2hck Citations

Crystal structure of the Src family tyrosine kinase Hck.

Nature 385 602-9 (1997)
Cited: 564 times
EuropePMC logo PMID: 9024658

Abstract

The crystal structure of the haematopoietic cell kinase Hck has been determined at 2.6/2.9 A resolution. Inhibition of enzymatic activity is a consequence of intramolecular interactions of the enzyme's Src-homology domains SH2 and SH3, with concomitant displacement of elements of the catalytic domain. The conformation of the active site has similarities with that of inactive cyclin-dependent protein kinases.

Reviews - 2hck mentioned but not cited (1)

  1. Prospects for circumventing aminoglycoside kinase mediated antibiotic resistance. Shi K, Caldwell SJ, Fong DH, Berghuis AM. Front Cell Infect Microbiol 3 22 (2013)

Articles - 2hck mentioned but not cited (3)

  1. Comparison of protein structures by growing neighborhood alignments. Bhattacharya S, Bhattacharyya C, Chandra NR. BMC Bioinformatics 8 77 (2007)
  2. CARDIO-PRED: an in silico tool for predicting cardiovascular-disorder associated proteins. Jain P, Thukral N, Gahlot LK, Hasija Y. Syst Synth Biol 9 55-66 (2015)
  3. Abstract Abstracts First North - South Conference and Workshops on Pharmacogenetics (Beating the Gene : From The Bench to the Bedside): 12 ? 17 Disember 2005. Ismail R, Majeed ABA, Salleh MZ, Kek TL. Malays J Med Sci 13 99-120 (2006)


Reviews citing this publication (135)

  1. SPLINTS: small-molecule protein ligand interface stabilizers. Fischer ES, Park E, Eck MJ, Thomä NH. Curr. Opin. Struct. Biol. 37 115-122 (2016)
  2. Docking Screens for Novel Ligands Conferring New Biology. Irwin JJ, Shoichet BK. J. Med. Chem. 59 4103-4120 (2016)
  3. Contribution of phosphoproteomics in understanding SRC signaling in normal and tumor cells. Sirvent A, Urbach S, Roche S. Proteomics 15 232-244 (2015)
  4. The Fyn-ADAP Axis: Cytotoxicity Versus Cytokine Production in Killer Cells. Gerbec ZJ, Thakar MS, Malarkannan S. Front Immunol 6 472 (2015)
  5. The discovery of modular binding domains: building blocks of cell signalling. Mayer BJ. Nat. Rev. Mol. Cell Biol. 16 691-698 (2015)
  6. Hematopoietic cell kinase (HCK) as a therapeutic target in immune and cancer cells. Poh AR, O'Donoghue RJ, Ernst M. Oncotarget 6 15752-15771 (2015)
  7. SRChing for the substrates of Src. Reynolds AB, Kanner SB, Bouton AH, Schaller MD, Weed SA, Flynn DC, Parsons JT. Oncogene 33 4537-4547 (2014)
  8. A glimpse of structural biology through X-ray crystallography. Shi Y. Cell 159 995-1014 (2014)
  9. Modeling conformational transitions in kinases by molecular dynamics simulations: achievements, difficulties, and open challenges. D'Abramo M, Besker N, Chillemi G, Grottesi A. Front Genet 5 128 (2014)
  10. The capable ABL: what is its biological function? Wang JY. Mol. Cell. Biol. 34 1188-1197 (2014)
  11. Insights into dietary flavonoids as molecular templates for the design of anti-platelet drugs. Wright B, Spencer JP, Lovegrove JA, Gibbins JM. Cardiovasc. Res. 97 13-22 (2013)
  12. Molecular mechanisms of SH2- and PTB-domain-containing proteins in receptor tyrosine kinase signaling. Wagner MJ, Stacey MM, Liu BA, Pawson T. Cold Spring Harb Perspect Biol 5 a008987 (2013)
  13. The role of membrane rafts in Lck transport, regulation and signalling in T-cells. Ventimiglia LN, Alonso MA. Biochem. J. 454 169-179 (2013)
  14. Cellular functions regulated by phosphorylation of EGFR on Tyr845. Sato K. Int J Mol Sci 14 10761-10790 (2013)
  15. Polyproline-II helix in proteins: structure and function. Adzhubei AA, Sternberg MJ, Makarov AA. J. Mol. Biol. 425 2100-2132 (2013)
  16. Ste20-like kinase SLK, at the crossroads: a matter of life and death. Al-Zahrani KN, Baron KD, Sabourin LA. Cell Adh Migr 7 1-10 (2013)
  17. Natural products as kinase inhibitors. Liu J, Hu Y, Waller DL, Wang J, Liu Q. Nat Prod Rep 29 392-403 (2012)
  18. Structural basis of the unfolded protein response. Korennykh A, Walter P. Annu. Rev. Cell Dev. Biol. 28 251-277 (2012)
  19. Retroviral oncogenes: a historical primer. Vogt PK. Nat. Rev. Cancer 12 639-648 (2012)
  20. Modular evolution of phosphorylation-based signalling systems. Jin J, Pawson T. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 367 2540-2555 (2012)
  21. Spatiotemporal regulation of Src and its substrates at invadosomes. Boateng LR, Huttenlocher A. Eur. J. Cell Biol. 91 878-888 (2012)
  22. Consequences of a mutation in the UNC119 gene for T cell function in idiopathic CD4 lymphopenia. Gorska MM, Alam R. Curr Allergy Asthma Rep 12 396-401 (2012)
  23. The language of SH2 domain interactions defines phosphotyrosine-mediated signal transduction. Liu BA, Engelmann BW, Nash PD. FEBS Lett. 586 2597-2605 (2012)
  24. The structural basis for control of eukaryotic protein kinases. Endicott JA, Noble ME, Johnson LN. Annu. Rev. Biochem. 81 587-613 (2012)
  25. Biology of Aurora A kinase: implications in cancer manifestation and therapy. Karthigeyan D, Prasad SB, Shandilya J, Agrawal S, Kundu TK. Med Res Rev 31 757-793 (2011)
  26. Catalytic control in the EGF receptor and its connection to general kinase regulatory mechanisms. Jura N, Zhang X, Endres NF, Seeliger MA, Schindler T, Kuriyan J. Mol. Cell 42 9-22 (2011)
  27. Allosteric networks governing regulation and catalysis of Src-family protein tyrosine kinases: implications for disease-associated kinases. Cheng HC, Johnson TM, Mills RD, Chong YP, Chan KC, Culvenor JG. Clin. Exp. Pharmacol. Physiol. 37 93-101 (2010)
  28. Update on lymphocyte specific kinase inhibitors: a patent survey. Martin MW, Machacek MR. Expert Opin Ther Pat 20 1573-1593 (2010)
  29. Medicinal chemistry of ATP synthase: a potential drug target of dietary polyphenols and amphibian antimicrobial peptides. Ahmad Z, Laughlin TF. Curr. Med. Chem. 17 2822-2836 (2010)
  30. Structural elements and allosteric mechanisms governing regulation and catalysis of CSK-family kinases and their inhibition of Src-family kinases. Ia KK, Mills RD, Hossain MI, Chan KC, Jarasrassamee B, Jorissen RN, Cheng HC. Growth Factors 28 329-350 (2010)
  31. Proteus in the world of proteins: conformational changes in protein kinases. Rabiller M, Getlik M, Klüter S, Richters A, Tückmantel S, Simard JR, Rauh D. Arch. Pharm. (Weinheim) 343 193-206 (2010)
  32. The Src, Syk, and Tec family kinases: distinct types of molecular switches. Bradshaw JM. Cell. Signal. 22 1175-1184 (2010)
  33. The sodium pump and cardiotonic steroids-induced signal transduction protein kinases and calcium-signaling microdomain in regulation of transporter trafficking. Liu J, Xie ZJ. Biochim. Biophys. Acta 1802 1237-1245 (2010)
  34. The Na/K-ATPase/Src complex and cardiotonic steroid-activated protein kinase cascades. Li Z, Xie Z. Pflugers Arch. 457 635-644 (2009)
  35. A review of kinases implicated in pancreatic cancer. Giroux V, Dagorn JC, Iovanna JL. Pancreatology 9 738-754 (2009)
  36. Pathways of metastasis suppression in bladder cancer. Said N, Theodorescu D. Cancer Metastasis Rev. 28 327-333 (2009)
  37. SH2 domains: modulators of nonreceptor tyrosine kinase activity. Filippakopoulos P, Müller S, Knapp S. Curr. Opin. Struct. Biol. 19 643-649 (2009)
  38. Autoinhibition and adapter function of Syk. Kulathu Y, Grothe G, Reth M. Immunol. Rev. 232 286-299 (2009)
  39. Dynamic interactions of proteins in complex networks: a more structured view. Stein A, Pache RA, Bernadó P, Pons M, Aloy P. FEBS J. 276 5390-5405 (2009)
  40. The chemical biology of protein phosphorylation. Tarrant MK, Cole PA. Annu. Rev. Biochem. 78 797-825 (2009)
  41. Kinome signaling through regulated protein-protein interactions in normal and cancer cells. Pawson T, Kofler M. Curr. Opin. Cell Biol. 21 147-153 (2009)
  42. Tyrosine kinases and their substrates in B lymphocytes. Kurosaki T, Hikida M. Immunol. Rev. 228 132-148 (2009)
  43. The structure, regulation, and function of ZAP-70. Au-Yeung BB, Deindl S, Hsu LY, Palacios EH, Levin SE, Kuriyan J, Weiss A. Immunol. Rev. 228 41-57 (2009)
  44. Molecular biology of bcr-abl1-positive chronic myeloid leukemia. Quintás-Cardama A, Cortes J. Blood 113 1619-1630 (2009)
  45. Src family kinases as mediators of endothelial permeability: effects on inflammation and metastasis. Kim MP, Park SI, Kopetz S, Gallick GE. Cell Tissue Res. 335 249-259 (2009)
  46. Src family kinases and the MEK/ERK pathway in the regulation of myeloid differentiation and myeloid leukemogenesis. Johnson DE. Adv. Enzyme Regul. 48 98-112 (2008)
  47. Resveratrol: one molecule, many targets. Pirola L, Fröjdö S. IUBMB Life 60 323-332 (2008)
  48. On the relevance of defining protein structures in cancer research. Muñoz IG, Blanco FJ, Montoya G. Clin Transl Oncol 10 204-212 (2008)
  49. Oncogenes and cancer. Croce CM. N. Engl. J. Med. 358 502-511 (2008)
  50. Oncogenic re-wiring of cellular signaling pathways. Pawson T, Warner N. Oncogene 26 1268-1275 (2007)
  51. The origin of protein interactions and allostery in colocalization. Kuriyan J, Eisenberg D. Nature 450 983-990 (2007)
  52. Treatment for chronic myelogenous leukemia: the long road to imatinib. Hunter T. J. Clin. Invest. 117 2036-2043 (2007)
  53. Keeping the (kinase) party going: SLP-76 and ITK dance to the beat. Qi Q, August A. Sci. STKE 2007 pe39 (2007)
  54. Regulation of cardiac ion channels via non-genomic action of sex steroid hormones: implication for the gender difference in cardiac arrhythmias. Furukawa T, Kurokawa J. Pharmacol. Ther. 115 106-115 (2007)
  55. Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Genestra M. Cell. Signal. 19 1807-1819 (2007)
  56. Domains, motifs, and scaffolds: the role of modular interactions in the evolution and wiring of cell signaling circuits. Bhattacharyya RP, Reményi A, Yeh BJ, Lim WA. Annu. Rev. Biochem. 75 655-680 (2006)
  57. Protein-protein interactions in the allosteric regulation of protein kinases. Pellicena P, Kuriyan J. Curr. Opin. Struct. Biol. 16 702-709 (2006)
  58. Reading protein modifications with interaction domains. Seet BT, Dikic I, Zhou MM, Pawson T. Nat. Rev. Mol. Cell Biol. 7 473-483 (2006)
  59. Redox control of catalytic activities of membrane-associated protein tyrosine kinases. Nakashima I, Takeda K, Kawamoto Y, Okuno Y, Kato M, Suzuki H. Arch. Biochem. Biophys. 434 3-10 (2005)
  60. The role(s) of Src kinase and Cbl proteins in the regulation of osteoclast differentiation and function. Horne WC, Sanjay A, Bruzzaniti A, Baron R. Immunol. Rev. 208 106-125 (2005)
  61. C-terminal Src kinase (CSK) and CSK-homologous kinase (CHK)--endogenous negative regulators of Src-family protein kinases. Chong YP, Mulhern TD, Cheng HC. Growth Factors 23 233-244 (2005)
  62. ATP-regulated module (ARM) of the atrial natriuretic factor receptor guanylate cyclase. Duda T, Venkataraman V, Ravichandran S, Sharma RK. Peptides 26 969-984 (2005)
  63. Recognition of proline-rich motifs by protein-protein-interaction domains. Ball LJ, Kühne R, Schneider-Mergener J, Oschkinat H. Angew. Chem. Int. Ed. Engl. 44 2852-2869 (2005)
  64. Synthetic modular systems--reverse engineering of signal transduction. Pawson T, Linding R. FEBS Lett. 579 1808-1814 (2005)
  65. Mechanisms of transformation by the BCR-ABL oncogene: new perspectives in the post-imatinib era. Van Etten RA. Leuk. Res. 28 Suppl 1 S21-8 (2004)
  66. Src protein-tyrosine kinase structure and regulation. Roskoski R. Biochem. Biophys. Res. Commun. 324 1155-1164 (2004)
  67. Regulation of protein kinases; controlling activity through activation segment conformation. Nolen B, Taylor S, Ghosh G. Mol. Cell 15 661-675 (2004)
  68. Structural modes of stabilization of permissive phosphorylation sites in protein kinases: distinct strategies in Ser/Thr and Tyr kinases. Krupa A, Preethi G, Srinivasan N. J. Mol. Biol. 339 1025-1039 (2004)
  69. Positive and negative regulation of T-cell activation through kinases and phosphatases. Mustelin T, Taskén K. Biochem. J. 371 15-27 (2003)
  70. SH2 and PTB domains in tyrosine kinase signaling. Schlessinger J, Lemmon MA. Sci. STKE 2003 RE12 (2003)
  71. Determinants of substrate recognition in nonreceptor tyrosine kinases. Miller WT. Acc. Chem. Res. 36 393-400 (2003)
  72. Sin: good or bad? A T lymphocyte perspective. Alexandropoulos K, Donlin LT, Xing L, Regelmann AG. Immunol. Rev. 192 181-195 (2003)
  73. Variation on an Src-like theme. Harrison SC. Cell 112 737-740 (2003)
  74. Meeting at mitosis: cell cycle-specific regulation of c-Src by RPTPalpha. Mustelin T, Hunter T. Sci. STKE 2002 pe3 (2002)
  75. BCR/ABL genes and leukemic phenotype: from molecular mechanisms to clinical correlations. Pane F, Intrieri M, Quintarelli C, Izzo B, Muccioli GC, Salvatore F. Oncogene 21 8652-8667 (2002)
  76. Redox-linked signal transduction pathways for protein tyrosine kinase activation. Nakashima I, Kato M, Akhand AA, Suzuki H, Takeda K, Hossain K, Kawamoto Y. Antioxid. Redox Signal. 4 517-531 (2002)
  77. Recent advances in the discovery of flavonoids and analogs with high-affinity binding to P-glycoprotein responsible for cancer cell multidrug resistance. Boumendjel A, Di Pietro A, Dumontet C, Barron D. Med Res Rev 22 512-529 (2002)
  78. Peroxynitrite activates kinases of the src family and upregulates tyrosine phosphorylation signaling. Minetti M, Mallozzi C, Di Stasi AM. Free Radic. Biol. Med. 33 744-754 (2002)
  79. Inhibition and activation of c-Src: the head and tail of a coin. Fukami Y, Nagao T, Iwasaki T, Sato K. Pharmacol. Ther. 93 263-270 (2002)
  80. Structural aspects of protein kinase control-role of conformational flexibility. Engh RA, Bossemeyer D. Pharmacol. Ther. 93 99-111 (2002)
  81. Autoinhibitory domains: modular effectors of cellular regulation. Pufall MA, Graves BJ. Annu. Rev. Cell Dev. Biol. 18 421-462 (2002)
  82. Disabling Abl-perspectives on Abl kinase regulation and cancer therapeutics. Sawyers CL. Cancer Cell 1 13-15 (2002)
  83. The conformational plasticity of protein kinases. Huse M, Kuriyan J. Cell 109 275-282 (2002)
  84. New insights into the regulation and functions of Tec family tyrosine kinases in the immune system. Miller AT, Berg LJ. Curr. Opin. Immunol. 14 331-340 (2002)
  85. The modular logic of signaling proteins: building allosteric switches from simple binding domains. Lim WA. Curr. Opin. Struct. Biol. 12 61-68 (2002)
  86. Membrane domains and the immunological synapse: keeping T cells resting and ready. Dustin ML. J. Clin. Invest. 109 155-160 (2002)
  87. The immunological synapse. Bromley SK, Burack WR, Johnson KG, Somersalo K, Sims TN, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML. Annu. Rev. Immunol. 19 375-396 (2001)
  88. The role of the protein tyrosine phosphatase CD45 in regulation of B lymphocyte activation. Justement LB. Int. Rev. Immunol. 20 713-738 (2001)
  89. Recent advances in chemical approaches to the study of biological systems. Shogren-Knaak MA, Alaimo PJ, Shokat KM. Annu. Rev. Cell Dev. Biol. 17 405-433 (2001)
  90. Detailed analysis of the atrial natriuretic factor receptor hormone-binding domain crystal structure. van den Akker F. Can. J. Physiol. Pharmacol. 79 692-704 (2001)
  91. Allosteric regulatory step and configuration of the ATP-binding pocket in atrial natriuretic factor receptor guanylate cyclase transduction mechanism. Sharma RK, Yadav P, Duda T. Can. J. Physiol. Pharmacol. 79 682-691 (2001)
  92. Chemical genetic approaches for the elucidation of signaling pathways. Alaimo PJ, Shogren-Knaak MA, Shokat KM. Curr Opin Chem Biol 5 360-367 (2001)
  93. The hunting of the Src. Martin GS. Nat. Rev. Mol. Cell Biol. 2 467-475 (2001)
  94. The protein kinase activity modulation sites: mechanisms for cellular regulation - targets for therapeutic intervention. Engh RA, Bossemeyer D. Adv. Enzyme Regul. 41 121-149 (2001)
  95. Phosphoryltyrosyl mimetics in the design of peptide-based signal transduction inhibitors. Burke TR, Yao ZJ, Liu DG, Voigt J, Gao Y. Biopolymers 60 32-44 (2001)
  96. Src family tyrosine kinases and growth factor signaling. Abram CL, Courtneidge SA. Exp. Cell Res. 254 1-13 (2000)
  97. Src inhibitors: drugs for the treatment of osteoporosis, cancer or both? Susva M, Missbach M, Green J. Trends Pharmacol. Sci. 21 489-495 (2000)
  98. Protein tyrosine kinase structure and function. Hubbard SR, Till JH. Annu. Rev. Biochem. 69 373-398 (2000)
  99. Unnatural ligands for engineered proteins: new tools for chemical genetics. Bishop A, Buzko O, Heyeck-Dumas S, Jung I, Kraybill B, Liu Y, Shah K, Ulrich S, Witucki L, Yang F, Zhang C, Shokat KM. Annu Rev Biophys Biomol Struct 29 577-606 (2000)
  100. Lck protein tyrosine kinase is a key regulator of T-cell activation and a target for signal intervention by Herpesvirus saimiri and other viral gene products. Isakov N, Biesinger B. Eur. J. Biochem. 267 3413-3421 (2000)
  101. Early events in M-CSF receptor signaling. Bourette RP, Rohrschneider LR. Growth Factors 17 155-166 (2000)
  102. Genetic analysis of B cell antigen receptor signaling. Kurosaki T. Annu. Rev. Immunol. 17 555-592 (1999)
  103. NMR structure of phospho-tyrosine signaling complexes. Post CB, Gaul BS, Eisenmesser EZ, Schneider ML. Med Res Rev 19 295-305 (1999)
  104. Catalytic subunit of cyclic AMP-dependent protein kinase: structure and dynamics of the active site cleft. Taylor SS, Radzio-Andzelm E, Madhusudan, Cheng X, Ten Eyck L, Narayana N. Pharmacol. Ther. 82 133-141 (1999)
  105. Conformational diversity of catalytic cores of protein kinases. Sowadski JM, Epstein LF, Lankiewicz L, Karlsson R. Pharmacol. Ther. 82 157-164 (1999)
  106. Strategies toward the design of novel and selective protein tyrosine kinase inhibitors. Traxler P, Furet P. Pharmacol. Ther. 82 195-206 (1999)
  107. Chemical approaches to the study of protein tyrosine kinases and their implications for mechanism and inhibitor design. Cole PA, Sondhi D, Kim K. Pharmacol. Ther. 82 219-229 (1999)
  108. Protein tyrosine kinase inhibitors as novel therapeutic agents. Levitzki A. Pharmacol. Ther. 82 231-239 (1999)
  109. Positive and negative regulation of Src-family membrane kinases by CD45. Thomas ML, Brown EJ. Immunol. Today 20 406-411 (1999)
  110. CD45 and Src-family kinases: and now for something completely different. Ashwell JD, D'Oro U. Immunol. Today 20 412-416 (1999)
  111. Multiple roles for Src in a PDGF-stimulated cell. DeMali KA, Godwin SL, Soltoff SP, Kazlauskas A. Exp. Cell Res. 253 271-279 (1999)
  112. Diversity in protein recognition by PTB domains. Forman-Kay JD, Pawson T. Curr. Opin. Struct. Biol. 9 690-695 (1999)
  113. Tec family of protein-tyrosine kinases: an overview of their structure and function. Mano H. Cytokine Growth Factor Rev. 10 267-280 (1999)
  114. Implications for Src kinases in hematopoiesis: signal transduction therapeutics. Sinha S, Corey SJ. J. Hematother. Stem Cell Res. 8 465-480 (1999)
  115. Revealing mechanisms for SH2 domain mediated regulation of the protein tyrosine phosphatase SHP-2. Barford D, Neel BG. Structure 6 249-254 (1998)
  116. Viruses: exquisite models for cell strategies. Bernardi F, Haenni AL. Biochimie 80 1035-1041 (1998)
  117. Fyn, a Src family tyrosine kinase. Resh MD. Int. J. Biochem. Cell Biol. 30 1159-1162 (1998)
  118. Protein tyrosine kinases: structure, substrate specificity, and drug discovery. al-Obeidi FA, Wu JJ, Lam KS. Biopolymers 47 197-223 (1998)
  119. Phosphoinositide kinases. Fruman DA, Meyers RE, Cantley LC. Annu. Rev. Biochem. 67 481-507 (1998)
  120. The modular architecture of leukocyte cell-surface receptors. Campbell ID. Immunol. Rev. 163 11-18 (1998)
  121. The Eleventh Datta Lecture. The structural basis for substrate recognition and control by protein kinases. Johnson LN, Lowe ED, Noble ME, Owen DJ. FEBS Lett. 430 1-11 (1998)
  122. Engineering protein kinases with distinct nucleotide specificities and inhibitor sensitivities by mutation of a single amino acid. Cohen P, Goedert M. Chem. Biol. 5 R161-4 (1998)
  123. Protein kinases entering the information age. Wang JY. J. Biomed. Sci. 5 73 (1998)
  124. X-linked agammaglobulinemia: lack of mature B lineage cells caused by mutations in the Btk kinase. Smith CI, Bäckesjö CM, Berglöf A, Brandén LJ, Islam T, Mattsson PT, Mohamed AJ, Müller S, Nore B, Vihinen M. Springer Semin. Immunopathol. 19 369-381 (1998)
  125. Insights into Src kinase functions: structural comparisons. Williams JC, Wierenga RK, Saraste M. Trends Biochem. Sci. 23 179-184 (1998)
  126. Signal transduction: clamping down on Src activity. Mayer BJ. Curr. Biol. 7 R295-8 (1997)
  127. A crystal milestone: the structure of regulated Src. Superti-Furga G, Gonfloni S. Bioessays 19 447-450 (1997)
  128. Modular peptide recognition domains in eukaryotic signaling. Kuriyan J, Cowburn D. Annu Rev Biophys Biomol Struct 26 259-288 (1997)
  129. Role of Btk in B cell development and signaling. Desiderio S. Curr. Opin. Immunol. 9 534-540 (1997)
  130. Structures of Src-family tyrosine kinases. Sicheri F, Kuriyan J. Curr. Opin. Struct. Biol. 7 777-785 (1997)
  131. Cellular functions regulated by Src family kinases. Thomas SM, Brugge JS. Annu. Rev. Cell Dev. Biol. 13 513-609 (1997)
  132. Small molecule inhibitors of the platelet-derived growth factor receptor, the fibroblast growth factor receptor, and Src family tyrosine kinases. Showalter HD, Kraker AJ. Pharmacol. Ther. 76 55-71 (1997)
  133. SH3 domains and drug design: ligands, structure, and biological function. Dalgarno DC, Botfield MC, Rickles RJ. Biopolymers 43 383-400 (1997)
  134. Protein kinase inhibition: natural and synthetic variations on a theme. Taylor SS, Radzio-Andzelm E. Curr Opin Chem Biol 1 219-226 (1997)
  135. New trends in macromolecular X-ray crystallography. Wery JP, Schevitz RW. Curr Opin Chem Biol 1 365-369 (1997)

Articles citing this publication (425)

  1. Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Walker EH, Pacold ME, Perisic O, Stephens L, Hawkins PT, Wymann MP, Williams RL. Mol. Cell 6 909-919 (2000)
  2. Expressed protein ligation: a general method for protein engineering. Muir TW, Sondhi D, Cole PA. Proc. Natl. Acad. Sci. U.S.A. 95 6705-6710 (1998)
  3. Crystal structures of c-Src reveal features of its autoinhibitory mechanism. Xu W, Doshi A, Lei M, Eck MJ, Harrison SC. Mol. Cell 3 629-638 (1999)
  4. The molecular basis for phosphodependent substrate targeting and regulation of Plks by the Polo-box domain. Elia AE, Rellos P, Haire LF, Chao JW, Ivins FJ, Hoepker K, Mohammad D, Cantley LC, Smerdon SJ, Yaffe MB. Cell 115 83-95 (2003)
  5. Structures of lung cancer-derived EGFR mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity. Yun CH, Boggon TJ, Li Y, Woo MS, Greulich H, Meyerson M, Eck MJ. Cancer Cell 11 217-227 (2007)
  6. Activation mechanism of the MAP kinase ERK2 by dual phosphorylation. Canagarajah BJ, Khokhlatchev A, Cobb MH, Goldsmith EJ. Cell 90 859-869 (1997)
  7. Molecular dynamics and protein function. Karplus M, Kuriyan J. Proc. Natl. Acad. Sci. U.S.A. 102 6679-6685 (2005)
  8. Crystal structure of the tyrosine phosphatase SHP-2. Hof P, Pluskey S, Dhe-Paganon S, Eck MJ, Shoelson SE. Cell 92 441-450 (1998)
  9. Quantitative high-throughput screening: a titration-based approach that efficiently identifies biological activities in large chemical libraries. Inglese J, Auld DS, Jadhav A, Johnson RL, Simeonov A, Yasgar A, Zheng W, Austin CP. Proc. Natl. Acad. Sci. U.S.A. 103 11473-11478 (2006)
  10. A requirement for caveolin-1 and associated kinase Fyn in integrin signaling and anchorage-dependent cell growth. Wary KK, Mariotti A, Zurzolo C, Giancotti FG. Cell 94 625-634 (1998)
  11. Crystal structure of glycogen synthase kinase 3 beta: structural basis for phosphate-primed substrate specificity and autoinhibition. Dajani R, Fraser E, Roe SM, Young N, Good V, Dale TC, Pearl LH. Cell 105 721-732 (2001)
  12. Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities. Couet J, Sargiacomo M, Lisanti MP. J. Biol. Chem. 272 30429-30438 (1997)
  13. EphA receptors regulate growth cone dynamics through the novel guanine nucleotide exchange factor ephexin. Shamah SM, Lin MZ, Goldberg JL, Estrach S, Sahin M, Hu L, Bazalakova M, Neve RL, Corfas G, Debant A, Greenberg ME. Cell 105 233-244 (2001)
  14. Src kinase activation by direct interaction with the integrin beta cytoplasmic domain. Arias-Salgado EG, Lizano S, Sarkar S, Brugge JS, Ginsberg MH, Shattil SJ. Proc. Natl. Acad. Sci. U.S.A. 100 13298-13302 (2003)
  15. Mechanism for activation of the EGF receptor catalytic domain by the juxtamembrane segment. Jura N, Endres NF, Engel K, Deindl S, Das R, Lamers MH, Wemmer DE, Zhang X, Kuriyan J. Cell 137 1293-1307 (2009)
  16. ConSurf: an algorithmic tool for the identification of functional regions in proteins by surface mapping of phylogenetic information. Armon A, Graur D, Ben-Tal N. J. Mol. Biol. 307 447-463 (2001)
  17. Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition. Ohren JF, Chen H, Pavlovsky A, Whitehead C, Zhang E, Kuffa P, Yan C, McConnell P, Spessard C, Banotai C, Mueller WT, Delaney A, Omer C, Sebolt-Leopold J, Dudley DT, Leung IK, Flamme C, Warmus J, Kaufman M, Barrett S, Tecle H, Hasemann CA. Nat. Struct. Mol. Biol. 11 1192-1197 (2004)
  18. Cooperative inhibition of T-cell antigen receptor signaling by a complex between a kinase and a phosphatase. Cloutier JF, Veillette A. J. Exp. Med. 189 111-121 (1999)
  19. The molecular basis of FHA domain:phosphopeptide binding specificity and implications for phospho-dependent signaling mechanisms. Durocher D, Taylor IA, Sarbassova D, Haire LF, Westcott SL, Jackson SP, Smerdon SJ, Yaffe MB. Mol. Cell 6 1169-1182 (2000)
  20. Fab1p is essential for PtdIns(3)P 5-kinase activity and the maintenance of vacuolar size and membrane homeostasis. Gary JD, Wurmser AE, Bonangelino CJ, Weisman LS, Emr SD. J. Cell Biol. 143 65-79 (1998)
  21. Identification and characterization of pleckstrin-homology-domain-dependent and isoenzyme-specific Akt inhibitors. Barnett SF, Defeo-Jones D, Fu S, Hancock PJ, Haskell KM, Jones RE, Kahana JA, Kral AM, Leander K, Lee LL, Malinowski J, McAvoy EM, Nahas DD, Robinson RG, Huber HE. Biochem. J. 385 399-408 (2005)
  22. Crystal structure of the cytoplasmic domain of the type I TGF beta receptor in complex with FKBP12. Huse M, Chen YG, Massagué J, Kuriyan J. Cell 96 425-436 (1999)
  23. Serine and tyrosine phosphorylations cooperate in Raf-1, but not B-Raf activation. Mason CS, Springer CJ, Cooper RG, Superti-Furga G, Marshall CJ, Marais R. EMBO J. 18 2137-2148 (1999)
  24. Crystal structure of Hck in complex with a Src family-selective tyrosine kinase inhibitor. Schindler T, Sicheri F, Pico A, Gazit A, Levitzki A, Kuriyan J. Mol. Cell 3 639-648 (1999)
  25. Src tyrosine kinase is a novel direct effector of G proteins. Ma YC, Huang J, Ali S, Lowry W, Huang XY. Cell 102 635-646 (2000)
  26. A myristoyl/phosphotyrosine switch regulates c-Abl. Hantschel O, Nagar B, Guettler S, Kretzschmar J, Dorey K, Kuriyan J, Superti-Furga G. Cell 112 845-857 (2003)
  27. Dynamic coupling between the SH2 and SH3 domains of c-Src and Hck underlies their inactivation by C-terminal tyrosine phosphorylation. Young MA, Gonfloni S, Superti-Furga G, Roux B, Kuriyan J. Cell 105 115-126 (2001)
  28. Activation of tyrosine kinases by mutation of the gatekeeper threonine. Azam M, Seeliger MA, Gray NS, Kuriyan J, Daley GQ. Nat. Struct. Mol. Biol. 15 1109-1118 (2008)
  29. Molecular basis of phosphorylation-induced activation of the NADPH oxidase. Groemping Y, Lapouge K, Smerdon SJ, Rittinger K. Cell 113 343-355 (2003)
  30. Regulation of the Jak2 tyrosine kinase by its pseudokinase domain. Saharinen P, Takaluoma K, Silvennoinen O. Mol. Cell. Biol. 20 3387-3395 (2000)
  31. Flavonoids: a class of modulators with bifunctional interactions at vicinal ATP- and steroid-binding sites on mouse P-glycoprotein. Conseil G, Baubichon-Cortay H, Dayan G, Jault JM, Barron D, Di Pietro A. Proc. Natl. Acad. Sci. U.S.A. 95 9831-9836 (1998)
  32. Structural basis for autoinhibition of the Ephb2 receptor tyrosine kinase by the unphosphorylated juxtamembrane region. Wybenga-Groot LE, Baskin B, Ong SH, Tong J, Pawson T, Sicheri F. Cell 106 745-757 (2001)
  33. The C2 domain of PKCdelta is a phosphotyrosine binding domain. Benes CH, Wu N, Elia AE, Dharia T, Cantley LC, Soltoff SP. Cell 121 271-280 (2005)
  34. The crystal structure of a c-Src complex in an active conformation suggests possible steps in c-Src activation. Cowan-Jacob SW, Fendrich G, Manley PW, Jahnke W, Fabbro D, Liebetanz J, Meyer T. Structure 13 861-871 (2005)
  35. How does a drug molecule find its target binding site? Shan Y, Kim ET, Eastwood MP, Dror RO, Seeliger MA, Shaw DE. J. Am. Chem. Soc. 133 9181-9183 (2011)
  36. Lyn is a redox sensor that mediates leukocyte wound attraction in vivo. Yoo SK, Starnes TW, Deng Q, Huttenlocher A. Nature 480 109-112 (2011)
  37. A phosphotyrosine displacement mechanism for activation of Src by PTPalpha. Zheng XM, Resnick RJ, Shalloway D. EMBO J. 19 964-978 (2000)
  38. The PAG gene product, a stress-induced protein with antioxidant properties, is an Abl SH3-binding protein and a physiological inhibitor of c-Abl tyrosine kinase activity. Wen ST, Van Etten RA. Genes Dev. 11 2456-2467 (1997)
  39. Structural analysis of the catalytically inactive kinase domain of the human EGF receptor 3. Jura N, Shan Y, Cao X, Shaw DE, Kuriyan J. Proc. Natl. Acad. Sci. U.S.A. 106 21608-21613 (2009)
  40. Mechanism of inhibition of bovine F1-ATPase by resveratrol and related polyphenols. Gledhill JR, Montgomery MG, Leslie AG, Walker JE. Proc. Natl. Acad. Sci. U.S.A. 104 13632-13637 (2007)
  41. Structural basis for the inhibition of tyrosine kinase activity of ZAP-70. Deindl S, Kadlecek TA, Brdicka T, Cao X, Weiss A, Kuriyan J. Cell 129 735-746 (2007)
  42. Regulation of the tyrosine kinase Itk by the peptidyl-prolyl isomerase cyclophilin A. Brazin KN, Mallis RJ, Fulton DB, Andreotti AH. Proc. Natl. Acad. Sci. U.S.A. 99 1899-1904 (2002)
  43. RACK1, a receptor for activated C kinase and a homolog of the beta subunit of G proteins, inhibits activity of src tyrosine kinases and growth of NIH 3T3 cells. Chang BY, Conroy KB, Machleder EM, Cartwright CA. Mol. Cell. Biol. 18 3245-3256 (1998)
  44. Crystal structure of the atypical protein kinase domain of a TRP channel with phosphotransferase activity. Yamaguchi H, Matsushita M, Nairn AC, Kuriyan J. Mol. Cell 7 1047-1057 (2001)
  45. A Src-like inactive conformation in the abl tyrosine kinase domain. Levinson NM, Kuchment O, Shen K, Young MA, Koldobskiy M, Karplus M, Cole PA, Kuriyan J. PLoS Biol. 4 e144 (2006)
  46. Crystal structure of a phosphorylated Smad2. Recognition of phosphoserine by the MH2 domain and insights on Smad function in TGF-beta signaling. Wu JW, Hu M, Chai J, Seoane J, Huse M, Li C, Rigotti DJ, Kyin S, Muir TW, Fairman R, Massagué J, Shi Y. Mol. Cell 8 1277-1289 (2001)
  47. Structure of type IIbeta phosphatidylinositol phosphate kinase: a protein kinase fold flattened for interfacial phosphorylation. Rao VD, Misra S, Boronenkov IV, Anderson RA, Hurley JH. Cell 94 829-839 (1998)
  48. Clinical resistance to the kinase inhibitor STI-571 in chronic myeloid leukemia by mutation of Tyr-253 in the Abl kinase domain P-loop. Roumiantsev S, Shah NP, Gorre ME, Nicoll J, Brasher BB, Sawyers CL, Van Etten RA. Proc. Natl. Acad. Sci. U.S.A. 99 10700-10705 (2002)
  49. Structural analysis of the lymphocyte-specific kinase Lck in complex with non-selective and Src family selective kinase inhibitors. Zhu X, Kim JL, Newcomb JR, Rose PE, Stover DR, Toledo LM, Zhao H, Morgenstern KA. Structure 7 651-661 (1999)
  50. Structural and functional versatility of the FHA domain in DNA-damage signaling by the tumor suppressor kinase Chk2. Li J, Williams BL, Haire LF, Goldberg M, Wilker E, Durocher D, Yaffe MB, Jackson SP, Smerdon SJ. Mol. Cell 9 1045-1054 (2002)
  51. The crystal structure of HIV-1 Nef protein bound to the Fyn kinase SH3 domain suggests a role for this complex in altered T cell receptor signaling. Arold S, Franken P, Strub MP, Hoh F, Benichou S, Benarous R, Dumas C. Structure 5 1361-1372 (1997)
  52. Design of allele-specific inhibitors to probe protein kinase signaling. Bishop AC, Shah K, Liu Y, Witucki L, Kung C, Shokat KM. Curr. Biol. 8 257-266 (1998)
  53. Structure of the SH3-guanylate kinase module from PSD-95 suggests a mechanism for regulated assembly of MAGUK scaffolding proteins. McGee AW, Dakoji SR, Olsen O, Bredt DS, Lim WA, Prehoda KE. Mol. Cell 8 1291-1301 (2001)
  54. A conserved protonation-dependent switch controls drug binding in the Abl kinase. Shan Y, Seeliger MA, Eastwood MP, Frank F, Xu H, Jensen MØ, Dror RO, Kuriyan J, Shaw DE. Proc. Natl. Acad. Sci. U.S.A. 106 139-144 (2009)
  55. A novel protein kinase that controls carbon catabolite repression in bacteria. Reizer J, Hoischen C, Titgemeyer F, Rivolta C, Rabus R, Stülke J, Karamata D, Saier MH, Hillen W. Mol. Microbiol. 27 1157-1169 (1998)
  56. The 2.35 A crystal structure of the inactivated form of chicken Src: a dynamic molecule with multiple regulatory interactions. Williams JC, Weijland A, Gonfloni S, Thompson A, Courtneidge SA, Superti-Furga G, Wierenga RK. J. Mol. Biol. 274 757-775 (1997)
  57. Structural basis for selective inhibition of Src family kinases by PP1. Liu Y, Bishop A, Witucki L, Kraybill B, Shimizu E, Tsien J, Ubersax J, Blethrow J, Morgan DO, Shokat KM. Chem. Biol. 6 671-678 (1999)
  58. Autoinhibition of Jak2 tyrosine kinase is dependent on specific regions in its pseudokinase domain. Saharinen P, Vihinen M, Silvennoinen O. Mol. Biol. Cell 14 1448-1459 (2003)
  59. Molecular basis for TPR domain-mediated regulation of protein phosphatase 5. Yang J, Roe SM, Cliff MJ, Williams MA, Ladbury JE, Cohen PT, Barford D. EMBO J. 24 1-10 (2005)
  60. High yield bacterial expression of active c-Abl and c-Src tyrosine kinases. Seeliger MA, Young M, Henderson MN, Pellicena P, King DS, Falick AM, Kuriyan J. Protein Sci. 14 3135-3139 (2005)
  61. A survey of left-handed polyproline II helices. Stapley BJ, Creamer TP. Protein Sci. 8 587-595 (1999)
  62. An intramolecular SH3-domain interaction regulates c-Abl activity. Barilá D, Superti-Furga G. Nat. Genet. 18 280-282 (1998)
  63. Structural coupling of SH2-kinase domains links Fes and Abl substrate recognition and kinase activation. Filippakopoulos P, Kofler M, Hantschel O, Gish GD, Grebien F, Salah E, Neudecker P, Kay LE, Turk BE, Superti-Furga G, Pawson T, Knapp S. Cell 134 793-803 (2008)
  64. The crystal structure of a phosphorylase kinase peptide substrate complex: kinase substrate recognition. Lowe ED, Noble ME, Skamnaki VT, Oikonomakos NG, Owen DJ, Johnson LN. EMBO J. 16 6646-6658 (1997)
  65. Domain rearrangements in protein evolution. Björklund AK, Ekman D, Light S, Frey-Skött J, Elofsson A. J. Mol. Biol. 353 911-923 (2005)
  66. Organization of the SH3-SH2 unit in active and inactive forms of the c-Abl tyrosine kinase. Nagar B, Hantschel O, Seeliger M, Davies JM, Weis WI, Superti-Furga G, Kuriyan J. Mol. Cell 21 787-798 (2006)
  67. Complex formation with focal adhesion kinase: A mechanism to regulate activity and subcellular localization of Src kinases. Schaller MD, Hildebrand JD, Parsons JT. Mol. Biol. Cell 10 3489-3505 (1999)
  68. Functional roles for fatty acylated amino-terminal domains in subcellular localization. McCabe JB, Berthiaume LG. Mol. Biol. Cell 10 3771-3786 (1999)
  69. Phosphorylation of tyrosine residues in the kinase domain and juxtamembrane region regulates the biological and catalytic activities of Eph receptors. Binns KL, Taylor PP, Sicheri F, Pawson T, Holland SJ. Mol. Cell. Biol. 20 4791-4805 (2000)
  70. A new method for isolating tyrosine kinase substrates used to identify fish, an SH3 and PX domain-containing protein, and Src substrate. Lock P, Abram CL, Gibson T, Courtneidge SA. EMBO J. 17 4346-4357 (1998)
  71. Activation segment dimerization: a mechanism for kinase autophosphorylation of non-consensus sites. Pike AC, Rellos P, Niesen FH, Turnbull A, Oliver AW, Parker SA, Turk BE, Pearl LH, Knapp S. EMBO J. 27 704-714 (2008)
  72. A novel inhibitor of the tyrosine kinase Src suppresses phosphorylation of its major cellular substrates and reduces bone resorption in vitro and in rodent models in vivo. Missbach M, Jeschke M, Feyen J, Müller K, Glatt M, Green J, Susa M. Bone 24 437-449 (1999)
  73. Engineering Src family protein kinases with unnatural nucleotide specificity. Liu Y, Shah K, Yang F, Witucki L, Shokat KM. Chem. Biol. 5 91-101 (1998)
  74. Two distinct phosphorylation pathways have additive effects on Abl family kinase activation. Tanis KQ, Veach D, Duewel HS, Bornmann WG, Koleske AJ. Mol. Cell. Biol. 23 3884-3896 (2003)
  75. Autoinhibition of the kit receptor tyrosine kinase by the cytosolic juxtamembrane region. Chan PM, Ilangumaran S, La Rose J, Chakrabartty A, Rottapel R. Mol. Cell. Biol. 23 3067-3078 (2003)
  76. Structural characterization of the intramolecular interaction between the SH3 and guanylate kinase domains of PSD-95. Tavares GA, Panepucci EH, Brunger AT. Mol. Cell 8 1313-1325 (2001)
  77. The identification of conserved interactions within the SH3 domain by alignment of sequences and structures. Larson SM, Davidson AR. Protein Sci. 9 2170-2180 (2000)
  78. Regulation of the Src family tyrosine kinase Blk through E6AP-mediated ubiquitination. Oda H, Kumar S, Howley PM. Proc. Natl. Acad. Sci. U.S.A. 96 9557-9562 (1999)
  79. Clustering of activating mutations in c-KIT's juxtamembrane coding region in canine mast cell neoplasms. Ma Y, Longley BJ, Wang X, Blount JL, Langley K, Caughey GH. J. Invest. Dermatol. 112 165-170 (1999)
  80. Proline residues in CD28 and the Src homology (SH)3 domain of Lck are required for T cell costimulation. Holdorf AD, Green JM, Levin SD, Denny MF, Straus DB, Link V, Changelian PS, Allen PM, Shaw AS. J. Exp. Med. 190 375-384 (1999)
  81. Flavonol activation defines an unanticipated ligand-binding site in the kinase-RNase domain of IRE1. Wiseman RL, Zhang Y, Lee KP, Harding HP, Haynes CM, Price J, Sicheri F, Ron D. Mol. Cell 38 291-304 (2010)
  82. c-Src binds to the cancer drug imatinib with an inactive Abl/c-Kit conformation and a distributed thermodynamic penalty. Seeliger MA, Nagar B, Frank F, Cao X, Henderson MN, Kuriyan J. Structure 15 299-311 (2007)
  83. HIV-1 Nef selectively activates Src family kinases Hck, Lyn, and c-Src through direct SH3 domain interaction. Trible RP, Emert-Sedlak L, Smithgall TE. J. Biol. Chem. 281 27029-27038 (2006)
  84. Structure, inhibitor, and regulatory mechanism of Lyp, a lymphoid-specific tyrosine phosphatase implicated in autoimmune diseases. Yu X, Sun JP, He Y, Guo X, Liu S, Zhou B, Hudmon A, Zhang ZY. Proc. Natl. Acad. Sci. U.S.A. 104 19767-19772 (2007)
  85. The role of the linker between the SH2 domain and catalytic domain in the regulation and function of Src. Gonfloni S, Williams JC, Hattula K, Weijland A, Wierenga RK, Superti-Furga G. EMBO J. 16 7261-7271 (1997)
  86. Hsp90 restrains ErbB-2/HER2 signalling by limiting heterodimer formation. Citri A, Gan J, Mosesson Y, Vereb G, Szollosi J, Yarden Y. EMBO Rep. 5 1165-1170 (2004)
  87. Autoinhibition of Bcr-Abl through its SH3 domain. Smith KM, Yacobi R, Van Etten RA. Mol. Cell 12 27-37 (2003)
  88. Crystal structure of inhibitor of κB kinase β. Xu G, Lo YC, Li Q, Napolitano G, Wu X, Jiang X, Dreano M, Karin M, Wu H. Nature 472 325-330 (2011)
  89. Multidomain assembled states of Hck tyrosine kinase in solution. Yang S, Blachowicz L, Makowski L, Roux B. Proc. Natl. Acad. Sci. U.S.A. 107 15757-15762 (2010)
  90. Structure of the protein tyrosine kinase domain of C-terminal Src kinase (CSK) in complex with staurosporine. Lamers MB, Antson AA, Hubbard RE, Scott RK, Williams DH. J. Mol. Biol. 285 713-725 (1999)
  91. The structural basis of localization and signaling by the focal adhesion targeting domain. Arold ST, Hoellerer MK, Noble ME. Structure 10 319-327 (2002)
  92. Equally potent inhibition of c-Src and Abl by compounds that recognize inactive kinase conformations. Seeliger MA, Ranjitkar P, Kasap C, Shan Y, Shaw DE, Shah NP, Kuriyan J, Maly DJ. Cancer Res. 69 2384-2392 (2009)
  93. Ubiquitin-dependent degradation of active Src. Hakak Y, Martin GS. Curr. Biol. 9 1039-1042 (1999)
  94. Pleiotropic contributions of phospholipase C-gamma1 (PLC-gamma1) to T-cell antigen receptor-mediated signaling: reconstitution studies of a PLC-gamma1-deficient Jurkat T-cell line. Irvin BJ, Williams BL, Nilson AE, Maynor HO, Abraham RT. Mol. Cell. Biol. 20 9149-9161 (2000)
  95. Structural mechanism for lipid activation of the Rac-specific GAP, beta2-chimaerin. Canagarajah B, Leskow FC, Ho JY, Mischak H, Saidi LF, Kazanietz MG, Hurley JH. Cell 119 407-418 (2004)
  96. Structure-based mutational analysis of the C-terminal DNA-binding domain of human immunodeficiency virus type 1 integrase: critical residues for protein oligomerization and DNA binding. Lutzke RA, Plasterk RH. J. Virol. 72 4841-4848 (1998)
  97. Regulation of c-SRC activity and function by the adapter protein CAS. Burnham MR, Bruce-Staskal PJ, Harte MT, Weidow CL, Ma A, Weed SA, Bouton AH. Mol. Cell. Biol. 20 5865-5878 (2000)
  98. Activation pathway of Src kinase reveals intermediate states as targets for drug design. Shukla D, Meng Y, Roux B, Pande VS. Nat Commun 5 3397 (2014)
  99. Integrins and Src: dynamic duo of adhesion signaling. Shattil SJ. Trends Cell Biol. 15 399-403 (2005)
  100. Early redox, Src family kinase, and calcium signaling integrate wound responses and tissue regeneration in zebrafish. Yoo SK, Freisinger CM, LeBert DC, Huttenlocher A. J. Cell Biol. 199 225-234 (2012)
  101. Intramolecular interactions regulate SAP97 binding to GKAP. Wu H, Reissner C, Kuhlendahl S, Coblentz B, Reuver S, Kindler S, Gundelfinger ED, Garner CC. EMBO J. 19 5740-5751 (2000)
  102. Mitochondrial AKAP121 binds and targets protein tyrosine phosphatase D1, a novel positive regulator of src signaling. Cardone L, Carlucci A, Affaitati A, Livigni A, DeCristofaro T, Garbi C, Varrone S, Ullrich A, Gottesman ME, Avvedimento EV, Feliciello A. Mol. Cell. Biol. 24 4613-4626 (2004)
  103. Novel recognition mode between Vav and Grb2 SH3 domains. Nishida M, Nagata K, Hachimori Y, Horiuchi M, Ogura K, Mandiyan V, Schlessinger J, Inagaki F. EMBO J. 20 2995-3007 (2001)
  104. Crystal structure of the abl-SH3 domain complexed with a designed high-affinity peptide ligand: implications for SH3-ligand interactions. Pisabarro MT, Serrano L, Wilmanns M. J. Mol. Biol. 281 513-521 (1998)
  105. The Cbl proto-oncogene product negatively regulates the Src-family tyrosine kinase Fyn by enhancing its degradation. Andoniou CE, Lill NL, Thien CB, Lupher ML, Ota S, Bowtell DD, Scaife RM, Langdon WY, Band H. Mol. Cell. Biol. 20 851-867 (2000)
  106. Transitions to catalytically inactive conformations in EGFR kinase. Shan Y, Arkhipov A, Kim ET, Pan AC, Shaw DE. Proc. Natl. Acad. Sci. U.S.A. 110 7270-7275 (2013)
  107. Activity of dual SRC-ABL inhibitors highlights the role of BCR/ABL kinase dynamics in drug resistance. Azam M, Nardi V, Shakespeare WC, Metcalf CA, Bohacek RS, Wang Y, Sundaramoorthi R, Sliz P, Veach DR, Bornmann WG, Clarkson B, Dalgarno DC, Sawyer TK, Daley GQ. Proc. Natl. Acad. Sci. U.S.A. 103 9244-9249 (2006)
  108. Improving SH3 domain ligand selectivity using a non-natural scaffold. Nguyen JT, Porter M, Amoui M, Miller WT, Zuckermann RN, Lim WA. Chem. Biol. 7 463-473 (2000)
  109. Formation of an endophilin-Ca2+ channel complex is critical for clathrin-mediated synaptic vesicle endocytosis. Chen Y, Deng L, Maeno-Hikichi Y, Lai M, Chang S, Chen G, Zhang JF. Cell 115 37-48 (2003)
  110. Structural basis for the recognition of c-Src by its inactivator Csk. Levinson NM, Seeliger MA, Cole PA, Kuriyan J. Cell 134 124-134 (2008)
  111. Saccharomyces cerevisiae PTS1 receptor Pex5p interacts with the SH3 domain of the peroxisomal membrane protein Pex13p in an unconventional, non-PXXP-related manner. Bottger G, Barnett P, Klein AT, Kragt A, Tabak HF, Distel B. Mol. Biol. Cell 11 3963-3976 (2000)
  112. Regulation of Sos activity by intramolecular interactions. Corbalan-Garcia S, Margarit SM, Galron D, Yang SS, Bar-Sagi D. Mol. Cell. Biol. 18 880-886 (1998)
  113. Genetic evidence for a role for Src family kinases in TNF family receptor signaling and cell survival. Xing L, Venegas AM, Chen A, Garrett-Beal L, Boyce BF, Varmus HE, Schwartzberg PL. Genes Dev. 15 241-253 (2001)
  114. Trafficking of Lyn through the Golgi caveolin involves the charged residues on alphaE and alphaI helices in the kinase domain. Kasahara K, Nakayama Y, Ikeda K, Fukushima Y, Matsuda D, Horimoto S, Yamaguchi N. J. Cell Biol. 165 641-652 (2004)
  115. Myristoylation and membrane binding regulate c-Src stability and kinase activity. Patwardhan P, Resh MD. Mol. Cell. Biol. 30 4094-4107 (2010)
  116. Allosteric activation of the protein kinase PDK1 with low molecular weight compounds. Engel M, Hindie V, Lopez-Garcia LA, Stroba A, Schaeffer F, Adrian I, Imig J, Idrissova L, Nastainczyk W, Zeuzem S, Alzari PM, Hartmann RW, Piiper A, Biondi RM. EMBO J. 25 5469-5480 (2006)
  117. Mapping the conformational transition in Src activation by cumulating the information from multiple molecular dynamics trajectories. Yang S, Banavali NK, Roux B. Proc. Natl. Acad. Sci. U.S.A. 106 3776-3781 (2009)
  118. The hairpin structure of the (6)F1(1)F2(2)F2 fragment from human fibronectin enhances gelatin binding. Pickford AR, Smith SP, Staunton D, Boyd J, Campbell ID. EMBO J. 20 1519-1529 (2001)
  119. Src kinase conformational activation: thermodynamics, pathways, and mechanisms. Yang S, Roux B. PLoS Comput. Biol. 4 e1000047 (2008)
  120. Cbp deficiency alters Csk localization in lipid rafts but does not affect T-cell development. Xu S, Huo J, Tan JE, Lam KP. Mol. Cell. Biol. 25 8486-8495 (2005)
  121. Phosphorylation driven motions in the COOH-terminal Src kinase, CSK, revealed through enhanced hydrogen-deuterium exchange and mass spectrometry (DXMS). Hamuro Y, Wong L, Shaffer J, Kim JS, Stranz DD, Jennings PA, Woods VL, Adams JA. J. Mol. Biol. 323 871-881 (2002)
  122. Regulation of the nonreceptor tyrosine kinase Brk by autophosphorylation and by autoinhibition. Qiu H, Miller WT. J. Biol. Chem. 277 34634-34641 (2002)
  123. miR-21, miR-17 and miR-19a induced by phosphatase of regenerating liver-3 promote the proliferation and metastasis of colon cancer. Zhang J, Xiao Z, Lai D, Sun J, He C, Chu Z, Ye H, Chen S, Wang J. Br. J. Cancer 107 352-359 (2012)
  124. Topography for independent binding of alpha-helical and PPII-helical ligands to a peroxisomal SH3 domain. Douangamath A, Filipp FV, Klein AT, Barnett P, Zou P, Voorn-Brouwer T, Vega MC, Mayans OM, Sattler M, Distel B, Wilmanns M. Mol. Cell 10 1007-1017 (2002)
  125. When fold is not important: a common structural framework for adenine and AMP binding in 12 unrelated protein families. Denessiouk KA, Johnson MS. Proteins 38 310-326 (2000)
  126. Phosphorylation of two regulatory tyrosine residues in the activation of Bruton's tyrosine kinase via alternative receptors. Wahl MI, Fluckiger AC, Kato RM, Park H, Witte ON, Rawlings DJ. Proc. Natl. Acad. Sci. U.S.A. 94 11526-11533 (1997)
  127. Structure of a regulatory complex involving the Abl SH3 domain, the Crk SH2 domain, and a Crk-derived phosphopeptide. Donaldson LW, Gish G, Pawson T, Kay LE, Forman-Kay JD. Proc. Natl. Acad. Sci. U.S.A. 99 14053-14058 (2002)
  128. Determination of the substrate-docking site of protein tyrosine kinase C-terminal Src kinase. Lee S, Lin X, Nam NH, Parang K, Sun G. Proc. Natl. Acad. Sci. U.S.A. 100 14707-14712 (2003)
  129. Conformational disturbance in Abl kinase upon mutation and deregulation. Iacob RE, Pene-Dumitrescu T, Zhang J, Gray NS, Smithgall TE, Engen JR. Proc. Natl. Acad. Sci. U.S.A. 106 1386-1391 (2009)
  130. Functional development of Src tyrosine kinases during evolution from a unicellular ancestor to multicellular animals. Segawa Y, Suga H, Iwabe N, Oneyama C, Akagi T, Miyata T, Okada M. Proc. Natl. Acad. Sci. U.S.A. 103 12021-12026 (2006)
  131. Hsp90 is essential for the synthesis and subsequent membrane association, but not the maintenance, of the Src-kinase p56(lck). Bijlmakers MJ, Marsh M. Mol. Biol. Cell 11 1585-1595 (2000)
  132. Activation of the nonreceptor protein tyrosine kinase Ack by multiple extracellular stimuli. Galisteo ML, Yang Y, Ureña J, Schlessinger J. Proc. Natl. Acad. Sci. U.S.A. 103 9796-9801 (2006)
  133. The pp60c-Src inhibitor PP1 is non-competitive against ATP. Karni R, Mizrachi S, Reiss-Sklan E, Gazit A, Livnah O, Levitzki A. FEBS Lett. 537 47-52 (2003)
  134. Unc119, a novel activator of Lck/Fyn, is essential for T cell activation. Gorska MM, Stafford SJ, Cen O, Sur S, Alam R. J. Exp. Med. 199 369-379 (2004)
  135. Fyn-dependent regulation of energy expenditure and body weight is mediated by tyrosine phosphorylation of LKB1. Yamada E, Pessin JE, Kurland IJ, Schwartz GJ, Bastie CC. Cell Metab. 11 113-124 (2010)
  136. Hit-to-lead studies: the discovery of potent, orally active, thiophenecarboxamide IKK-2 inhibitors. Baxter A, Brough S, Cooper A, Floettmann E, Foster S, Harding C, Kettle J, McInally T, Martin C, Mobbs M, Needham M, Newham P, Paine S, St-Gallay S, Salter S, Unitt J, Xue Y. Bioorg. Med. Chem. Lett. 14 2817-2822 (2004)
  137. The second catalytic domain of protein tyrosine phosphatase delta (PTP delta) binds to and inhibits the first catalytic domain of PTP sigma. Wallace MJ, Fladd C, Batt J, Rotin D. Mol. Cell. Biol. 18 2608-2616 (1998)
  138. JAK2 V617F constitutive activation requires JH2 residue F595: a pseudokinase domain target for specific inhibitors. Dusa A, Mouton C, Pecquet C, Herman M, Constantinescu SN. PLoS ONE 5 e11157 (2010)
  139. A specific intermolecular association between the regulatory domains of a Tec family kinase. Brazin KN, Fulton DB, Andreotti AH. J. Mol. Biol. 302 607-623 (2000)
  140. Insulin regulates the dynamic balance between Ras and Rap1 signaling by coordinating the assembly states of the Grb2-SOS and CrkII-C3G complexes. Okada S, Matsuda M, Anafi M, Pawson T, Pessin JE. EMBO J. 17 2554-2565 (1998)
  141. A structural basis for the inhibition of collagen-stimulated platelet function by quercetin and structurally related flavonoids. Wright B, Moraes LA, Kemp CF, Mullen W, Crozier A, Lovegrove JA, Gibbins JM. Br. J. Pharmacol. 159 1312-1325 (2010)
  142. Catalytic independent functions of a protein kinase as revealed by a kinase-dead mutant: study of the Lys72His mutant of cAMP-dependent kinase. Iyer GH, Garrod S, Woods VL, Taylor SS. J. Mol. Biol. 351 1110-1122 (2005)
  143. Armadillo: domain boundary prediction by amino acid composition. Dumontier M, Yao R, Feldman HJ, Hogue CW. J. Mol. Biol. 350 1061-1073 (2005)
  144. Signaling properties of a non-metazoan Src kinase and the evolutionary history of Src negative regulation. Li W, Young SL, King N, Miller WT. J. Biol. Chem. 283 15491-15501 (2008)
  145. Src kinase activation: A switched electrostatic network. Ozkirimli E, Post CB. Protein Sci. 15 1051-1062 (2006)
  146. Tyrosine kinase inhibitors block sperm-induced egg activation in Xenopus laevis. Glahn D, Mark SD, Behr RK, Nuccitelli R. Dev. Biol. 205 171-180 (1999)
  147. The SH2 domain-containing proteins in 21 species establish the provenance and scope of phosphotyrosine signaling in eukaryotes. Liu BA, Shah E, Jablonowski K, Stergachis A, Engelmann B, Nash PD. Sci Signal 4 ra83 (2011)
  148. A ubiquitin-interacting motif from Hrs binds to and occludes the ubiquitin surface necessary for polyubiquitination in monoubiquitinated proteins. Shekhtman A, Cowburn D. Biochem. Biophys. Res. Commun. 296 1222-1227 (2002)
  149. The N-terminal end of the catalytic domain of SRC kinase Hck is a conformational switch implicated in long-range allosteric regulation. Banavali NK, Roux B. Structure 13 1715-1723 (2005)
  150. Synapsin I interacts with c-Src and stimulates its tyrosine kinase activity. Onofri F, Giovedì S, Vaccaro P, Czernik AJ, Valtorta F, De Camilli P, Greengard P, Benfenati F. Proc. Natl. Acad. Sci. U.S.A. 94 12168-12173 (1997)
  151. Conserved water molecules contribute to the extensive network of interactions at the active site of protein kinase A. Shaltiel S, Cox S, Taylor SS. Proc. Natl. Acad. Sci. U.S.A. 95 484-491 (1998)
  152. Classifying protein kinase structures guides use of ligand-selectivity profiles to predict inactive conformations: structure of lck/imatinib complex. Jacobs MD, Caron PR, Hare BJ. Proteins 70 1451-1460 (2008)
  153. Bruton's tyrosine kinase activity is negatively regulated by Sab, the Btk-SH3 domain-binding protein. Yamadori T, Baba Y, Matsushita M, Hashimoto S, Kurosaki M, Kurosaki T, Kishimoto T, Tsukada S. Proc. Natl. Acad. Sci. U.S.A. 96 6341-6346 (1999)
  154. Coupled motions in the SH2 and kinase domains of Csk control Src phosphorylation. Wong L, Lieser SA, Miyashita O, Miller M, Tasken K, Onuchic JN, Adams JA, Woods VL, Jennings PA. J. Mol. Biol. 351 131-143 (2005)
  155. Pyrrolo[2,3-d]pyrimidines containing an extended 5-substituent as potent and selective inhibitors of lck I. Arnold LD, Calderwood DJ, Dixon RW, Johnston DN, Kamens JS, Munschauer R, Rafferty P, Ratnofsky SE. Bioorg. Med. Chem. Lett. 10 2167-2170 (2000)
  156. Solution structure of Grb2 reveals extensive flexibility necessary for target recognition. Yuzawa S, Yokochi M, Hatanaka H, Ogura K, Kataoka M, Miura K, Mandiyan V, Schlessinger J, Inagaki F. J. Mol. Biol. 306 527-537 (2001)
  157. Structural characterization of the natively unfolded N-terminal domain of human c-Src kinase: insights into the role of phosphorylation of the unique domain. Pérez Y, Gairí M, Pons M, Bernadó P. J. Mol. Biol. 391 136-148 (2009)
  158. Insights into the conformational variability and regulation of human Nek2 kinase. Westwood I, Cheary DM, Baxter JE, Richards MW, van Montfort RL, Fry AM, Bayliss R. J. Mol. Biol. 386 476-485 (2009)
  159. Crystal structures of active SRC kinase domain complexes. Breitenlechner CB, Kairies NA, Honold K, Scheiblich S, Koll H, Greiter E, Koch S, Schäfer W, Huber R, Engh RA. J. Mol. Biol. 353 222-231 (2005)
  160. A molecular mechanism for autoinhibition of the tandem SH3 domains of p47phox, the regulatory subunit of the phagocyte NADPH oxidase. Yuzawa S, Suzuki NN, Fujioka Y, Ogura K, Sumimoto H, Inagaki F. Genes Cells 9 443-456 (2004)
  161. Structural basis of oncogenic activation caused by point mutations in the kinase domain of the MET proto-oncogene: modeling studies. Miller M, Ginalski K, Lesyng B, Nakaigawa N, Schmidt L, Zbar B. Proteins 44 32-43 (2001)
  162. News Structural biology: Proteins in dynamic equilibrium. Bernadó P, Blackledge M. Nature 468 1046-1048 (2010)
  163. Inhibition of ATPase, GTPase and adenylate kinase activities of the second nucleotide-binding fold of the cystic fibrosis transmembrane conductance regulator by genistein. Randak C, Auerswald EA, Assfalg-Machleidt I, Reenstra WW, Machleidt W. Biochem. J. 340 ( Pt 1) 227-235 (1999)
  164. Thermal unfolding of small proteins with SH3 domain folding pattern. Knapp S, Mattson PT, Christova P, Berndt KD, Karshikoff A, Vihinen M, Smith CI, Ladenstein R. Proteins 31 309-319 (1998)
  165. Structural basis for the inhibition of Polo-like kinase 1. Xu J, Shen C, Wang T, Quan J. Nat. Struct. Mol. Biol. 20 1047-1053 (2013)
  166. Alignment of protein structures in the presence of domain motions. Mosca R, Brannetti B, Schneider TR. BMC Bioinformatics 9 352 (2008)
  167. On the importance of a funneled energy landscape for the assembly and regulation of multidomain Src tyrosine kinases. Faraldo-Gómez JD, Roux B. Proc. Natl. Acad. Sci. U.S.A. 104 13643-13648 (2007)
  168. Hit-to-lead studies on benzimidazole inhibitors of ITK: discovery of a novel class of kinase inhibitors. Snow RJ, Abeywardane A, Campbell S, Lord J, Kashem MA, Khine HH, King J, Kowalski JA, Pullen SS, Roma T, Roth GP, Sarko CR, Wilson NS, Winters MP, Wolak JP, Cywin CL. Bioorg. Med. Chem. Lett. 17 3660-3665 (2007)
  169. An examination of dynamics crosstalk between SH2 and SH3 domains by hydrogen/deuterium exchange and mass spectrometry. Hochrein JM, Lerner EC, Schiavone AP, Smithgall TE, Engen JR. Protein Sci. 15 65-73 (2006)
  170. Regulation of the Src family kinase Lck by Hsp90 and ubiquitination. Giannini A, Bijlmakers MJ. Mol. Cell. Biol. 24 5667-5676 (2004)
  171. A large family of eukaryotic-like protein Ser/Thr kinases of Myxococcus xanthus, a developmental bacterium. Inouye S, Jain R, Ueki T, Nariya H, Xu CY, Hsu MY, Fernandez-Luque BA, Munoz-Dorado J, Farez-Vidal E, Inouye M. Microb. Comp. Genomics 5 103-120 (2000)
  172. Conformation of full-length Bruton tyrosine kinase (Btk) from synchrotron X-ray solution scattering. Márquez JA, Smith CI, Petoukhov MV, Lo Surdo P, Mattsson PT, Knekt M, Westlund A, Scheffzek K, Saraste M, Svergun DI. EMBO J. 22 4616-4624 (2003)
  173. Anatomy of a structural pathway for activation of the catalytic domain of Src kinase Hck. Banavali NK, Roux B. Proteins 67 1096-1112 (2007)
  174. The 2.7 A crystal structure of the autoinhibited human c-Fms kinase domain. Walter M, Lucet IS, Patel O, Broughton SE, Bamert R, Williams NK, Fantino E, Wilks AF, Rossjohn J. J. Mol. Biol. 367 839-847 (2007)
  175. Structural basis of Src tyrosine kinase inhibition with a new class of potent and selective trisubstituted purine-based compounds. Dalgarno D, Stehle T, Narula S, Schelling P, van Schravendijk MR, Adams S, Andrade L, Keats J, Ram M, Jin L, Grossman T, MacNeil I, Metcalf C, Shakespeare W, Wang Y, Keenan T, Sundaramoorthi R, Bohacek R, Weigele M, Sawyer T. Chem Biol Drug Des 67 46-57 (2006)
  176. Activation of the Src family kinase Hck without SH3-linker release. Lerner EC, Trible RP, Schiavone AP, Hochrein JM, Engen JR, Smithgall TE. J. Biol. Chem. 280 40832-40837 (2005)
  177. Comparison of SH3 and SH2 domain dynamics when expressed alone or in an SH(3+2) construct: the role of protein dynamics in functional regulation. Engen JR, Smithgall TE, Gmeiner WH, Smith DL. J. Mol. Biol. 287 645-656 (1999)
  178. In vitro membrane reconstitution of the T-cell receptor proximal signaling network. Hui E, Vale RD. Nat. Struct. Mol. Biol. 21 133-142 (2014)
  179. Interaction domains of Sos1/Grb2 are finely tuned for cooperative control of embryonic stem cell fate. Findlay GM, Smith MJ, Lanner F, Hsiung MS, Gish GD, Petsalaki E, Cockburn K, Kaneko T, Huang H, Bagshaw RD, Ketela T, Tucholska M, Taylor L, Bowtell DD, Moffat J, Ikura M, Li SS, Sidhu SS, Rossant J, Pawson T. Cell 152 1008-1020 (2013)
  180. Stimulation by ghrelin of p42/p44 mitogen-activated protein kinase through the GHS-R1a receptor: role of G-proteins and beta-arrestins. Camiña JP, Lodeiro M, Ischenko O, Martini AC, Casanueva FF. J. Cell. Physiol. 213 187-200 (2007)
  181. Molecular details of Itk activation by prolyl isomerization and phospholigand binding: the NMR structure of the Itk SH2 domain bound to a phosphopeptide. Pletneva EV, Sundd M, Fulton DB, Andreotti AH. J. Mol. Biol. 357 550-561 (2006)
  182. Dynamic coupling between the SH2 domain and active site of the COOH terminal Src kinase, Csk. Wong L, Lieser S, Chie-Leon B, Miyashita O, Aubol B, Shaffer J, Onuchic JN, Jennings PA, Woods VL, Adams JA. J. Mol. Biol. 341 93-106 (2004)
  183. Synthesis and biological activity of 4-alkoxy chalcones: potential hydrophobic modulators of P-glycoprotein-mediated multidrug resistance. Bois F, Boumendjel A, Mariotte AM, Conseil G, Di Petro A. Bioorg. Med. Chem. 7 2691-2695 (1999)
  184. How and why phosphotyrosine-containing peptides bind to the SH2 and PTB domains. Zhou Y, Abagyan R. Fold Des 3 513-522 (1998)
  185. Phosphorylation-mediated PTEN conformational closure and deactivation revealed with protein semisynthesis. Bolduc D, Rahdar M, Tu-Sekine B, Sivakumaren SC, Raben D, Amzel LM, Devreotes P, Gabelli SB, Cole P. Elife 2 e00691 (2013)
  186. Dietary bioflavonoids inhibit Escherichia coli ATP synthase in a differential manner. Chinnam N, Dadi PK, Sabri SA, Ahmad M, Kabir MA, Ahmad Z. Int. J. Biol. Macromol. 46 478-486 (2010)
  187. Inhibition of ATPase activity of Escherichia coli ATP synthase by polyphenols. Dadi PK, Ahmad M, Ahmad Z. Int. J. Biol. Macromol. 45 72-79 (2009)
  188. Fourier transform-ion cyclotron resonance mass spectrometric resolution, identification, and screening of non-covalent complexes of Hck Src homology 2 domain receptor and ligands from a 324-member peptide combinatorial library. Wigger M, Eyler JR, Benner SA, Li W, Marshall AG. J. Am. Soc. Mass Spectrom. 13 1162-1169 (2002)
  189. Inhibition of tumor angiogenesis by synthetic receptor tyrosine kinase inhibitors. Sun L, McMahon G. Drug Discov. Today 5 344-353 (2000)
  190. Crystal structure of the SH3 domain of betaPIX in complex with a high affinity peptide from PAK2. Hoelz A, Janz JM, Lawrie SD, Corwin B, Lee A, Sakmar TP. J. Mol. Biol. 358 509-522 (2006)
  191. The tryptophan switch: changing ligand-binding specificity from type I to type II in SH3 domains. Fernandez-Ballester G, Blanes-Mira C, Serrano L. J. Mol. Biol. 335 619-629 (2004)
  192. Pyrrolo[2,3-d]pyrimidines containing an extended 5-substituent as potent and selective inhibitors of lck II. Burchat AF, Calderwood DJ, Hirst GC, Holman NJ, Johnston DN, Munschauer R, Rafferty P, Tometzki GB. Bioorg. Med. Chem. Lett. 10 2171-2174 (2000)
  193. An unrecognized extracellular function for an intracellular adapter protein released from the cytoplasm into the tumor microenvironment. Mintz PJ, Cardó-Vila M, Ozawa MG, Hajitou A, Rangel R, Guzman-Rojas L, Christianson DR, Arap MA, Giordano RJ, Souza GR, Easley J, Salameh A, Oliviero S, Brentani RR, Koivunen E, Arap W, Pasqualini R. Proc. Natl. Acad. Sci. U.S.A. 106 2182-2187 (2009)
  194. Active site profiling reveals coupling between domains in SRC-family kinases. Krishnamurty R, Brigham JL, Leonard SE, Ranjitkar P, Larson ET, Dale EJ, Merritt EA, Maly DJ. Nat. Chem. Biol. 9 43-50 (2013)
  195. Migfilin interacts with Src and contributes to cell-matrix adhesion-mediated survival signaling. Zhao J, Zhang Y, Ithychanda SS, Tu Y, Chen K, Qin J, Wu C. J. Biol. Chem. 284 34308-34320 (2009)
  196. c-Src signaling induced by the adapters Sin and Cas is mediated by Rap1 GTPase. Xing L, Ge C, Zeltser R, Maskevitch G, Mayer BJ, Alexandropoulos K. Mol. Cell. Biol. 20 7363-7377 (2000)
  197. Three-dimensional profiles: a new tool to identify protein surface similarities. de Rinaldis M, Ausiello G, Cesareni G, Helmer-Citterich M. J. Mol. Biol. 284 1211-1221 (1998)
  198. A dynamically coupled allosteric network underlies binding cooperativity in Src kinase. Foda ZH, Shan Y, Kim ET, Shaw DE, Seeliger MA. Nat Commun 6 5939 (2015)
  199. Proteins at work: a combined small angle X-RAY scattering and theoretical determination of the multiple structures involved on the protein kinase functional landscape. Jamros MA, Oliveira LC, Whitford PC, Onuchic JN, Adams JA, Blumenthal DK, Jennings PA. J. Biol. Chem. 285 36121-36128 (2010)
  200. Crystal structure analysis and solution studies of human Lck-SH3; zinc-induced homodimerization competes with the binding of proline-rich motifs. Romir J, Lilie H, Egerer-Sieber C, Bauer F, Sticht H, Muller YA. J. Mol. Biol. 365 1417-1428 (2007)
  201. Conserved residues in the HIV-1 Nef hydrophobic pocket are essential for recruitment and activation of the Hck tyrosine kinase. Choi HJ, Smithgall TE. J. Mol. Biol. 343 1255-1268 (2004)
  202. Effect of pH and salt bridges on structural assembly: molecular structures of the monomer and intertwined dimer of the Eps8 SH3 domain. Kishan KV, Newcomer ME, Rhodes TH, Guilliot SD. Protein Sci. 10 1046-1055 (2001)
  203. Tyrosine kinase-independent inhibition of cyclic-AMP phosphodiesterase by genistein and tyrphostin 51. Nichols MR, Morimoto BH. Arch. Biochem. Biophys. 366 224-230 (1999)
  204. Regulation of ZAP-70 intracellular localization: visualization with the green fluorescent protein. Sloan-Lancaster J, Zhang W, Presley J, Williams BL, Abraham RT, Lippincott-Schwartz J, Samelson LE. J. Exp. Med. 186 1713-1724 (1997)
  205. Structural characterization of the active and inactive states of Src kinase in solution by small-angle X-ray scattering. Bernadó P, Pérez Y, Svergun DI, Pons M. J. Mol. Biol. 376 492-505 (2008)
  206. A cyclic adenosine 3',5'-monophosphate-induced tyrosine phosphorylation of Syk protein tyrosine kinase in the flagella of boar spermatozoa. Harayama H, Muroga M, Miyake M. Mol. Reprod. Dev. 69 436-447 (2004)
  207. Benzoflavone activators of the cystic fibrosis transmembrane conductance regulator: towards a pharmacophore model for the nucleotide-binding domain. Springsteel MF, Galietta LJ, Ma T, By K, Berger GO, Yang H, Dicus CW, Choung W, Quan C, Shelat AA, Guy RK, Verkman AS, Kurth MJ, Nantz MH. Bioorg. Med. Chem. 11 4113-4120 (2003)
  208. Regulation of the yeast amphiphysin homologue Rvs167p by phosphorylation. Friesen H, Murphy K, Breitkreutz A, Tyers M, Andrews B. Mol. Biol. Cell 14 3027-3040 (2003)
  209. Activation of the Lck tyrosine protein kinase by the Herpesvirus saimiri tip protein involves two binding interactions. Hartley DA, Amdjadi K, Hurley TR, Lund TC, Medveczky PG, Sefton BM. Virology 276 339-348 (2000)
  210. Regulation of c-Fes tyrosine kinase and biological activities by N-terminal coiled-coil oligomerization domains. Cheng H, Rogers JA, Dunham NA, Smithgall TE. Mol. Cell. Biol. 19 8335-8343 (1999)
  211. Simian immunodeficiency virus and human immunodeficiency virus type 1 nef proteins show distinct patterns and mechanisms of Src kinase activation. Greenway AL, Dutartre H, Allen K, McPhee DA, Olive D, Collette Y. J. Virol. 73 6152-6158 (1999)
  212. Crosstalk between Src and major vault protein in epidermal growth factor-dependent cell signalling. Kim E, Lee S, Mian MF, Yun SU, Song M, Yi KS, Ryu SH, Suh PG. FEBS J. 273 793-804 (2006)
  213. The RafC1 cysteine-rich domain contains multiple distinct regulatory epitopes which control Ras-dependent Raf activation. Daub M, Jöckel J, Quack T, Weber CK, Schmitz F, Rapp UR, Wittinghofer A, Block C. Mol. Cell. Biol. 18 6698-6710 (1998)
  214. Identification of the binding site for Gqalpha on its effector Bruton's tyrosine kinase. Ma YC, Huang XY. Proc. Natl. Acad. Sci. U.S.A. 95 12197-12201 (1998)
  215. The SH2 domain from the tyrosine kinase Fyn in complex with a phosphotyrosyl peptide reveals insights into domain stability and binding specificity. Mulhern TD, Shaw GL, Morton CJ, Day AJ, Campbell ID. Structure 5 1313-1323 (1997)
  216. Acylglycerol kinase augments JAK2/STAT3 signaling in esophageal squamous cells. Chen X, Ying Z, Lin X, Lin H, Wu J, Li M, Song L. J. Clin. Invest. 123 2576-2589 (2013)
  217. Structural basis for activation of ZAP-70 by phosphorylation of the SH2-kinase linker. Yan Q, Barros T, Visperas PR, Deindl S, Kadlecek TA, Weiss A, Kuriyan J. Mol. Cell. Biol. 33 2188-2201 (2013)
  218. Quantifying information transfer by protein domains: analysis of the Fyn SH2 domain structure. Lenaerts T, Ferkinghoff-Borg J, Stricher F, Serrano L, Schymkowitz JW, Rousseau F. BMC Struct. Biol. 8 43 (2008)
  219. Flexibility and charge asymmetry in the activation loop of Src tyrosine kinases. Banavali NK, Roux B. Proteins 74 378-389 (2009)
  220. The Abl SH2-kinase linker naturally adopts a conformation competent for SH3 domain binding. Chen S, Brier S, Smithgall TE, Engen JR. Protein Sci. 16 572-581 (2007)
  221. High-affinity binding of silybin derivatives to the nucleotide-binding domain of a Leishmania tropica P-glycoprotein-like transporter and chemosensitization of a multidrug-resistant parasite to daunomycin. Pérez-Victoria JM, Pérez-Victoria FJ, Conseil G, Maitrejean M, Comte G, Barron D, Di Pietro A, Castanys S, Gamarro F. Antimicrob. Agents Chemother. 45 439-446 (2001)
  222. Highly specific, bisubstrate-competitive Src inhibitors from DNA-templated macrocycles. Georghiou G, Kleiner RE, Pulkoski-Gross M, Liu DR, Seeliger MA. Nat. Chem. Biol. 8 366-374 (2012)
  223. Protein tyrosine phosphatase activity is necessary for E-cadherin-activated Src signaling. McLachlan RW, Yap AS. Cytoskeleton (Hoboken) 68 32-43 (2011)
  224. Identification of an allosteric signaling network within Tec family kinases. Joseph RE, Xie Q, Andreotti AH. J. Mol. Biol. 403 231-242 (2010)
  225. Cancer-associated mutations activate the nonreceptor tyrosine kinase Ack1. Prieto-Echagüe V, Gucwa A, Craddock BP, Brown DA, Miller WT. J. Biol. Chem. 285 10605-10615 (2010)
  226. Breast cancer resistance protein (BCRP/ABCG2): new inhibitors and QSAR studies by a 3D linear solvation energy approach. Nicolle E, Boccard J, Guilet D, Dijoux-Franca MG, Zelefac F, Macalou S, Grosselin J, Schmidt J, Carrupt PA, Di Pietro A, Boumendjel A. Eur J Pharm Sci 38 39-46 (2009)
  227. Chaperone over-expression in Escherichia coli: apparent increased yields of soluble recombinant protein kinases are due mainly to soluble aggregates. Haacke A, Fendrich G, Ramage P, Geiser M. Protein Expr. Purif. 64 185-193 (2009)
  228. Differential mitotic activation of endogenous c-Src, c-Yes, and Lyn in HeLa cells. Kuga T, Nakayama Y, Hoshino M, Higashiyama Y, Obata Y, Matsuda D, Kasahara K, Fukumoto Y, Yamaguchi N. Arch. Biochem. Biophys. 466 116-124 (2007)
  229. Competing modes of self-association in the regulatory domains of Bruton's tyrosine kinase: intramolecular contact versus asymmetric homodimerization. Laederach A, Cradic KW, Brazin KN, Zamoon J, Fulton DB, Huang XY, Andreotti AH. Protein Sci. 11 36-45 (2002)
  230. Novel mechanism of regulation of the non-receptor protein tyrosine kinase Csk: insights from NMR mapping studies and site-directed mutagenesis. Shekhtman A, Ghose R, Wang D, Cole PA, Cowburn D. J. Mol. Biol. 314 129-138 (2001)
  231. Intermolecular interactions between the SH3 domain and the proline-rich TH region of Bruton's tyrosine kinase. Hansson H, Okoh MP, Smith CI, Vihinen M, Härd T. FEBS Lett. 489 67-70 (2001)
  232. Solution structure and peptide binding studies of the C-terminal src homology 3-like domain of the diphtheria toxin repressor protein. Wang G, Wylie GP, Twigg PD, Caspar DL, Murphy JR, Logan TM. Proc. Natl. Acad. Sci. U.S.A. 96 6119-6124 (1999)
  233. The Src-like tyrosine kinase Hck is activated by granulocyte colony-stimulating factor (G-CSF) and docks to the activated G-CSF receptor. Ward AC, Monkhouse JL, Csar XF, Touw IP, Bello PA. Biochem. Biophys. Res. Commun. 251 117-123 (1998)
  234. Alternative splicing modulates autoinhibition and SH3 accessibility in the Src kinase Fyn. Brignatz C, Paronetto MP, Opi S, Cappellari M, Audebert S, Feuillet V, Bismuth G, Roche S, Arold ST, Sette C, Collette Y. Mol. Cell. Biol. 29 6438-6448 (2009)
  235. A conserved salt bridge in the G loop of multiple protein kinases is important for catalysis and for in vivo Lyn function. Barouch-Bentov R, Che J, Lee CC, Yang Y, Herman A, Jia Y, Velentza A, Watson J, Sternberg L, Kim S, Ziaee N, Miller A, Jackson C, Fujimoto M, Young M, Batalov S, Liu Y, Warmuth M, Wiltshire T, Cooke MP, Sauer K. Mol. Cell 33 43-52 (2009)
  236. ATP competitive inhibitors of D-alanine-D-alanine ligase based on protein kinase inhibitor scaffolds. Triola G, Wetzel S, Ellinger B, Koch MA, Hübel K, Rauh D, Waldmann H. Bioorg. Med. Chem. 17 1079-1087 (2009)
  237. Combination of suboptimal doses of inhibitors targeting different domains of LtrMDR1 efficiently overcomes resistance of Leishmania spp. to Miltefosine by inhibiting drug efflux. Pérez-Victoria JM, Cortés-Selva F, Parodi-Talice A, Bavchvarov BI, Pérez-Victoria FJ, Muñoz-Martínez F, Maitrejean M, Costi MP, Barron D, Di Pietro A, Castanys S, Gamarro F. Antimicrob. Agents Chemother. 50 3102-3110 (2006)
  238. Survey of the geometric association of domain-domain interfaces. Kim WK, Ison JC. Proteins 61 1075-1088 (2005)
  239. Activation of C-terminal Src kinase (Csk) by phosphorylation at serine-364 depends on the Csk-Src homology 3 domain. Yaqub S, Abrahamsen H, Zimmerman B, Kholod N, Torgersen KM, Mustelin T, Herberg FW, Taskén K, Vang T. Biochem. J. 372 271-278 (2003)
  240. Mutations in the N-terminal regulatory region reduce the catalytic activity of Csk, but do not affect its recognition of Src. Sun G, Budde RJ. Arch. Biochem. Biophys. 367 167-172 (1999)
  241. Cyclic AMP-dependent activation of the proenkephalin gene requires phosphorylation of CREB at serine-133 and a Src-related kinase. Kobierski LA, Wong AE, Srivastava S, Borsook D, Hyman SE. J. Neurochem. 73 129-138 (1999)
  242. Allosteric activation mechanism of the Mycobacterium tuberculosis receptor Ser/Thr protein kinase, PknB. Lombana TN, Echols N, Good MC, Thomsen ND, Ng HL, Greenstein AE, Falick AM, King DS, Alber T. Structure 18 1667-1677 (2010)
  243. Crystal structure of the Src family kinase Hck SH3-SH2 linker regulatory region supports an SH3-dominant activation mechanism. Alvarado JJ, Betts L, Moroco JA, Smithgall TE, Yeh JI. J. Biol. Chem. 285 35455-35461 (2010)
  244. Dishevelled-2 docks and activates Src in a Wnt-dependent manner. Yokoyama N, Malbon CC. J. Cell. Sci. 122 4439-4451 (2009)
  245. Cross talk between receptor guanylyl cyclase C and c-src tyrosine kinase regulates colon cancer cell cytostasis. Basu N, Bhandari R, Natarajan VT, Visweswariah SS. Mol. Cell. Biol. 29 5277-5289 (2009)
  246. The duplicitous nature of the Lyn tyrosine kinase in growth factor signaling. Hibbs ML, Harder KW. Growth Factors 24 137-149 (2006)
  247. In silico modelling of the interaction of flavonoids with human P-glycoprotein nucleotide-binding domain. Badhan R, Penny J. Eur J Med Chem 41 285-295 (2006)
  248. Transactivation of Abl by the Crk II adapter protein requires a PNAY sequence in the Crk C-terminal SH3 domain. Reichman C, Singh K, Liu Y, Singh S, Li H, Fajardo JE, Fiser A, Birge RB. Oncogene 24 8187-8199 (2005)
  249. Characterization of Itk tyrosine kinase: contribution of noncatalytic domains to enzymatic activity. Hawkins J, Marcy A. Protein Expr. Purif. 22 211-219 (2001)
  250. Sequential requirements of the N-terminal palmitoylation site and SH2 domain of Src family kinases in the initiation and progression of FcepsilonRI signaling. Honda Z, Suzuki T, Kono H, Okada M, Yamamoto T, Ra C, Morita Y, Yamamoto K. Mol. Cell. Biol. 20 1759-1771 (2000)
  251. SH3 in muscles: solution structure of the SH3 domain from nebulin. Politou AS, Millevoi S, Gautel M, Kolmerer B, Pastore A. J. Mol. Biol. 276 189-202 (1998)
  252. Regulation of alveolar epithelial cell apoptosis and pulmonary fibrosis by coordinate expression of components of the fibrinolytic system. Bhandary YP, Shetty SK, Marudamuthu AS, Gyetko MR, Idell S, Gharaee-Kermani M, Shetty RS, Starcher BC, Shetty S. Am. J. Physiol. Lung Cell Mol. Physiol. 302 L463-73 (2012)
  253. Stability of an autoinhibitory interface in the structure of the tyrosine kinase ZAP-70 impacts T cell receptor response. Deindl S, Kadlecek TA, Cao X, Kuriyan J, Weiss A. Proc. Natl. Acad. Sci. U.S.A. 106 20699-20704 (2009)
  254. A 3D linear solvation energy model to quantify the affinity of flavonoid derivatives toward P-glycoprotein. Boccard J, Bajot F, Di Pietro A, Rudaz S, Boumendjel A, Nicolle E, Carrupt PA. Eur J Pharm Sci 36 254-264 (2009)
  255. Structural basis for domain-domain communication in a protein tyrosine kinase, the C-terminal Src kinase. Lin X, Wang Y, Ahmadibeni Y, Parang K, Sun G. J. Mol. Biol. 357 1263-1273 (2006)
  256. Identification of tyrosine residues on ELMO1 that are phosphorylated by the Src-family kinase Hck. Yokoyama N, deBakker CD, Zappacosta F, Huddleston MJ, Annan RS, Ravichandran KS, Miller WT. Biochemistry 44 8841-8849 (2005)
  257. The C terminus of T cell-specific adapter protein (TSAd) is necessary for TSAd-mediated inhibition of Lck activity. Sundvold-Gjerstad V, Granum S, Mustelin T, Andersen TC, Berge T, Shapiro MJ, Shapiro VS, Spurkland A, Lea T. Eur. J. Immunol. 35 1612-1620 (2005)
  258. Identification of the linker-SH2 domain of STAT as the origin of the SH2 domain using two-dimensional structural alignment. Gao Q, Hua J, Kimura R, Headd JJ, Fu XY, Chin YE. Mol. Cell Proteomics 3 704-714 (2004)
  259. 4-Hydroxy-6-methoxyaurones with high-affinity binding to cytosolic domain of P-glycoprotein. Boumendjel A, Beney C, Deka N, Mariotte AM, Lawson MA, Trompier D, Baubichon-Cortay H, Di Pietro A. Chem. Pharm. Bull. 50 854-856 (2002)
  260. Effect of autophosphorylation on the catalytic and regulatory properties of protein tyrosine kinase Src. Sun G, Ramdas L, Wang W, Vinci J, McMurray J, Budde RJ. Arch. Biochem. Biophys. 397 11-17 (2002)
  261. Dynamics of the Hck-SH3 domain: comparison of experiment with multiple molecular dynamics simulations. Horita DA, Zhang W, Smithgall TE, Gmeiner WH, Byrd RA. Protein Sci. 9 95-103 (2000)
  262. p50(Cdc37) can buffer the temperature-sensitive properties of a mutant of Hck. Scholz G, Hartson SD, Cartledge K, Hall N, Shao J, Dunn AR, Matts RL. Mol. Cell. Biol. 20 6984-6995 (2000)
  263. Partial cooperative unfolding in proteins as observed by hydrogen exchange mass spectrometry. Engen JR, Wales TE, Chen S, Marzluff EM, Hassell KM, Weis DD, Smithgall TE. Int Rev Phys Chem 32 96-127 (2013)
  264. Chemical genetics identifies c-Src as an activator of primitive ectoderm formation in murine embryonic stem cells. Meyn MA, Smithgall TE. Sci Signal 2 ra64 (2009)
  265. Translational control of C-terminal Src kinase (Csk) expression by PRL3 phosphatase. Liang F, Luo Y, Dong Y, Walls CD, Liang J, Jiang HY, Sanford JR, Wek RC, Zhang ZY. J. Biol. Chem. 283 10339-10346 (2008)
  266. Cooperative activation of Src family kinases by SH3 and SH2 ligands. Yadav SS, Miller WT. Cancer Lett. 257 116-123 (2007)
  267. Mutation of a highly conserved aspartate residue in subdomain IX abolishes Fer protein-tyrosine kinase activity. Cole LA, Zirngibl R, Craig AW, Jia Z, Greer P. Protein Eng. 12 155-162 (1999)
  268. The influence of deletion mutations on phospholipase C-gamma 1 activity. Horstman DA, Chattopadhyay A, Carpenter G. Arch. Biochem. Biophys. 361 149-155 (1999)
  269. Genetic evidence of a role for Lck in T-cell receptor function independent or downstream of ZAP-70/Syk protein tyrosine kinases. Wong J, Straus D, Chan AC. Mol. Cell. Biol. 18 2855-2866 (1998)
  270. Insights into the inhibition of the p90 ribosomal S6 kinase (RSK) by the flavonol glycoside SL0101 from the 1.5 Å crystal structure of the N-terminal domain of RSK2 with bound inhibitor. Utepbergenov D, Derewenda U, Olekhnovich N, Szukalska G, Banerjee B, Hilinski MK, Lannigan DA, Stukenberg PT, Derewenda ZS. Biochemistry 51 6499-6510 (2012)
  271. Regulation of ack-family nonreceptor tyrosine kinases. Prieto-Echagüe V, Miller WT. J Signal Transduct 2011 742372 (2011)
  272. Inhibition of heat shock induction of heat shock protein 70 and enhancement of heat shock protein 27 phosphorylation by quercetin derivatives. Wang RE, Kao JL, Hilliard CA, Pandita RK, Roti Roti JL, Hunt CR, Taylor JS. J. Med. Chem. 52 1912-1921 (2009)
  273. Abl N-terminal cap stabilization of SH3 domain dynamics. Chen S, Dumitrescu TP, Smithgall TE, Engen JR. Biochemistry 47 5795-5803 (2008)
  274. Identification and characterization of two related murine genes, Eat2a and Eat2b, encoding single SH2-domain adapters. Calpe S, Erdos E, Liao G, Wang N, Rietdijk S, Simarro M, Scholtz B, Mooney J, Lee CH, Shin MS, Rajnavölgyi E, Schatzle J, Morse HC, Terhorst C, Lanyi A. Immunogenetics 58 15-25 (2006)
  275. Classification of common functional loops of kinase super-families. Fernandez-Fuentes N, Hermoso A, Espadaler J, Querol E, Aviles FX, Oliva B. Proteins 56 539-555 (2004)
  276. A putative role for intramolecular regulatory mechanisms in the adaptor function of amphiphysin in endocytosis. Farsad K, Slepnev V, Ochoa G, Daniell L, Haucke V, De Camilli P. Neuropharmacology 45 787-796 (2003)
  277. SH3-SH2 domain orientation in Src kinases: NMR studies of Fyn. Ulmer TS, Werner JM, Campbell ID. Structure 10 901-911 (2002)
  278. Inhibition of Src by direct interaction with protein phosphatase 2A. Yokoyama N, Miller WT. FEBS Lett. 505 460-464 (2001)
  279. In silico activation of Src tyrosine kinase reveals the molecular basis for intramolecular autophosphorylation. Mendieta J, Gago F. J. Mol. Graph. Model. 23 189-198 (2004)
  280. Solution structure of the human Hck SH3 domain and identification of its ligand binding site. Horita DA, Baldisseri DM, Zhang W, Altieri AS, Smithgall TE, Gmeiner WH, Byrd RA. J. Mol. Biol. 278 253-265 (1998)
  281. A pyrrolo-pyrimidine derivative targets human primary AML stem cells in vivo. Saito Y, Yuki H, Kuratani M, Hashizume Y, Takagi S, Honma T, Tanaka A, Shirouzu M, Mikuni J, Handa N, Ogahara I, Sone A, Najima Y, Tomabechi Y, Wakiyama M, Uchida N, Tomizawa-Murasawa M, Kaneko A, Tanaka S, Suzuki N, Kajita H, Aoki Y, Ohara O, Shultz LD, Fukami T, Goto T, Taniguchi S, Yokoyama S, Ishikawa F. Sci Transl Med 5 181ra52 (2013)
  282. HIV-1 Nef interaction influences the ATP-binding site of the Src-family kinase, Hck. Pene-Dumitrescu T, Shu ST, Wales TE, Alvarado JJ, Shi H, Narute P, Moroco JA, Yeh JI, Engen JR, Smithgall TE. BMC Chem Biol 12 1 (2012)
  283. The tyrosine kinase Csk dimerizes through Its SH3 domain. Levinson NM, Visperas PR, Kuriyan J. PLoS ONE 4 e7683 (2009)
  284. Structural basis for SH2D1A mutations in X-linked lymphoproliferative disease. Lappalainen I, Giliani S, Franceschini R, Bonnefoy JY, Duckett C, Notarangelo LD, Vihinen M. Biochem. Biophys. Res. Commun. 269 124-130 (2000)
  285. Analysis of the tyrosine phosphorylation and calcium fluxing of human CD6 isoforms with different cytoplasmatic domains. Kobarg J, Whitney GS, Palmer D, Aruffo A, Bowen MA. Eur. J. Immunol. 27 2971-2980 (1997)
  286. ProKinO: a unified resource for mining the cancer kinome. McSkimming DI, Dastgheib S, Talevich E, Narayanan A, Katiyar S, Taylor SS, Kochut K, Kannan N. Hum. Mutat. 36 175-186 (2015)
  287. Predicting inactive conformations of protein kinases using active structures: conformational selection of type-II inhibitors. Xu M, Yu L, Wan B, Yu L, Huang Q. PLoS ONE 6 e22644 (2011)
  288. Yet another "active" pseudokinase, Erb3. Taylor SS, Kornev AP. Proc. Natl. Acad. Sci. U.S.A. 107 8047-8048 (2010)
  289. Proteomic, functional and motif-based analysis of C-terminal Src kinase-interacting proteins. Yang G, Li Q, Ren S, Lu X, Fang L, Zhou W, Zhang F, Xu F, Zhang Z, Zeng R, Lottspeich F, Chen Z. Proteomics 9 4944-4961 (2009)
  290. The Tec family kinase Itk exists as a folded monomer in vivo. Qi Q, August A. J. Biol. Chem. 284 29882-29892 (2009)
  291. A novel RNA-binding protein, Ossa/C9orf10, regulates activity of Src kinases to protect cells from oxidative stress-induced apoptosis. Tanaka M, Sasaki K, Kamata R, Hoshino Y, Yanagihara K, Sakai R. Mol. Cell. Biol. 29 402-413 (2009)
  292. Lck-dependent Fyn activation requires C terminus-dependent targeting of kinase-active Lck to lipid rafts. Filipp D, Moemeni B, Ferzoco A, Kathirkamathamby K, Zhang J, Ballek O, Davidson D, Veillette A, Julius M. J. Biol. Chem. 283 26409-26422 (2008)
  293. ATP-phosphopeptide conjugates as inhibitors of Src tyrosine kinases. Nam NH, Lee S, Ye G, Sun G, Parang K. Bioorg. Med. Chem. 12 5753-5766 (2004)
  294. SH3 ligands in the dopamine D3 receptor. Oldenhof J, Ray A, Vickery R, Van Tol HH. Cell. Signal. 13 411-416 (2001)
  295. Prenylated xanthones as potential P-glycoprotein modulators. Tchamo DN, Dijoux-Franca MG, Mariotte AM, Tsamo E, Daskiewicz JB, Bayet C, Barron D, Conseil G, Di Pietro A. Bioorg. Med. Chem. Lett. 10 1343-1345 (2000)
  296. The kinase-deficient Src acts as a suppressor of the Abl kinase for Cbl phosphorylation. Shishido T, Akagi T, Ouchi T, Georgescu MM, Langdon WY, Hanafusa H. Proc. Natl. Acad. Sci. U.S.A. 97 6439-6444 (2000)
  297. Structure and specificity of the SH2 domain. Waksman G, Kuriyan J. Cell 116 S45-8 (2004)
  298. Two-dimensional electrophoretic analysis of mixed lineage kinase 2 N-terminal domain binding proteins. Rasmussen RK, Ji H, Eddes JS, Moritz RL, Reid GE, Simpson RJ, Dorow DS. Electrophoresis 19 809-817 (1998)
  299. News How Src exercises self-restraint. Nguyen JT, Lim WA. Nat. Struct. Biol. 4 256-260 (1997)
  300. Targeting the unactivated conformations of protein kinases for small molecule drug discovery. Alton GR, Lunney EA. Expert Opin Drug Discov 3 595-605 (2008)
  301. Interaction between the SH3 domain of Src family kinases and the proline-rich motif of HTLV-1 p13: a novel mechanism underlying delivery of Src family kinases to mitochondria. Tibaldi E, Venerando A, Zonta F, Bidoia C, Magrin E, Marin O, Toninello A, Bordin L, Martini V, Pagano MA, Brunati AM. Biochem. J. 439 505-516 (2011)
  302. Assembly of the Sos1-Grb2-Gab1 ternary signaling complex is under allosteric control. McDonald CB, Seldeen KL, Deegan BJ, Bhat V, Farooq A. Arch. Biochem. Biophys. 494 216-225 (2010)
  303. Lyn-mediated mitochondrial tyrosine phosphorylation is required to preserve mitochondrial integrity in early liver regeneration. Gringeri E, Carraro A, Tibaldi E, D'Amico FE, D'Amico FE, Mancon M, Toninello A, Pagano MA, Vio C, Cillo U, Brunati AM. Biochem. J. 425 401-412 (2010)
  304. Identification of N-terminal lobe motifs that determine the kinase activity of the catalytic domains and regulatory strategies of Src and Csk protein tyrosine kinases. Huang K, Wang YH, Brown A, Sun G. J. Mol. Biol. 386 1066-1077 (2009)
  305. Biochemical basis for the requirement of kinase activity for Cbl-dependent ubiquitinylation and degradation of a target tyrosine kinase. Ghosh AK, Reddi AL, Rao NL, Duan L, Band V, Band H. J. Biol. Chem. 279 36132-36141 (2004)
  306. Binding of a diphosphorylated-ITAM peptide to spleen tyrosine kinase (Syk) induces distal conformational changes: a hydrogen exchange mass spectrometry study. Catalina MI, Fischer MJ, Dekker FJ, Liskamp RM, Heck AJ. J. Am. Soc. Mass Spectrom. 16 1039-1051 (2005)
  307. Crk at the quarter century mark: perspectives in signaling and cancer. Kumar S, Fajardo JE, Birge RB, Sriram G. J. Cell. Biochem. 115 819-825 (2014)
  308. Discovery of a diaminoquinoxaline benzenesulfonamide antagonist of HIV-1 Nef function using a yeast-based phenotypic screen. Trible RP, Narute P, Emert-Sedlak LA, Alvarado JJ, Atkins K, Thomas L, Kodama T, Yanamala N, Korotchenko V, Day BW, Thomas G, Smithgall TE. Retrovirology 10 135 (2013)
  309. The unique N-terminal region of SRMS regulates enzymatic activity and phosphorylation of its novel substrate docking protein 1. Goel RK, Miah S, Black K, Kalra N, Dai C, Lukong KE. FEBS J. 280 4539-4559 (2013)
  310. The minimal autoinhibited unit of the guanine nucleotide exchange factor intersectin. Ahmad KF, Lim WA. PLoS ONE 5 e11291 (2010)
  311. Herpes simplex virus requires VP11/12 to induce phosphorylation of the activation loop tyrosine (Y394) of the Src family kinase Lck in T lymphocytes. Wagner MJ, Smiley JR. J. Virol. 83 12452-12461 (2009)
  312. Molecular dissection of the interaction between the SH3 domain and the SH2-Kinase Linker region in PTK6. Kim HIe, Jung J, Lee ES, Kim YC, Lee W, Lee ST. Biochem. Biophys. Res. Commun. 362 829-834 (2007)
  313. Integrin-mediated tyrosine phosphorylation of Shc in T cells is regulated by protein kinase C-dependent phosphorylations of Lck. Niu S, Xie H, Marcantonio EE. Mol. Biol. Cell 14 349-360 (2003)
  314. Interaction with the Src homology (SH3-SH2) region of the Src-family kinase Hck structures the HIV-1 Nef dimer for kinase activation and effector recruitment. Alvarado JJ, Tarafdar S, Yeh JI, Smithgall TE. J. Biol. Chem. 289 28539-28553 (2014)
  315. MBNL142 and MBNL143 gene isoforms, overexpressed in DM1-patient muscle, encode for nuclear proteins interacting with Src family kinases. Botta A, Malena A, Tibaldi E, Rocchi L, Loro E, Pena E, Cenci L, Ambrosi E, Bellocchi MC, Pagano MA, Novelli G, Rossi G, Monaco HL, Gianazza E, Pantic B, Romeo V, Marin O, Brunati AM, Vergani L. Cell Death Dis 4 e770 (2013)
  316. Structure, dynamics, and Hck interaction of full-length HIV-1 Nef. Jung J, Byeon IJ, Ahn J, Gronenborn AM. Proteins 79 1609-1622 (2011)
  317. An unexpected role for the clock protein timeless in developmental apoptosis. O'Reilly LP, Watkins SC, Smithgall TE. PLoS ONE 6 e17157 (2011)
  318. Flavonoid dimers as bivalent modulators for p-glycoprotein-based multidrug resistance: structure-activity relationships. Chan KF, Zhao Y, Chow TW, Yan CS, Ma DL, Burkett BA, Wong IL, Chow LM, Chan TH. ChemMedChem 4 594-614 (2009)
  319. Optimization of a homogeneous assay for kinase inhibitors in plant extracts. Dufau I, Lazzari A, Samson A, Pouny I, Ausseil F. Assay Drug Dev Technol 6 673-682 (2008)
  320. Synthesis and evaluation of 3-phenylpyrazolo[3,4-d]pyrimidine-peptide conjugates as Src kinase inhibitors. Kumar A, Wang Y, Lin X, Sun G, Parang K. ChemMedChem 2 1346-1360 (2007)
  321. Synthesis and structure-activity relationships of linear and conformationally constrained peptide analogues of CIYKYY as Src tyrosine kinase inhibitors. Kumar A, Ye G, Wang Y, Lin X, Sun G, Parang K. J. Med. Chem. 49 3395-3401 (2006)
  322. Molecular basis for regulation of Src by the docking protein p130Cas. Nasertorabi F, Tars K, Becherer K, Kodandapani R, Liljas L, Vuori K, Ely KR. J. Mol. Recognit. 19 30-38 (2006)
  323. Critical amino acid substitutions in the Src SH3 domain that convert c-Src to be oncogenic. Miyazaki K, Senga T, Matsuda S, Tanaka M, Machida K, Takenouchi Y, Nimura Y, Hamaguchi M. Biochem. Biophys. Res. Commun. 263 759-764 (1999)
  324. Congresses Phosphatases and kinases in lymphocyte signaling. Yakura H. Immunol. Today 19 198-201 (1998)
  325. Unraveling the molecular architecture of a G protein-coupled receptor/β-arrestin/Erk module complex. Bourquard T, Landomiel F, Reiter E, Crépieux P, Ritchie DW, Azé J, Poupon A. Sci Rep 5 10760 (2015)
  326. A hexylchloride-based catch-and-release system for chemical proteomic applications. Brigham JL, Perera BG, Maly DJ. ACS Chem. Biol. 8 691-699 (2013)
  327. Role of Charged Residues in the Catalytic Sites of Escherichia coli ATP Synthase. Ahmad Z, Okafor F, Laughlin TF. J Amino Acids 2011 785741 (2011)
  328. Isolation of monobodies that bind specifically to the SH3 domain of the Fyn tyrosine protein kinase. Huang R, Fang P, Kay BK. N Biotechnol 29 526-533 (2012)
  329. Backbone dynamics in an intramolecular prolylpeptide-SH3 complex from the diphtheria toxin repressor, DtxR. Bhattacharya N, Yi M, Zhou HX, Logan TM. J. Mol. Biol. 374 977-992 (2007)
  330. Src: more than the sum of its parts. D S, S J T. Trends Cell Biol. 7 215-217 (1997)
  331. The HIV-1 Nef protein as a target for antiretroviral therapy. Coleman SH, Day JR, Guatelli JC. Expert Opin. Ther. Targets 5 1-22 (2001)
  332. The SH3 domain of Src can downregulate its kinase activity in the absence of the SH2 domain-pY527 interaction. Brábek J, Mojzita D, Novotný M, Půta F, Folk P. Biochem. Biophys. Res. Commun. 296 664-670 (2002)
  333. Interaction between Btk TH and SH3 domain. Okoh MP, Vihinen M. Biopolymers 63 325-334 (2002)
  334. Anti-CD45 isoform antibodies enhance phagocytosis and gene expression of IL-8 and TNF-alpha in human neutrophils by differential suppression on protein tyrosine phosphorylation and p56lck tyrosine kinase. Yu C, Yu HS, Sun KH, Hsieh SC, Tsai CY. Clin. Exp. Immunol. 129 78-85 (2002)
  335. SH3 domain of Bruton's tyrosine kinase can bind to proline-rich peptides of TH domain of the kinase and p120cbl. Patel HV, Tzeng SR, Liao CY, Chen SH, Cheng JW. Proteins 29 545-552 (1997)
  336. Computational study of the "DFG-flip" conformational transition in c-Abl and c-Src tyrosine kinases. Meng Y, Lin YL, Roux B. J Phys Chem B 119 1443-1456 (2015)
  337. The SH2 domain regulates c-Abl kinase activation by a cyclin-like mechanism and remodulation of the hinge motion. Dölker N, Górna MW, Sutto L, Torralba AS, Superti-Furga G, Gervasio FL. PLoS Comput. Biol. 10 e1003863 (2014)
  338. Differential sensitivity of Src-family kinases to activation by SH3 domain displacement. Moroco JA, Craigo JK, Iacob RE, Wales TE, Engen JR, Smithgall TE. PLoS ONE 9 e105629 (2014)
  339. Cyclic peptides containing tryptophan and arginine as Src kinase inhibitors. Nasrolahi Shirazi A, Tiwari RK, Brown A, Mandal D, Sun G, Parang K. Bioorg. Med. Chem. Lett. 23 3230-3234 (2013)
  340. Ack1: activation and regulation by allostery. Gajiwala KS, Maegley K, Ferre R, He YA, Yu X. PLoS ONE 8 e53994 (2013)
  341. Conservation and early expression of zebrafish tyrosine kinases support the utility of zebrafish as a model for tyrosine kinase biology. Challa AK, Chatti K. Zebrafish 10 264-274 (2013)
  342. Structural framework of c-Src activation by integrin β3. Xiao R, Xi XD, Chen Z, Chen SJ, Meng G. Blood 121 700-706 (2013)
  343. Inositol phosphate-induced stabilization of inositol 1,3,4,5,6-pentakisphosphate 2-kinase and its role in substrate specificity. Gosein V, Leung TF, Krajden O, Miller GJ. Protein Sci. 21 737-742 (2012)
  344. Mutations in the catalytic loop HRD motif alter the activity and function of Drosophila Src64. Strong TC, Kaur G, Thomas JH. PLoS ONE 6 e28100 (2011)
  345. An essential role of ubiquitination in Cbl-mediated negative regulation of the Src-family kinase Fyn. Rao N, Ghosh AK, Douillard P, Andoniou CE, Zhou P, Band H. Signal Transduct 2 29-39 (2002)
  346. The cysteine-cluster motif of c-Src: its role for the heavy metal-mediated activation of kinase. Senga T, Hasegawa H, Tanaka M, Rahman MA, Ito S, Hamaguchi M. Cancer Sci. 99 571-575 (2008)
  347. The v-Src and c-Src tyrosine kinases immunoprecipitated from Rous sarcoma virus-transformed cells display different peptide substrate specificities. Vojtechová M, Tuhácková Z, Hlavácek J, Velek J, Sovová V. Arch. Biochem. Biophys. 421 277-282 (2004)
  348. Editorial Arm-domain interactions in proteins: a review. Schleif R. Proteins 34 1-3 (1999)
  349. Adding 'splice' to protein engineering. Holford M, Muir TW. Structure 6 951-956 (1998)
  350. Functional analysis of the catalytic subunit of Dictyostelium PKA in vivo. Dammann H, Traincard F, Anjard C, van Bemmelen MX, Reymond C, Véron M. Mech. Dev. 72 149-157 (1998)
  351. The accessory factor Nef links HIV-1 to Tec/Btk kinases in an Src homology 3 domain-dependent manner. Tarafdar S, Poe JA, Smithgall TE. J. Biol. Chem. 289 15718-15728 (2014)
  352. Distal loop flexibility of a regulatory domain modulates dynamics and activity of C-terminal SRC kinase (csk). Barkho S, Pierce LC, McGlone ML, Li S, Woods VL, Walker RC, Adams JA, Jennings PA. PLoS Comput. Biol. 9 e1003188 (2013)
  353. Crystal structure of Src-like adaptor protein 2 reveals close association of SH3 and SH2 domains through β-sheet formation. Wybenga-Groot LE, McGlade CJ. Cell. Signal. 25 2702-2708 (2013)
  354. Probing the 3-D structure, dynamics, and stability of bacterial collagenase collagen binding domain (apo- versus holo-) by limited proteolysis MALDI-TOF MS. Sides CR, Liyanage R, Lay JO, Philominathan ST, Matsushita O, Sakon J. J. Am. Soc. Mass Spectrom. 23 505-519 (2012)
  355. Hypothalamic Ahi1 mediates feeding behavior through interaction with 5-HT2C receptor. Wang H, Huang Z, Huang L, Niu S, Rao X, Xu J, Kong H, Yang J, Yang C, Wu D, Li S, Li XJ, Liu T, Sheng G. J. Biol. Chem. 287 2237-2246 (2012)
  356. Mass spectrometry guided in situ proteolysis to obtain crystals for X-ray structure determination. Gheyi T, Rodgers L, Romero R, Sauder JM, Burley SK. J. Am. Soc. Mass Spectrom. 21 1795-1801 (2010)
  357. Identification and biophysical assessment of the molecular recognition mechanisms between the human haemopoietic cell kinase Src homology domain 3 and ALG-2-interacting protein X. Shi X, Opi S, Lugari A, Restouin A, Coursindel T, Parrot I, Perez J, Madore E, Zimmermann P, Corbeil J, Huang M, Arold ST, Collette Y, Morelli X. Biochem. J. 431 93-102 (2010)
  358. A functional Jak2 tyrosine kinase domain is essential for mouse development. Frenzel K, Wallace TA, McDoom I, Xiao HD, Capecchi MR, Bernstein KE, Sayeski PP. Exp. Cell Res. 312 2735-2744 (2006)
  359. High-affinity Src-SH2 ligands which do not activate Tyr(527)-phosphorylated Src in an experimental in vivo system. Mandine E, Jean-Baptiste V, Vayssière B, Gofflo D, Bénard D, Sarubbi E, Deprez P, Baron R, Superti-Furga G, Lesuisse D. Biochem. Biophys. Res. Commun. 298 185-192 (2002)
  360. MAGUK SH3 domains--swapped and stranded by their kinases? Yaffe MB. Structure 10 3-5 (2002)
  361. Both proline-rich sequences in the TH region of Bruton's tyrosine kinase stabilize intermolecular interactions with the SH3 domain. Hansson H, Smith CI, Härd T. FEBS Lett. 508 11-15 (2001)
  362. Role of the Bsk/Iyk non-receptor tyrosine kinase for the control of growth and hormone production in RINm5F cells. Annerén C, Welsh M. Growth Factors 17 233-247 (2000)
  363. Identification of residues involved in v-Src substrate recognition by site-directed mutagenesis. Yokoyama N, Miller WT. FEBS Lett. 456 403-408 (1999)
  364. Interactions between SH2 and SH3 domains. Vihinen M, Smith CI. Biochem. Biophys. Res. Commun. 242 351-356 (1998)
  365. Hydrophobic Core Variations Provide a Structural Framework for Tyrosine Kinase Evolution and Functional Specialization. Mohanty S, Oruganty K, Kwon A, Byrne DP, Ferries S, Ruan Z, Hanold LE, Katiyar S, Kennedy EJ, Eyers PA, Kannan N. PLoS Genet. 12 e1005885 (2016)
  366. SH2-catalytic domain linker heterogeneity influences allosteric coupling across the SFK family. Register AC, Leonard SE, Maly DJ. Biochemistry 53 6910-6923 (2014)
  367. Divergent modulation of Src-family kinase regulatory interactions with ATP-competitive inhibitors. Leonard SE, Register AC, Krishnamurty R, Brighty GJ, Maly DJ. ACS Chem. Biol. 9 1894-1905 (2014)
  368. Identification of Hck inhibitors as hits for the development of antileukemia and anti-HIV agents. Tintori C, Laurenzana I, La Rocca F, Falchi F, Carraro F, Ruiz A, Esté JA, Kissova M, Crespan E, Maga G, Biava M, Brullo C, Schenone S, Botta M. ChemMedChem 8 1353-1360 (2013)
  369. PAG/Cbp suppression reveals a contribution of CTLA-4 to setting the activation threshold in T cells. Smida M, Cammann C, Gurbiel S, Kerstin N, Lingel H, Lindquist S, Simeoni L, Brunner-Weinzierl MC, Suchanek M, Schraven B, Lindquist JA. Cell Commun. Signal 11 28 (2013)
  370. A full-length 3D structure for MAPK/ERK kinase 2 (MEK2). Liang H, Liu T, Chen F, Liu Z, Liu S. Sci China Life Sci 54 336-341 (2011)
  371. Co-conserved features associated with cis regulation of ErbB tyrosine kinases. Mirza A, Mustafa M, Talevich E, Kannan N. PLoS ONE 5 e14310 (2010)
  372. Activation loop tyrosines allow the JAK2(V617F) mutant to attain hyperactivation. Kundrapu K, Colenberg L, Duhé RJ. Cell Biochem. Biophys. 52 103-112 (2008)
  373. Mercuric chloride activates the Src-family protein tyrosine kinase, Hck in myelomonocytic cells. Robbins SM, Quintrell NA, Bishop JM. Eur. J. Biochem. 267 7201-7208 (2000)
  374. Interaction with simian Hck tyrosine kinase reveals convergent evolution of the Nef protein from simian and human immunodeficiency viruses despite differential molecular surface usage. Picard C, Greenway A, Holloway G, Olive D, Collette Y. Virology 295 320-327 (2002)
  375. Mechanistic basis of Nek7 activation through Nek9 binding and induced dimerization. Haq T, Richards MW, Burgess SG, Gallego P, Yeoh S, O'Regan L, Reverter D, Roig J, Fry AM, Bayliss R. Nat Commun 6 8771 (2015)
  376. Clickable 5'-γ-ferrocenyl adenosine triphosphate bioconjugates in kinase-catalyzed phosphorylations. Wang N, She Z, Lin YC, Martić S, Mann DJ, Kraatz HB. Chemistry 21 4988-4999 (2015)
  377. Structural dynamic analysis of apo and ATP-bound IRAK4 kinase. Gosu V, Choi S. Sci Rep 4 5748 (2014)
  378. Roles of phosphate recognition in inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IPK1) substrate binding and activation. Gosein V, Miller GJ. J. Biol. Chem. 288 26908-26913 (2013)
  379. Systematic characterization of the specificity of the SH2 domains of cytoplasmic tyrosine kinases. Zhao B, Tan PH, Li SS, Pei D. J Proteomics 81 56-69 (2013)
  380. Identification of CENP-V as a novel microtubule-associating molecule that activates Src family kinases through SH3 domain interaction. Honda Z, Suzuki T, Honda H. Genes Cells 14 1383-1394 (2009)
  381. Spectroscopic characterization of the SH2- and active site-directed peptide sequences of a bivalent Src kinase inhibitor. Desamero RZ, Kang J, Dol C, Chinwong J, Walters K, Sivarajah T, Profit AA. Appl Spectrosc 63 767-774 (2009)
  382. Generation of a novel system for studying spleen tyrosine kinase function in macrophages and B cells. Miller AL, Zhang C, Shokat KM, Lowell CA. J. Immunol. 182 988-998 (2009)
  383. An efficient method for protein phosphorylation using the artificially introduced of cognate-binding modules into kinases and substrates. Kobashigawa Y, Naito M, Inagaki F. J. Biotechnol. 131 458-465 (2007)
  384. Metal-binding properties of a dicysteine-containing motif in protein tyrosine kinases. Ahmadibeni Y, Hanley M, White M, Ayrapetov M, Lin X, Sun G, Parang K. Chembiochem 8 1592-1605 (2007)
  385. Two kinase family dramas. Leonard TA, Hurley JH. Cell 129 1037-1038 (2007)
  386. Involvement of the SH3 domain in Ca2+-mediated regulation of Src family kinases. Monteiro AN. Biochimie 88 905-911 (2006)
  387. Synthesis, antiproliferative activity, and structure-activity relationships of 3-aryl-1H-quinolin-4-ones. Xiao ZP, Li HQ, Shi L, Lv PC, Song ZC, Zhu HL. ChemMedChem 3 1077-1082 (2008)
  388. The Macrophage Galactose-Type C-Type Lectin (MGL) Modulates Regulatory T Cell Functions. Zizzari IG, Martufi P, Battisti F, Rahimi H, Caponnetto S, Bellati F, Nuti M, Rughetti A, Napoletano C. PLoS ONE 10 e0132617 (2015)
  389. GRID and docking analyses reveal a molecular basis for flavonoid inhibition of Src family kinase activity. Wright B, Watson KA, McGuffin LJ, Lovegrove JA, Gibbins JM. J. Nutr. Biochem. 26 1156-1165 (2015)
  390. The Tyrosine Kinase c-Src Specifically Binds to the Active Integrin αIIbβ3 to Initiate Outside-in Signaling in Platelets. Wu Y, Span LM, Nygren P, Zhu H, Moore DT, Cheng H, Roder H, DeGrado WF, Bennett JS. J. Biol. Chem. 290 15825-15834 (2015)
  391. Autoinhibition of Bruton's tyrosine kinase (Btk) and activation by soluble inositol hexakisphosphate. Wang Q, Vogan EM, Nocka LM, Rosen CE, Zorn JA, Harrison SC, Kuriyan J. Elife 4 (2015)
  392. Conformational stability of inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IPK1) dictates its substrate selectivity. Gosein V, Miller GJ. J. Biol. Chem. 288 36788-36795 (2013)
  393. Multiple steps to activate FAK's kinase domain: adaptation to confined environments? Herzog FA, Vogel V. Biophys. J. 104 2521-2529 (2013)
  394. Expression changes of hypothalamic Ahi1 in mice brain: implication in sensing insulin signaling. Niu S, Wang H, Huang Z, Rao X, Cai X, Liang T, Xu J, Xu X, Sheng G. Mol. Biol. Rep. 39 9697-9705 (2012)
  395. Control of genetically prescribed protein tyrosine kinase activities by environment-linked redox reactions. Nakashima I, Kawamoto Y, Takeda K, Kato M. Enzyme Res 2011 896567 (2011)
  396. Phosphorylation and ATP-binding induced conformational changes in the PrkC, Ser/Thr kinase from B. subtilis. Gruszczyński P, Obuchowski M, Kaźmierkiewicz R. J. Comput. Aided Mol. Des. 24 733-747 (2010)
  397. Bimolecular fluorescence complementation demonstrates that the c-Fes protein-tyrosine kinase forms constitutive oligomers in living cells. Shaffer JM, Hellwig S, Smithgall TE. Biochemistry 48 4780-4788 (2009)
  398. Structural basis for the activity of pp60(c-src) protein tyrosine kinase inhibitors. Prabhu NV, Siddiqui SA, McMurray JS, Pettitt BM. Biopolymers 59 167-179 (2001)
  399. Novel virtual lead identification in the discovery of hematopoietic cell kinase (HCK) inhibitors: application of 3D QSAR and molecular dynamics simulation. Bavi R, Kumar R, Rampogu S, Kim Y, Kwon YJ, Park SJ, Lee KW. J. Recept. Signal Transduct. Res. 37 224-238 (2017)
  400. Subtle Dynamic Changes Accompany Hck Activation by HIV-1 Nef and are Reversed by an Antiretroviral Kinase Inhibitor. Wales TE, Hochrein JM, Morgan CR, Emert-Sedlak LA, Smithgall TE, Engen JR. Biochemistry 54 6382-6391 (2015)
  401. Computational study of the W260A activating mutant of Src tyrosine kinase. Meng Y, Roux B. Protein Sci. 25 219-230 (2016)
  402. Theoretical Insights Reveal Novel Motions in Csk's SH3 Domain That Control Kinase Activation. Barkho S, Pierce LC, Li S, Adams JA, Jennings PA. PLoS ONE 10 e0127724 (2015)
  403. Disruption of Fyn SH3 domain interaction with a proline-rich motif in liver kinase B1 results in activation of AMP-activated protein kinase. Yamada E, Bastie CC. PLoS ONE 9 e89604 (2014)
  404. Ligand-based pharmacophore modeling and Bayesian approaches to identify c-Src inhibitors. Sakkiah S, Arullaperumal V, Hwang S, Lee KW. J Enzyme Inhib Med Chem 29 69-80 (2014)
  405. Expression and purification of Src-family kinases for solution NMR studies. Piserchio A, Cowburn D, Ghose R. Methods Mol. Biol. 831 111-131 (2012)
  406. Bacterial expression and purification of active hematopoietic cell kinase. Kristelly R, Qiu TW, Gunn NJ, Scanlon DB, Mulhern TD. Protein Expr. Purif. 78 14-21 (2011)
  407. Effect of the SH3-SH2 domain linker sequence on the structure of Hck kinase. Meiselbach H, Sticht H. J Mol Model 17 1927-1934 (2011)
  408. Reciprocally coupled residues crucial for protein kinase Pak2 activity calculated by statistical coupling analysis. Hsu YH, Traugh JA. PLoS ONE 5 e9455 (2010)
  409. A one-step synthesis of 2-Alkyl-5-hydroxychromones and 3-Alkoyl-2-alkyl-5-hydroxychromones. Okombi S, Schmidt J, Mariotte AM, Perrier E, Boumendjel A. Chem. Pharm. Bull. 53 1460-1462 (2005)
  410. Alkylation of 2-phenyl-4-quinolones: synthetic and structural studies. Hadjeri M, Mariotte AM, Boumendjel A. Chem. Pharm. Bull. 49 1352-1355 (2001)
  411. Inhibition of src family kinases by a combinatorial action of 5'-AMP and small heat shock proteins, identified from the adult heart. Kasi VS, Kuppuswamy D. Mol. Cell. Biol. 19 6858-6871 (1999)
  412. Teaching resources. Protein kinases. Caplan A. Sci. STKE 2005 tr7 (2005)
  413. Teaching resources. Protein domains that interact with receptor tyrosine kinases: structural aspects. Zhou MM. Sci. STKE 2005 tr9 (2005)
  414. Lysophosphatidic acid inhibits ghrelin secretion in the human gastric adenocarcinoma AGS cell line: role of mitogenic activated protein kinase signaling pathway. Pazos Y, Alvarez CJ, Camiña JP, Casanueva FF. FEBS J. 274 5714-5726 (2007)
  415. Veritas per structuram. Harrison SC. Annu. Rev. Biochem. 84 37-60 (2015)
  416. Ligands Binding to Cell Surface Ganglioside GD2 Cause Src-Dependent Activation of N-Methyl-D-Aspartate Receptor Signaling and Changes in Cellular Morphology. Tong W, Maira M, Gagnon M, Saragovi HU. PLoS ONE 10 e0134255 (2015)
  417. Insight into the mechanism of chemical modification of antibacterial agents by antibiotic resistance enzyme O-phosphotransferase-IIIA. Power BH, Smith N, Downer B, Alisaraie L. Chem Biol Drug Des 89 84-97 (2017)
  418. Flavonoids as CDK1 Inhibitors: Insights in Their Binding Orientations and Structure-Activity Relationship. Navarro-Retamal C, Caballero J. PLoS ONE 11 e0161111 (2016)
  419. -NOD Mice Having a Lyn Tyrosine Kinase Mutation Exhibit Abnormal Neutrophil Chemotaxis. Wu Y, Hannigan M, Zhan L, Madri JA, Huang CK. J. Cell. Physiol. 232 1689-1695 (2017)
  420. The residue at position 5 of the N-terminal region of Src and Fyn modulates their myristoylation, palmitoylation, and membrane interactions. Gottlieb-Abraham E, Gutman O, Pai GM, Rubio I, Henis YI. Mol. Biol. Cell 27 3926-3936 (2016)
  421. Dynamic, structural and thermodynamic basis of insulin-like growth factor 1 kinase allostery mediated by activation loop phosphorylation. Li Y, Nam K. Chem Sci 8 3453-3464 (2017)
  422. A Phosphosite within the SH2 Domain of Lck Regulates Its Activation by CD45. Courtney AH, Amacher JF, Kadlecek TA, Mollenauer MN, Au-Yeung BB, Kuriyan J, Weiss A. Mol. Cell 67 498-511.e6 (2017)
  423. Csk-homologous kinase (Chk) is an efficient inhibitor of Src-family kinases but a poor catalyst of phosphorylation of their C-terminal regulatory tyrosine. Advani G, Lim YC, Catimel B, Lio DSS, Ng NLY, Chüeh AC, Tran M, Anasir MI, Verkade H, Zhu HJ, Turk BE, Smithgall TE, Ang CS, Griffin M, Cheng HC. Cell Commun. Signal 15 29 (2017)
  424. Tyrosine phosphorylation of the GARU E3 ubiquitin ligase promotes gibberellin signalling by preventing GID1 degradation. Nemoto K, Ramadan A, Arimura GI, Imai K, Tomii K, Shinozaki K, Sawasaki T. Nat Commun 8 1004 (2017)
  425. NMR studies of the RRsrc peptide, a tyrosine kinase substrate. Brockbank RL, Vogel HJ. Biochem. Cell Biol. 75 163-169 (1997)