2i13 Citations

Structure of Aart, a designed six-finger zinc finger peptide, bound to DNA.

J Mol Biol 363 405-21 (2006)
Cited: 72 times
EuropePMC logo PMID: 16963084

Abstract

Cys2-His2 zinc fingers are one of the most common types of DNA-binding domains. Modifications to zinc-finger binding specificity have recently enabled custom DNA-binding proteins to be designed to a wide array of target sequences. We present here a 1.96 A structure of Aart, a designed six-zinc finger protein, bound to a consensus DNA target site. This is the first structure of a designed protein with six fingers, and was intended to provide insights into the unusual affinity and specificity characteristics of this protein. Most protein-DNA contacts were found to be consistent with expectations, while others were unanticipated or insufficient to explain specificity. Several were unexpectedly mediated by glycerol, water molecules or amino acid-base stacking interactions. These results challenge some conventional concepts of recognition, particularly the finding that triplets containing 5'A, C, or T are typically not specified by direct interaction with the amino acid in position 6 of the recognition helix.

Reviews - 2i13 mentioned but not cited (6)

  1. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Gaj T, Gersbach CA, Barbas CF. Trends Biotechnol. 31 397-405 (2013)
  2. Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Thakore PI, Black JB, Hilton IB, Gersbach CA. Nat. Methods 13 127-137 (2016)
  3. Epigenome engineering in cancer: fairytale or a realistic path to the clinic? Falahi F, Sgro A, Blancafort P. Front Oncol 5 22 (2015)
  4. Genomic editing tools to model human diseases with isogenic pluripotent stem cells. Kim HS, Bernitz JM, Lee DF, Lemischka IR. Stem Cells Dev. 23 2673-2686 (2014)
  5. Engineering and Application of Zinc Finger Proteins and TALEs for Biomedical Research. Kim MS, Kini AG. Mol. Cells 40 533-541 (2017)
  6. Advanced Gene Manipulation Methods for Stem Cell Theranostics. Rathnam C, Chueng SD, Yang L, Lee KB. Theranostics 7 2775-2793 (2017)

Articles - 2i13 mentioned but not cited (25)

  1. Differential role of Snail1 and Snail2 zinc fingers in E-cadherin repression and epithelial to mesenchymal transition. Villarejo A, Cortés-Cabrera A, Molina-Ortíz P, Portillo F, Cano A. J. Biol. Chem. 289 930-941 (2014)
  2. Synthetic zinc finger proteins: the advent of targeted gene regulation and genome modification technologies. Gersbach CA, Gaj T, Barbas CF. Acc. Chem. Res. 47 2309-2318 (2014)
  3. A comprehensive approach to zinc-finger recombinase customization enables genomic targeting in human cells. Gaj T, Mercer AC, Sirk SJ, Smith HL, Barbas CF. Nucleic Acids Res. 41 3937-3946 (2013)
  4. Challenges in whole exome sequencing: an example from hereditary deafness. Sirmaci A, Edwards YJ, Akay H, Tekin M. PLoS ONE 7 e32000 (2012)
  5. Protein delivery using Cys2-His2 zinc-finger domains. Gaj T, Liu J, Anderson KE, Sirk SJ, Barbas CF. ACS Chem. Biol. 9 1662-1667 (2014)
  6. An expanded binding model for Cys2His2 zinc finger protein-DNA interfaces. Persikov AV, Singh M. Phys Biol 8 035010 (2011)
  7. Experimentally based contact energies decode interactions responsible for protein-DNA affinity and the role of molecular waters at the binding interface. Temiz NA, Camacho CJ. Nucleic Acids Res. 37 4076-4088 (2009)
  8. A structural approach reveals how neighbouring C2H2 zinc fingers influence DNA binding specificity. Garton M, Najafabadi HS, Schmitges FW, Radovani E, Hughes TR, Kim PM. Nucleic Acids Res. 43 9147-9157 (2015)
  9. Enhancing the specificity of recombinase-mediated genome engineering through dimer interface redesign. Gaj T, Sirk SJ, Tingle RD, Mercer AC, Wallen MC, Barbas CF. J. Am. Chem. Soc. 136 5047-5056 (2014)
  10. Designed zinc finger protein interacting with the HIV-1 integrase recognition sequence at 2-LTR-circle junctions. Sakkhachornphop S, Jiranusornkul S, Kodchakorn K, Nangola S, Sirisanthana T, Tayapiwatana C. Protein Sci. 18 2219-2230 (2009)
  11. Regulatory phosphorylation of Ikaros by Bruton's tyrosine kinase. Ma H, Qazi S, Ozer Z, Zhang J, Ishkhanian R, Uckun FM. PLoS ONE 8 e71302 (2013)
  12. Bioinformatic analysis of the protein/DNA interface. Schneider B, Cerný J, Svozil D, Cech P, Gelly JC, de Brevern AG. Nucleic Acids Res. 42 3381-3394 (2014)
  13. A method for in silico identification of SNAIL/SLUG DNA binding potentials to the E-box sequence using molecular dynamics and evolutionary conserved amino acids. Prokop JW, Liu Y, Milsted A, Peng H, Rauscher FJ. J Mol Model 19 3463-3469 (2013)
  14. Structural assessment of the effects of amino acid substitutions on protein stability and protein protein interaction. Teng S, Srivastava AK, Schwartz CE, Alexov E, Wang L. Int J Comput Biol Drug Des 3 334-349 (2010)
  15. Mutations in zinc finger 407 [ZNF407] cause a unique autosomal recessive cognitive impairment syndrome. Kambouris M, Maroun RC, Ben-Omran T, Al-Sarraj Y, Errafii K, Ali R, Boulos H, Curmi PA, El-Shanti H. Orphanet J Rare Dis 9 80 (2014)
  16. REH2C Helicase and GRBC Subcomplexes May Base Pair through mRNA and Small Guide RNA in Kinetoplastid Editosomes. Kumar V, Madina BR, Gulati S, Vashisht AA, Kanyumbu C, Pieters B, Shakir A, Wohlschlegel JA, Read LK, Mooers BH, Cruz-Reyes J. J. Biol. Chem. 291 5753-5764 (2016)
  17. Template-based structure prediction and classification of transcription factors in Arabidopsis thaliana. Lu T, Yang Y, Yao B, Liu S, Zhou Y, Zhang C. Protein Sci 21 828-838 (2012)
  18. An effective approach for generating a three-Cys2His2 zinc-finger-DNA complex model by docking. Chou CC, Rajasekaran M, Chen C. BMC Bioinformatics 11 334 (2010)
  19. DEAH-RHA helicase•Znf cofactor systems in kinetoplastid RNA editing and evolutionarily distant RNA processes. Cruz-Reyes J, Mooers BH, Abu-Adas Z, Kumar V, Gulati S. RNA Dis 3 (2016)
  20. Structural basis of human PR/SET domain 9 (PRDM9) allele C-specific recognition of its cognate DNA sequence. Patel A, Zhang X, Blumenthal RM, Cheng X. J. Biol. Chem. 292 15994-16002 (2017)
  21. Direct protein delivery to mammalian cells using cell-permeable Cys2-His2 zinc-finger domains. Gaj T, Liu J. J Vis Exp (2015)
  22. Structural insights into methylated DNA recognition by the C-terminal zinc fingers of the DNA reader protein ZBTB38. Hudson NO, Whitby FG, Buck-Koehntop BA. J. Biol. Chem. 293 19835-19843 (2018)
  23. A Mutation in ZNF143 as a Novel Candidate Gene for Endothelial Corneal Dystrophy. Kim Y, You HJ, Park SH, Kim MS, Chae H, Park J, Jekarl DW, Kim J, Kwon A, Choi H, Kim Y, Paek AR, Lee A, Kim JM, Park SY, Kim Y, Joo K, Jung J, Chung SH, Mok JW, Kim M. J Clin Med 8 (2019)
  24. Development of a novel anti-hepatitis B virus agent via Sp1. Hayakawa M, Umeyama H, Iwadate M, Taguchi YH, Yano Y, Honda T, Itami-Matsumoto S, Kozuka R, Enomoto M, Tamori A, Kawada N, Murakami Y. Sci Rep 10 47 (2020)
  25. Specific zinc finger-induced methylation of PD-L1 promoter inhibits its expression. Li X, Wang Z, Huang J, Luo H, Zhu S, Yi H, Zheng L, Hu B, Yu L, Li L, Xie J, Zhu N. FEBS Open Bio 9 1063-1070 (2019)


Reviews citing this publication (6)

  1. Genome editing with engineered zinc finger nucleases. Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. Nat. Rev. Genet. 11 636-646 (2010)
  2. Using homologous recombination to manipulate the genome of human somatic cells. Porteus M. Biotechnol. Genet. Eng. Rev. 24 195-212 (2007)
  3. May I Cut in? Gene Editing Approaches in Human Induced Pluripotent Stem Cells. Brookhouser N, Raman S, Potts C, Brafman DA. Cells 6 (2017)
  4. Gene Editing and Human Pluripotent Stem Cells: Tools for Advancing Diabetes Disease Modeling and Beta-Cell Development. Millette K, Georgia S. Curr. Diab. Rep. 17 116 (2017)
  5. Development of Toolboxes for Precision Genome/Epigenome Editing and Imaging of Epigenetics. Nomura W. Chem Rec 18 1717-1726 (2018)
  6. Genome Editing Human Pluripotent Stem Cells to Model β-Cell Disease and Unmask Novel Genetic Modifiers. George MN, Leavens KF, Gadue P. Front Endocrinol (Lausanne) 12 682625 (2021)

Articles citing this publication (35)

  1. The insulator binding protein CTCF positions 20 nucleosomes around its binding sites across the human genome. Fu Y, Sinha M, Peterson CL, Weng Z. PLoS Genet. 4 e1000138 (2008)
  2. Zinc Finger Targeter (ZiFiT): an engineered zinc finger/target site design tool. Sander JD, Zaback P, Joung JK, Voytas DF, Dobbs D. Nucleic Acids Res. 35 W599-605 (2007)
  3. Bind-n-Seq: high-throughput analysis of in vitro protein-DNA interactions using massively parallel sequencing. Zykovich A, Korf I, Segal DJ. Nucleic Acids Res. 37 e151 (2009)
  4. Synthesis of programmable integrases. Gordley RM, Gersbach CA, Barbas CF. Proc. Natl. Acad. Sci. U.S.A. 106 5053-5058 (2009)
  5. Modular system for the construction of zinc-finger libraries and proteins. Gonzalez B, Schwimmer LJ, Fuller RP, Ye Y, Asawapornmongkol L, Barbas CF. Nat Protoc 5 791-810 (2010)
  6. Directed evolution of the TALE N-terminal domain for recognition of all 5' bases. Lamb BM, Mercer AC, Barbas CF. Nucleic Acids Res. 41 9779-9785 (2013)
  7. Mutations in ZBTB20 cause Primrose syndrome. Cordeddu V, Redeker B, Stellacci E, Jongejan A, Fragale A, Bradley TE, Anselmi M, Ciolfi A, Cecchetti S, Muto V, Bernardini L, Azage M, Carvalho DR, Espay AJ, Male A, Molin AM, Posmyk R, Battisti C, Casertano A, Melis D, van Kampen A, Baas F, Mannens MM, Bocchinfuso G, Stella L, Tartaglia M, Hennekam RC. Nat. Genet. 46 815-817 (2014)
  8. Efficient delivery of nuclease proteins for genome editing in human stem cells and primary cells. Liu J, Gaj T, Yang Y, Wang N, Shui S, Kim S, Kanchiswamy CN, Kim JS, Barbas CF. Nat Protoc 10 1842-1859 (2015)
  9. An improved predictive recognition model for Cys(2)-His(2) zinc finger proteins. Gupta A, Christensen RG, Bell HA, Goodwin M, Patel RY, Pandey M, Enuameh MS, Rayla AL, Zhu C, Thibodeau-Beganny S, Brodsky MH, Joung JK, Wolfe SA, Stormo GD. Nucleic Acids Res. 42 4800-4812 (2014)
  10. An affinity-based scoring scheme for predicting DNA-binding activities of modularly assembled zinc-finger proteins. Sander JD, Zaback P, Joung JK, Voytas DF, Dobbs D. Nucleic Acids Res. 37 506-515 (2009)
  11. Mutations in the second zinc finger of human EKLF reduce promoter affinity but give rise to benign and disease phenotypes. Singleton BK, Lau W, Fairweather VS, Burton NM, Wilson MC, Parsons SF, Richardson BM, Trakarnsanga K, Brady RL, Anstee DJ, Frayne J. Blood 118 3137-3145 (2011)
  12. Energy-based prediction of amino acid-nucleotide base recognition. Marabotti A, Spyrakis F, Facchiano A, Cozzini P, Alberti S, Kellogg GE, Mozzarelli A. J Comput Chem 29 1955-1969 (2008)
  13. Toward a general approach for RNA-templated hierarchical assembly of split-proteins. Furman JL, Badran AH, Ajulo O, Porter JR, Stains CI, Segal DJ, Ghosh I. J. Am. Chem. Soc. 132 11692-11701 (2010)
  14. New insights into DNA recognition by zinc fingers revealed by structural analysis of the oncoprotein ZNF217. Vandevenne M, Jacques DA, Artuz C, Nguyen CD, Kwan AH, Segal DJ, Matthews JM, Crossley M, Guss JM, Mackay JP. J. Biol. Chem. 288 10616-10627 (2013)
  15. Probing the DNA-binding affinity and specificity of designed zinc finger proteins. Jantz D, Berg JM. Biophys. J. 98 852-860 (2010)
  16. The multi-zinc finger protein ZNF217 contacts DNA through a two-finger domain. Nunez N, Clifton MM, Funnell AP, Artuz C, Hallal S, Quinlan KG, Font J, Vandevenne M, Setiyaputra S, Pearson RC, Mackay JP, Crossley M. J. Biol. Chem. 286 38190-38201 (2011)
  17. Interfacing synthetic DNA logic operations with protein outputs. Prokup A, Deiters A. Angew. Chem. Int. Ed. Engl. 53 13192-13195 (2014)
  18. Using engineered endonucleases to create knockout and knockin zebrafish models. Bedell VM, Ekker SC. Methods Mol. Biol. 1239 291-305 (2015)
  19. Zinc finger structure-function in Ikaros Marvin A Payne. Payne MA. World J Biol Chem 2 161-166 (2011)
  20. DNA distortion and specificity in a sequence-specific endonuclease. Babic AC, Little EJ, Manohar VM, Bitinaite J, Horton NC. J. Mol. Biol. 383 186-204 (2008)
  21. NMR structure note: solution structure of human Miz-1 zinc fingers 8 to 10. Bédard M, Maltais L, Beaulieu ME, Bilodeau J, Bernard D, Lavigne P. J. Biomol. NMR 54 317-323 (2012)
  22. Optimization of minimum set of protein-DNA interactions: a quasi exact solution with minimum over-fitting. Temiz NA, Trapp A, Prokopyev OA, Camacho CJ. Bioinformatics 26 319-325 (2010)
  23. Design of single-stranded nucleic acid binding peptides based on nucleocapsid CCHC-box zinc-binding domains. Guerrerio AL, Berg JM. J. Am. Chem. Soc. 132 9638-9643 (2010)
  24. Is BAC transgenesis obsolete? State of the art in the era of designer nucleases. Beil J, Fairbairn L, Pelczar P, Buch T. J. Biomed. Biotechnol. 2012 308414 (2012)
  25. Zinc finger protein binding to DNA: an energy perspective using molecular dynamics simulation and free energy calculations on mutants of both zinc finger domains and their specific DNA bases. Hamed MY, Arya G. J. Biomol. Struct. Dyn. 34 919-934 (2016)
  26. Differential Occupancy of Two GA-Binding Proteins Promotes Targeting of the Drosophila Dosage Compensation Complex to the Male X Chromosome. Kaye EG, Booker M, Kurland JV, Conicella AE, Fawzi NL, Bulyk ML, Tolstorukov MY, Larschan E. Cell Rep 22 3227-3239 (2018)
  27. Genome-wide computational determination of the human metalloproteome. Azia A, Levy R, Unger R, Edelman M, Sobolev V. Proteins 83 931-939 (2015)
  28. Structure based design of protein linkers for zinc finger nuclease. Anand P, Schug A, Wenzel W. FEBS Lett. 587 3231-3235 (2013)
  29. Recognition of a flipped base in a hairpinloop DNA by a small peptide. Kawakami J, Okabe S, Tanabe Y, Sugimoto N. Nucleosides Nucleotides Nucleic Acids 27 292-308 (2008)
  30. DNA Conformation Induces Adaptable Binding by Tandem Zinc Finger Proteins. Patel A, Yang P, Tinkham M, Pradhan M, Sun MA, Wang Y, Hoang D, Wolf G, Horton JR, Zhang X, Macfarlan T, Cheng X. Cell 173 221-233.e12 (2018)
  31. Inhibition of p53 DNA binding by a small molecule protects mice from radiation toxicity. Li Q, Karim RM, Cheng M, Das M, Chen L, Zhang C, Lawrence HR, Daughdrill GW, Schonbrunn E, Ji H, Chen J. Oncogene 39 5187-5200 (2020)
  32. Interaction between p53 N terminus and core domain regulates specific and nonspecific DNA binding. He F, Borcherds W, Song T, Wei X, Das M, Chen L, Daughdrill GW, Chen J. Proc. Natl. Acad. Sci. U.S.A. 116 8859-8868 (2019)
  33. Protein features for assembly of the RNA editing helicase 2 subcomplex (REH2C) in Trypanosome holo-editosomes. Kumar V, Doharey PK, Gulati S, Meehan J, Martinez MG, Hughes K, Mooers BHM, Cruz-Reyes J. PLoS ONE 14 e0211525 (2019)
  34. Role of protein structure and the role of individual fingers in zinc finger protein-DNA recognition: a molecular dynamics simulation study and free energy calculations. Hamed MY. J. Comput. Aided Mol. Des. 32 657-669 (2018)
  35. ZBTB7B (ThPOK) Is Required for Pathogenesis of Cerebral Malaria and Protection against Pulmonary Tuberculosis. Kennedy JM, Georges A, Bassenden AV, Vidal SM, Berghuis AM, Taniuchi I, Majewski J, Lathrop M, Behr MA, Langlais D, Gros P. Infect Immun 88 (2020)