2iam Citations

Structural basis for the recognition of mutant self by a tumor-specific, MHC class II-restricted T cell receptor.

Nat. Immunol. 8 398-408 (2007)
Related entries: 2ial, 2ian

Cited: 58 times
EuropePMC logo PMID: 17334368

Abstract

Structural studies of complexes of T cell receptor (TCR) and peptide-major histocompatibility complex (MHC) have focused on TCRs specific for foreign antigens or native self. An unexplored category of TCRs includes those specific for self determinants bearing alterations resulting from disease, notably cancer. We determined here the structure of a human melanoma-specific TCR (E8) bound to the MHC molecule HLA-DR1 and an epitope from mutant triosephosphate isomerase. The structure had features intermediate between 'anti-foreign' and autoimmune TCR-peptide-MHC class II complexes that may reflect the hybrid nature of altered self. E8 manifested very low affinity for mutant triosephosphate isomerase-HLA-DR1 despite the highly tumor-reactive properties of E8 cells. A second TCR (G4) had even lower affinity but underwent peptide-specific formation of dimers, suggesting this as a mechanism for enhancing low-affinity TCR-peptide-MHC interactions for T cell activation.

Articles - 2iam mentioned but not cited (6)



Reviews citing this publication (26)

  1. Evolutionarily conserved amino acids that control TCR-MHC interaction. Marrack P, Scott-Browne JP, Dai S, Gapin L, Kappler JW. Annu. Rev. Immunol. 26 171-203 (2008)
  2. The fidelity, occasional promiscuity, and versatility of T cell receptor recognition. Godfrey DI, Rossjohn J, McCluskey J. Immunity 28 304-314 (2008)
  3. T cell antigen receptor recognition of antigen-presenting molecules. Rossjohn J, Gras S, Miles JJ, Turner SJ, Godfrey DI, McCluskey J. Annu. Rev. Immunol. 33 169-200 (2015)
  4. Conformational changes and flexibility in T-cell receptor recognition of peptide-MHC complexes. Armstrong KM, Piepenbrink KH, Baker BM. Biochem. J. 415 183-196 (2008)
  5. Survey of the year 2007 commercial optical biosensor literature. Rich RL, Myszka DG. J. Mol. Recognit. 21 355-400 (2008)
  6. Structural alterations in peptide-MHC recognition by self-reactive T cell receptors. Wucherpfennig KW, Call MJ, Deng L, Mariuzza R. Curr. Opin. Immunol. 21 590-595 (2009)
  7. Common themes in the assembly and architecture of activating immune receptors. Call ME, Wucherpfennig KW. Nat. Rev. Immunol. 7 841-850 (2007)
  8. Structural basis for self-recognition by autoimmune T-cell receptors. Yin Y, Li Y, Mariuzza RA. Immunol. Rev. 250 32-48 (2012)
  9. Structural and dynamic control of T-cell receptor specificity, cross-reactivity, and binding mechanism. Baker BM, Scott DR, Blevins SJ, Hawse WF. Immunol. Rev. 250 10-31 (2012)
  10. Recognition of self-peptide-MHC complexes by autoimmune T-cell receptors. Deng L, Mariuzza RA. Trends Biochem. Sci. 32 500-508 (2007)
  11. T cell receptor specificity for major histocompatibility complex proteins. Marrack P, Rubtsova K, Scott-Browne J, Kappler JW. Curr. Opin. Immunol. 20 203-207 (2008)
  12. The T cell antigen receptor: the Swiss army knife of the immune system. Attaf M, Legut M, Cole DK, Sewell AK. Clin. Exp. Immunol. 181 1-18 (2015)
  13. Phage Display Engineered T Cell Receptors as Tools for the Study of Tumor Peptide-MHC Interactions. Løset GÅ, Berntzen G, Frigstad T, Pollmann S, Gunnarsen KS, Sandlie I. Front Oncol 4 378 (2014)
  14. T cell antigen receptor recognition of antigen-presenting molecules. Rossjohn J, Gras S, Miles JJ, Turner SJ, Godfrey DI, McCluskey J. Annu. Rev. Immunol. 33 169-200 (2015)
  15. The T cell antigen receptor: the Swiss army knife of the immune system. Attaf M, Legut M, Cole DK, Sewell AK. Clin. Exp. Immunol. 181 1-18 (2015)
  16. Phage Display Engineered T Cell Receptors as Tools for the Study of Tumor Peptide-MHC Interactions. Løset GÅ, Berntzen G, Frigstad T, Pollmann S, Gunnarsen KS, Sandlie I. Front Oncol 4 378 (2014)
  17. Structural and dynamic control of T-cell receptor specificity, cross-reactivity, and binding mechanism. Baker BM, Scott DR, Blevins SJ, Hawse WF. Immunol. Rev. 250 10-31 (2012)
  18. Structural basis for self-recognition by autoimmune T-cell receptors. Yin Y, Li Y, Mariuzza RA. Immunol. Rev. 250 32-48 (2012)
  19. Structural alterations in peptide-MHC recognition by self-reactive T cell receptors. Wucherpfennig KW, Call MJ, Deng L, Mariuzza R. Curr. Opin. Immunol. 21 590-595 (2009)
  20. Evolutionarily conserved amino acids that control TCR-MHC interaction. Marrack P, Scott-Browne JP, Dai S, Gapin L, Kappler JW. Annu. Rev. Immunol. 26 171-203 (2008)
  21. Survey of the year 2007 commercial optical biosensor literature. Rich RL, Myszka DG. J. Mol. Recognit. 21 355-400 (2008)
  22. Conformational changes and flexibility in T-cell receptor recognition of peptide-MHC complexes. Armstrong KM, Piepenbrink KH, Baker BM. Biochem. J. 415 183-196 (2008)
  23. T cell receptor specificity for major histocompatibility complex proteins. Marrack P, Rubtsova K, Scott-Browne J, Kappler JW. Curr. Opin. Immunol. 20 203-207 (2008)
  24. The fidelity, occasional promiscuity, and versatility of T cell receptor recognition. Godfrey DI, Rossjohn J, McCluskey J. Immunity 28 304-314 (2008)
  25. Recognition of self-peptide-MHC complexes by autoimmune T-cell receptors. Deng L, Mariuzza RA. Trends Biochem. Sci. 32 500-508 (2007)
  26. Common themes in the assembly and architecture of activating immune receptors. Call ME, Wucherpfennig KW. Nat. Rev. Immunol. 7 841-850 (2007)

Articles citing this publication (26)

  1. T cell-mediated autoimmune disease due to low-affinity crossreactivity to common microbial peptides. Harkiolaki M, Holmes SL, Svendsen P, Gregersen JW, Jensen LT, McMahon R, Friese MA, van Boxel G, Etzensperger R, Tzartos JS, Kranc K, Sainsbury S, Harlos K, Mellins ED, Palace J, Esiri MM, van der Merwe PA, Jones EY, Fugger L. Immunity 30 348-357 (2009)
  2. Vgamma2Vdelta2 T Cell Receptor recognition of prenyl pyrophosphates is dependent on all CDRs. Wang H, Fang Z, Morita CT. J. Immunol. 184 6209-6222 (2010)
  3. Antigen ligation triggers a conformational change within the constant domain of the alphabeta T cell receptor. Beddoe T, Chen Z, Clements CS, Ely LK, Bushell SR, Vivian JP, Kjer-Nielsen L, Pang SS, Dunstone MA, Liu YC, Macdonald WA, Perugini MA, Wilce MC, Burrows SR, Purcell AW, Tiganis T, Bottomley SP, McCluskey J, Rossjohn J. Immunity 30 777-788 (2009)
  4. Cutting edge: Evidence for a dynamically driven T cell signaling mechanism. Hawse WF, Champion MM, Joyce MV, Hellman LM, Hossain M, Ryan V, Pierce BG, Weng Z, Baker BM. J. Immunol. 188 5819-5823 (2012)
  5. Structural insights into the editing of germ-line-encoded interactions between T-cell receptor and MHC class II by Vα CDR3. Deng L, Langley RJ, Wang Q, Topalian SL, Mariuzza RA. Proc. Natl. Acad. Sci. U.S.A. 109 14960-14965 (2012)
  6. TCR scanning of peptide/MHC through complementary matching of receptor and ligand molecular flexibility. Hawse WF, De S, Greenwood AI, Nicholson LK, Zajicek J, Kovrigin EL, Kranz DM, Garcia KC, Baker BM. J. Immunol. 192 2885-2891 (2014)
  7. Structural basis for the presentation of tumor-associated MHC class II-restricted phosphopeptides to CD4+ T cells. Li Y, Depontieu FR, Sidney J, Salay TM, Engelhard VH, Hunt DF, Sette A, Topalian SL, Mariuzza RA. J. Mol. Biol. 399 596-603 (2010)
  8. Minimal conformational plasticity enables TCR cross-reactivity to different MHC class II heterodimers. Holland CJ, Rizkallah PJ, Vollers S, Calvo-Calle JM, Madura F, Fuller A, Sewell AK, Stern LJ, Godkin A, Cole DK. Sci Rep 2 629 (2012)
  9. On computational approaches for size-and-shape distributions from sedimentation velocity analytical ultracentrifugation. Schuck P. Eur. Biophys. J. 39 1261-1275 (2010)
  10. High-affinity T cell receptor differentiates cognate peptide-MHC and altered peptide ligands with distinct kinetics and thermodynamics. Persaud SP, Donermeyer DL, Weber KS, Kranz DM, Allen PM. Mol. Immunol. 47 1793-1801 (2010)
  11. Re-Directing CD4(+) T Cell Responses with the Flanking Residues of MHC Class II-Bound Peptides: The Core is Not Enough. Holland CJ, Cole DK, Godkin A. Front Immunol 4 172 (2013)
  12. Efficient induction of CD25- iTreg by co-immunization requires strongly antigenic epitopes for T cells. Geng S, Yu Y, Kang Y, Pavlakis G, Jin H, Li J, Hu Y, Hu W, Wang S, Wang B. BMC Immunol. 12 27 (2011)
  13. Physical and functional bivalency observed among TCR/CD3 complexes isolated from primary T cells. Schrum AG, Gil D, Turka LA, Palmer E. J. Immunol. 187 870-878 (2011)
  14. The SCHOOL of nature: I. Transmembrane signaling. Sigalov AB. Self Nonself 1 4-39 (2010)
  15. Gauche(+) side-chain orientation as a key factor in the search for an immunogenic peptide mixture leading to a complete fully protective vaccine. Bermúdez A, Calderon D, Moreno-Vranich A, Almonacid H, Patarroyo MA, Poloche A, Patarroyo ME. Vaccine 32 2117-2126 (2014)
  16. Structure-based design of altered MHC class II-restricted peptide ligands with heterogeneous immunogenicity. Chen S, Li Y, Depontieu FR, McMiller TL, English AM, Shabanowitz J, Kos F, Sidney J, Sette A, Rosenberg SA, Hunt DF, Mariuzza RA, Topalian SL. J. Immunol. 191 5097-5106 (2013)
  17. Structure of Staphylococcal Enterotoxin E in Complex with TCR Defines the Role of TCR Loop Positioning in Superantigen Recognition. Rödström KE, Regenthal P, Lindkvist-Petersson K. PLoS ONE 10 e0131988 (2015)
  18. Glutamic acid decarboxylase-derived epitopes with specific domains expand CD4(+)CD25(+) regulatory T cells. Chen G, Han G, Feng J, Wang J, Wang R, Xu R, Shen B, Qian J, Li Y. PLoS ONE 4 e7034 (2009)
  19. A large-scale computational study of inhibitor risk in non-severe haemophilia A. Shepherd AJ, Skelton S, Sansom CE, Gomez K, Moss DS, Hart DP. Br. J. Haematol. 168 413-420 (2015)
  20. Specific increase in potency via structure-based design of a TCR. Malecek K, Grigoryan A, Zhong S, Gu WJ, Johnson LA, Rosenberg SA, Cardozo T, Krogsgaard M. J. Immunol. 193 2587-2599 (2014)
  21. Understanding TR binding to pMHC complexes: how does a TR scan many pMHC complexes yet preferentially bind to one. Khan JM, Ranganathan S. PLoS ONE 6 e17194 (2011)
  22. The SCHOOL of nature: III. From mechanistic understanding to novel therapies. Sigalov AB. Self Nonself 1 192-224 (2010)
  23. "Monovalent" ligands that trigger TLR-4 and TCR are not necessarily truly monovalent. Sigalov AB. Mol. Immunol. 51 356-362 (2012)
  24. Identifying coevolutionary patterns in human leukocyte antigen (HLA) molecules. Jiang X, Fares MA. Evolution 64 1429-1445 (2010)
  25. Binding of TCR multimers and a TCR-like antibody with distinct fine-specificities is dependent on the surface density of HLA complexes. Low JL, Naidoo A, Yeo G, Gehring AJ, Ho ZZ, Yau YH, Shochat SG, Kranz DM, Bertoletti A, Grotenbreg GM. PLoS ONE 7 e51397 (2012)
  26. A Molecular Switch Abrogates Glycoprotein 100 (gp100) T-cell Receptor (TCR) Targeting of a Human Melanoma Antigen. Bianchi V, Bulek A, Fuller A, Lloyd A, Attaf M, Rizkallah PJ, Dolton G, Sewell AK, Cole DK. J. Biol. Chem. 291 8951-8959 (2016)