2hzn Citations

Structural biology contributions to the discovery of drugs to treat chronic myelogenous leukaemia.

OpenAccess logo Acta Crystallogr. D Biol. Crystallogr. 63 80-93 (2007)
Related entries: 2hz4, 2hyy, 2hz0, 2hzi

Cited: 61 times
EuropePMC logo PMID: 17164530

Abstract

Chronic myelogenous leukaemia (CML) results from the Bcr-Abl oncoprotein, which has a constitutively activated Abl tyrosine kinase domain. Although most chronic phase CML patients treated with imatinib as first-line therapy maintain excellent durable responses, patients who have progressed to advanced-stage CML frequently fail to respond or lose their response to therapy owing to the emergence of drug-resistant mutants of the protein. More than 40 such point mutations have been observed in imatinib-resistant patients. The crystal structures of wild-type and mutant Abl kinase in complex with imatinib and other small-molecule Abl inhibitors were determined, with the aim of understanding the molecular basis of resistance and to aid in the design and optimization of inhibitors active against the resistance mutants. These results are presented in a way which illustrates the approaches used to generate multiple structures, the type of information that can be gained and the way that this information is used to support drug discovery.

Articles - 2hzn mentioned but not cited (1)



Reviews citing this publication (13)

  1. Developing irreversible inhibitors of the protein kinase cysteinome. Liu Q, Sabnis Y, Zhao Z, Zhang T, Buhrlage SJ, Jones LH, Gray NS. Chem. Biol. 20 146-159 (2013)
  2. Bioinformatics and variability in drug response: a protein structural perspective. Lahti JL, Tang GW, Capriotti E, Liu T, Altman RB. J R Soc Interface 9 1409-1437 (2012)
  3. New insights into small-molecule inhibitors of Bcr-Abl. Schenone S, Bruno O, Radi M, Botta M. Med Res Rev 31 1-41 (2011)
  4. Mechanisms of drug resistance in kinases. Barouch-Bentov R, Sauer K. Expert Opin Investig Drugs 20 153-208 (2011)
  5. From protein sequences to 3D-structures and beyond: the example of the UniProt knowledgebase. Hinz U, UniProt Consortium. Cell. Mol. Life Sci. 67 1049-1064 (2010)
  6. Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer. Pao W, Chmielecki J. Nat. Rev. Cancer 10 760-774 (2010)
  7. Biochemical mechanisms of resistance to small-molecule protein kinase inhibitors. Krishnamurty R, Maly DJ. ACS Chem. Biol. 5 121-138 (2010)
  8. The interplay of structural information and functional studies in kinase drug design: insights from BCR-Abl. Eck MJ, Manley PW. Curr. Opin. Cell Biol. 21 288-295 (2009)
  9. Rational drug design. Mandal S, Moudgil M, Mandal SK. Eur. J. Pharmacol. 625 90-100 (2009)
  10. Flexible ligand docking to multiple receptor conformations: a practical alternative. Totrov M, Abagyan R. Curr. Opin. Struct. Biol. 18 178-184 (2008)
  11. [The short history of protein kinase inhibitors. New, competitive, successful]. Kunick C, Egert-Schmidt AM. Pharm Unserer Zeit 37 360-368 (2008)
  12. Treatment for chronic myelogenous leukemia: the long road to imatinib. Hunter T. J. Clin. Invest. 117 2036-2043 (2007)
  13. Strategies for overcoming imatinib resistance in chronic myeloid leukemia. Kujawski L, Talpaz M. Leuk. Lymphoma 48 2310-2322 (2007)

Articles citing this publication (47)

  1. Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is effective in patients with Philadelphia chromosome-positive chronic myelogenous leukemia in chronic phase following imatinib resistance and intolerance. Kantarjian HM, Giles F, Gattermann N, Bhalla K, Alimena G, Palandri F, Ossenkoppele GJ, Nicolini FE, O'Brien SG, Litzow M, Bhatia R, Cervantes F, Haque A, Shou Y, Resta DJ, Weitzman A, Hochhaus A, le Coutre P. Blood 110 3540-3546 (2007)
  2. Inhibition of collagen-induced discoidin domain receptor 1 and 2 activation by imatinib, nilotinib and dasatinib. Day E, Waters B, Spiegel K, Alnadaf T, Manley PW, Buchdunger E, Walker C, Jarai G. Eur. J. Pharmacol. 599 44-53 (2008)
  3. Structural resemblances and comparisons of the relative pharmacological properties of imatinib and nilotinib. Manley PW, Stiefl N, Cowan-Jacob SW, Kaufman S, Mestan J, Wartmann M, Wiesmann M, Woodman R, Gallagher N. Bioorg. Med. Chem. 18 6977-6986 (2010)
  4. Kinase domain point mutations in Philadelphia chromosome-positive acute lymphoblastic leukemia emerge after therapy with BCR-ABL kinase inhibitors. Jones D, Thomas D, Yin CC, O'Brien S, Cortes JE, Jabbour E, Breeden M, Giles FJ, Zhao W, Kantarjian HM. Cancer 113 985-994 (2008)
  5. Clinical pharmacokinetics of the BCR-ABL tyrosine kinase inhibitor nilotinib. Tanaka C, Yin OQ, Sethuraman V, Smith T, Wang X, Grouss K, Kantarjian H, Giles F, Ottmann OG, Galitz L, Schran H. Clin. Pharmacol. Ther. 87 197-203 (2010)
  6. Crystal structure of the T315I mutant of AbI kinase. Zhou T, Parillon L, Li F, Wang Y, Keats J, Lamore S, Xu Q, Shakespeare W, Dalgarno D, Zhu X. Chem Biol Drug Des 70 171-181 (2007)
  7. Discovery of a potential allosteric ligand binding site in CDK2. Betzi S, Alam R, Martin M, Lubbers DJ, Han H, Jakkaraj SR, Georg GI, Schönbrunn E. ACS Chem. Biol. 6 492-501 (2011)
  8. The structure of the leukemia drug imatinib bound to human quinone reductase 2 (NQO2). Winger JA, Hantschel O, Superti-Furga G, Kuriyan J. BMC Struct. Biol. 9 7 (2009)
  9. Understanding kinase selectivity through energetic analysis of binding site waters. Robinson DD, Sherman W, Farid R. ChemMedChem 5 618-627 (2010)
  10. Molecular dynamics simulations show that conformational selection governs the binding preferences of imatinib for several tyrosine kinases. Aleksandrov A, Simonson T. J. Biol. Chem. 285 13807-13815 (2010)
  11. Molecular basis explanation for imatinib resistance of BCR-ABL due to T315I and P-loop mutations from molecular dynamics simulations. Lee TS, Potts SJ, Kantarjian H, Cortes J, Giles F, Albitar M. Cancer 112 1744-1753 (2008)
  12. A novel approach to the discovery of small-molecule ligands of CDK2. Martin MP, Alam R, Betzi S, Ingles DJ, Zhu JY, Schönbrunn E. Chembiochem 13 2128-2136 (2012)
  13. Antileukemic effects of the novel, mutant FLT3 inhibitor NVP-AST487: effects on PKC412-sensitive and -resistant FLT3-expressing cells. Weisberg E, Roesel J, Bold G, Furet P, Jiang J, Cools J, Wright RD, Nelson E, Barrett R, Ray A, Moreno D, Hall-Meyers E, Stone R, Galinsky I, Fox E, Gilliland G, Daley JF, Lazo-Kallanian S, Kung AL, Griffin JD. Blood 112 5161-5170 (2008)
  14. A conserved salt bridge in the G loop of multiple protein kinases is important for catalysis and for in vivo Lyn function. Barouch-Bentov R, Che J, Lee CC, Yang Y, Herman A, Jia Y, Velentza A, Watson J, Sternberg L, Kim S, Ziaee N, Miller A, Jackson C, Fujimoto M, Young M, Batalov S, Liu Y, Warmuth M, Wiltshire T, Cooke MP, Sauer K. Mol. Cell 33 43-52 (2009)
  15. Structural mechanisms determining inhibition of the collagen receptor DDR1 by selective and multi-targeted type II kinase inhibitors. Canning P, Tan L, Chu K, Lee SW, Gray NS, Bullock AN. J. Mol. Biol. 426 2457-2470 (2014)
  16. Induced-fit docking studies of the active and inactive states of protein tyrosine kinases. Zhong H, Tran LM, Stang JL. J. Mol. Graph. Model. 28 336-346 (2009)
  17. Small-molecule inhibitors binding to protein kinase. Part II: the novel pharmacophore approach of type II and type III inhibition. Backes A, Zech B, Felber B, Klebl B, Müller G. Expert Opin Drug Discov 3 1427-1449 (2008)
  18. Backbone NMR resonance assignment of the Abelson kinase domain in complex with imatinib. Vajpai N, Strauss A, Fendrich G, Cowan-Jacob SW, Manley PW, Jahnke W, Grzesiek S. Biomol NMR Assign 2 41-42 (2008)
  19. Protein kinase-inhibitor database: structural variability of and inhibitor interactions with the protein kinase P-loop. Patel RY, Doerksen RJ. J. Proteome Res. 9 4433-4442 (2010)
  20. Steered molecular dynamics simulations reveal the likelier dissociation pathway of imatinib from its targeting kinases c-Kit and Abl. Yang LJ, Zou J, Xie HZ, Li LL, Wei YQ, Yang SY. PLoS ONE 4 e8470 (2009)
  21. Computational study of Gleevec and G6G reveals molecular determinants of kinase inhibitor selectivity. Lin YL, Meng Y, Huang L, Roux B. J. Am. Chem. Soc. 136 14753-14762 (2014)
  22. Binding free energy calculation with QM/MM hybrid methods for Abl-Kinase inhibitor Dubey KshatreshDutta, Ojha RajendraPrasad. J Biol Phys 37 69-78 (2011)
  23. Structural modeling of V299L and E459K Bcr-Abl mutation, and sequential therapy of tyrosine kinase inhibitors for the compound mutations. Kim D, Kim DW, Cho BS, Goh HG, Kim SH, Kim WS, Lee J, Kweon IY, Park SH, Yoon JH, Kim ND, Chun H. Leuk. Res. 33 1260-1265 (2009)
  24. Targeting Filarial Abl-like Kinases: Orally Available, Food and Drug Administration-Approved Tyrosine Kinase Inhibitors Are Microfilaricidal and Macrofilaricidal. O'Connell EM, Bennuru S, Steel C, Dolan MA, Nutman TB. J. Infect. Dis. 212 684-693 (2015)
  25. Design, synthesis and biological activities of Nilotinib derivates as antitumor agents. Pan X, Wang F, Zhang Y, Gao H, Hu Z, Wang S, Zhang J. Bioorg. Med. Chem. 21 2527-2534 (2013)
  26. Cofactor-binding sites in proteins of deviating sequence: comparative analysis and clustering in torsion angle, cavity, and fold space. Stegemann B, Klebe G. Proteins 80 626-648 (2012)
  27. Analysis of c-Met kinase domain complexes: a new specific catalytic site receptor model for defining binding modes of ATP-competitive ligands. Asses Y, Leroux V, Tairi-Kellou S, Dono R, Maina F, Maigret B. Chem Biol Drug Des 74 560-570 (2009)
  28. Editorial [Still further crisis...the scene in Belgium]. Scheen AJ. Rev Med Liege 66 1-3 (2011)
  29. An Allosteric Cross-Talk Between the Activation Loop and the ATP Binding Site Regulates the Activation of Src Kinase. Pucheta-Martínez E, Saladino G, Morando MA, Martinez-Torrecuadrada J, Lelli M, Sutto L, D'Amelio N, Gervasio FL. Sci Rep 6 24235 (2016)
  30. Synthesis and Biopharmaceutical Evaluation of Imatinib Analogues Featuring Unusual Structural Motifs. Nicolaou KC, Vourloumis D, Totokotsopoulos S, Papakyriakou A, Karsunky H, Fernando H, Gavrilyuk J, Webb D, Stepan AF. ChemMedChem 11 31-37 (2016)
  31. Harnessing Fluorine-Sulfur Contacts and Multipolar Interactions for the Design of p53 Mutant Y220C Rescue Drugs. Bauer MR, Jones RN, Baud MG, Wilcken R, Boeckler FM, Fersht AR, Joerger AC, Spencer J. ACS Chem. Biol. 11 2265-2274 (2016)
  32. Identification of binding sites and favorable ligand binding moieties by virtual screening and self-organizing map analysis. Harigua-Souiai E, Cortes-Ciriano I, Desdouits N, Malliavin TE, Guizani I, Nilges M, Blondel A, Bouvier G. BMC Bioinformatics 16 93 (2015)
  33. Letter Restoration of donor chimerism by nilotinib in a chronic myeloid leukaemia patient post mutation-associated imatinib mesylate resistance and allogeneic stem cell transplant failure. O'Connor LM, Langabeer S, McCann SR, Conneally E. Bone Marrow Transplant. 42 833-835 (2008)
  34. Constructing and Validating High-Performance MIEC-SVM Models in Virtual Screening for Kinases: A Better Way for Actives Discovery. Sun H, Pan P, Tian S, Xu L, Kong X, Li Y, Dan Li, Hou T. Sci Rep 6 24817 (2016)
  35. Comparing pharmacophore models derived from crystal structures and from molecular dynamics simulations. Wieder M, Perricone U, Seidel T, Boresch S, Langer T. Monatsh. Chem. 147 553-563 (2016)
  36. Synthesis and biological evaluation of novel aromatic-heterocyclic biphenyls as potent anti-leukemia agents. Dong J, Pan X, Wang J, Su P, Zhang L, Wei F, Zhang J. Eur J Med Chem 101 780-789 (2015)
  37. Conformational flexibility, binding energy, role of salt bridge and alanine-mutagenesis for c-Abl kinase complex. Dubey KD, Ojha RP. J Mol Model 18 1679-1689 (2012)
  38. Characterization of ABL exon 7 deletion by molecular genetic and bioinformatic methods reveals no association with imatinib resistance in chronic myeloid leukemia. Meggyesi N, Kalmár L, Fekete S, Masszi T, Tordai A, Andrikovics H. Med. Oncol. 29 2136-2142 (2012)
  39. Molecular interactions of c-ABL mutants in complex with imatinib/nilotinib: a computational study using linear interaction energy (LIE) calculations. Pereira EG, Moreira MA, Caffarena ER. J Mol Model 18 4333-4341 (2012)
  40. BCR-ABL tyrosine kinase inhibitor pharmacophore model derived from a series of phenylaminopyrimidine-based (PAP) derivatives. Cui J, Fu R, Zhou LH, Chen SP, Li GW, Qian SX, Liu S. Bioorg. Med. Chem. Lett. 23 2442-2450 (2013)
  41. New mutation L324M in the ABL1 kinase domain: does it confer high resistance to second-generation inhibitors? Noriega MF, Ferri CA, Icardi G, Bullorsky E, Korin J, Larripa I. Leuk. Lymphoma 55 698-701 (2014)
  42. Structure-Based Design of Tetrahydroisoquinoline-7-carboxamides as Selective Discoidin Domain Receptor 1 (DDR1) Inhibitors. Wang Z, Bian H, Bartual SG, Du W, Luo J, Zhao H, Zhang S, Mo C, Zhou Y, Xu Y, Tu Z, Ren X, Lu X, Brekken RA, Yao L, Bullock AN, Su J, Ding K. J. Med. Chem. 59 5911-5916 (2016)
  43. A Novel Four-Way Complex Variant Translocation Involving Chromosome 46,XY,t(4;9;19;22)(q25:q34;p13.3;q11.2) in a Chronic Myeloid Leukemia Patient. Asif M, Jamal MS, Khan AR, Naseer MI, Hussain A, Choudhry H, Malik A, Khan SA, Mahmoud MM, Ali A, Iram S, Kamran K, Iqbal A, Abduljaleel Z, Pushparaj PN, Rasool M. Front Oncol 6 124 (2016)
  44. Ensembler: Enabling High-Throughput Molecular Simulations at the Superfamily Scale. Parton DL, Grinaway PB, Hanson SM, Beauchamp KA, Chodera JD. PLoS Comput. Biol. 12 e1004728 (2016)
  45. Insight on Mutation-Induced Resistance from Molecular Dynamics Simulations of the Native and Mutated CSF-1R and KIT. Da Silva Figueiredo Celestino Gomes P, Chauvot De Beauchêne I, Panel N, Lopez S, De Sepulveda P, Geraldo Pascutti P, Solary E, Tchertanov L. PLoS ONE 11 e0160165 (2016)
  46. Classifying kinase conformations using a machine learning approach. McSkimming DI, Rasheed K, Kannan N. BMC Bioinformatics 18 86 (2017)
  47. A rare case of three-way complex variant translocation in chronic myeloid leukemia t(6;9;22)(p21;q34;q11): A case report. Asif M, Hussain A, Wali A, Ahmad N, Sajjad N, Amir M, Ali I, Pushparaj PN, Rasool M. Biomed Rep 7 377-379 (2017)