2014)
  24. In vivo analysis reveals substrate-gating mutants of a rhomboid intramembrane protease display increased activity in living cells. Urban S, Baker RP. Biol. Chem. 389 1107-1115 (2008)
  25. Plant mitochondrial rhomboid, AtRBL12, has different substrate specificity from its yeast counterpart. Kmiec-Wisniewska B, Krumpe K, Urantowka A, Sakamoto W, Pratje E, Janska H. Plant Mol Biol 68 159-171 (2008)
  26. APH1 polar transmembrane residues regulate the assembly and activity of presenilin complexes. Pardossi-Piquard R, Yang SP, Kanemoto S, Gu Y, Chen F, Böhm C, Sevalle J, Li T, Wong PC, Checler F, Schmitt-Ulms G, St George-Hyslop P, Fraser PE. J. Biol. Chem. 284 16298-16307 (2009)
  27. Activity-based probes for rhomboid proteases discovered in a mass spectrometry-based assay. Vosyka O, Vinothkumar KR, Wolf EV, Brouwer AJ, Liskamp RM, Verhelst SH. Proc. Natl. Acad. Sci. U.S.A. 110 2472-2477 (2013)
  28. Cooperative folding of a polytopic α-helical membrane protein involves a compact N-terminal nucleus and nonnative loops. Paslawski W, Lillelund OK, Kristensen JV, Schafer NP, Baker RP, Urban S, Otzen DE. Proc. Natl. Acad. Sci. U.S.A. 112 7978-7983 (2015)
  29. Insights into substrate gating in H. influenzae rhomboid. Brooks CL, Lazareno-Saez C, Lamoureux JS, Mak MW, Lemieux MJ. J. Mol. Biol. 407 687-697 (2011)
  30. Mapping the energy landscape for second-stage folding of a single membrane protein. Min D, Jefferson RE, Bowie JU, Yoon TY. Nat. Chem. Biol. 11 981-987 (2015)
  31. Phosphatidylglycerol::prolipoprotein diacylglyceryl transferase (Lgt) of Escherichia coli has seven transmembrane segments, and its essential residues are embedded in the membrane. Pailler J, Aucher W, Pires M, Buddelmeijer N. J. Bacteriol. 194 2142-2151 (2012)
  32. Population history and pathways of spread of the plant pathogen Phytophthora plurivora. Schoebel CN, Stewart J, Grünwald NJ, Rigling D, Prospero S. PLoS ONE 9 e85368 (2014)
  33. Structural and Functional Determinants of gamma-Secretase, an Intramembrane Protease Implicated in Alzheimer's Disease. Fraering PC. Curr. Genomics 8 531-549 (2007)
  34. Polarized secretion of Drosophila EGFR ligand from photoreceptor neurons is controlled by ER localization of the ligand-processing machinery. Yogev S, Schejter ED, Shilo BZ. PLoS Biol. 8 (2010)
  35. A new class of rhomboid protease inhibitors discovered by activity-based fluorescence polarization. Wolf EV, Zeißler A, Vosyka O, Zeiler E, Sieber S, Verhelst SH. PLoS ONE 8 e72307 (2013)
  36. Large lateral movement of transmembrane helix S5 is not required for substrate access to the active site of rhomboid intramembrane protease. Xue Y, Ha Y. J. Biol. Chem. 288 16645-16654 (2013)
  37. Rhomboid proteins in the chloroplast envelope affect the level of allene oxide synthase in Arabidopsis thaliana. Knopf RR, Feder A, Mayer K, Lin A, Rozenberg M, Schaller A, Adam Z. Plant J. 72 559-571 (2012)
  38. Domain swapping in the cytoplasmic domain of the Escherichia coli rhomboid protease. Lazareno-Saez C, Arutyunova E, Coquelle N, Lemieux MJ. J. Mol. Biol. 425 1127-1142 (2013)
  39. Identification of an archaeal presenilin-like intramembrane protease. Torres-Arancivia C, Ross CM, Chavez J, Assur Z, Dolios G, Mancia F, Ubarretxena-Belandia I. PLoS ONE 5 e744 (2010)
  40. Structure of rhomboid protease in complex with β-lactam inhibitors defines the S2' cavity. Vinothkumar KR, Pierrat OA, Large JM, Freeman M. Structure 21 1051-1058 (2013)
  41. The processing of human rhomboid intramembrane serine protease RHBDL2 is required for its proteolytic activity. Lei X, Li YM. J. Mol. Biol. 394 815-825 (2009)
  42. Structural basis of ER-associated protein degradation mediated by the Hrd1 ubiquitin ligase complex. Wu X, Siggel M, Ovchinnikov S, Mi W, Svetlov V, Nudler E, Liao M, Hummer G, Rapoport TA. Science 368 (2020)
  43. Residues located on membrane-embedded flexible loops are essential for the second step of the apolipoprotein N-acyltransferase reaction. Gélis-Jeanvoine S, Lory S, Oberto J, Buddelmeijer N. Mol. Microbiol. 95 692-705 (2015)
  44. Mitochondrial import of Omi: the definitive role of the putative transmembrane region and multiple processing sites in the amino-terminal segment. Kadomatsu T, Mori M, Terada K. Biochem. Biophys. Res. Commun. 361 516-521 (2007)
  45. Soluble oligomers of the intramembrane serine protease YqgP are catalytically active in the absence of detergents. Lei X, Ahn K, Zhu L, Ubarretxena-Belandia I, Li YM. Biochemistry 47 11920-11929 (2008)
  46. Embedded in the Membrane: How Lipids Confer Activity and Specificity to Intramembrane Proteases. Paschkowsky S, Oestereich F, Munter LM. J. Membr. Biol. 251 369-378 (2018)
  47. Structural cavities are critical to balancing stability and activity of a membrane-integral enzyme. Guo R, Cang Z, Yao J, Kim M, Deans E, Wei G, Kang SG, Hong H. Proc Natl Acad Sci U S A 117 22146-22156 (2020)
  48. From rhomboid function to structure and back again. Lieberman RL, Wolfe MS. Proc. Natl. Acad. Sci. U.S.A. 104 8199-8200 (2007)
  49. Racemization in Post-Translational Modifications Relevance to Protein Aging, Aggregation and Neurodegeneration: Tip of the Iceberg. Dyakin VV, Wisniewski TM, Lajtha A. Symmetry (Basel) 13 455 (2021)
  50. Structural comparison of substrate entry gate for rhomboid intramembrane peptidases. Lazareno-Saez C, Brooks CL, Lemieux MJ. Biochem. Cell Biol. 89 216-223 (2011)
  51. Bacterial rhomboid proteases mediate quality control of orphan membrane proteins. Liu G, Beaton SE, Grieve AG, Evans R, Rogers M, Strisovsky K, Armstrong FA, Freeman M, Exley RM, Tang CM. EMBO J 39 e102922 (2020)
  52. C-terminal processing of GlyGly-CTERM containing proteins by rhombosortase in Vibrio cholerae. Gadwal S, Johnson TL, Remmer H, Sandkvist M. PLoS Pathog. 14 e1007341 (2018)
  53. Holophytochrome-Interacting Proteins in Physcomitrella: Putative Actors in Phytochrome Cytoplasmic Signaling. Ermert AL, Mailliet K, Hughes J. Front Plant Sci 7 613 (2016)
  54. Structural analysis of a Vibrio phospholipase reveals an unusual Ser-His-chloride catalytic triad. Wan Y, Liu C, Ma Q. J. Biol. Chem. 294 11391-11401 (2019)
  55. A predicted plastid rhomboid protease affects phosphatidic acid metabolism in Arabidopsis thaliana. Lavell A, Froehlich JE, Baylis O, Rotondo AD, Benning C. Plant J 99 978-987 (2019)
  56. Discovery and Biological Evaluation of Potent and Selective N-Methylene Saccharin-Derived Inhibitors for Rhomboid Intramembrane Proteases. Goel P, Jumpertz T, Mikles DC, Tichá A, Nguyen MTN, Verhelst S, Hubalek M, Johnson DC, Bachovchin DA, Ogorek I, Pietrzik CU, Strisovsky K, Schmidt B, Weggen S. Biochemistry 56 6713-6725 (2017)
  57. Effect of Environmental Factors on the Catalytic Activity of Intramembrane Serine Protease. Asadi M, Oanca G, Warshel A. J Am Chem Soc 144 1251-1257 (2022)
  58. The rhomboid protease GlpG has weak interaction energies in its active site hydrogen bond network. Gaffney KA, Hong H. J. Gen. Physiol. 151 282-291 (2019)