2hak Citations

Structural variations in the catalytic and ubiquitin-associated domains of microtubule-associated protein/microtubule affinity regulating kinase (MARK) 1 and MARK2.

J Biol Chem 281 27586-99 (2006)
Related entries: 1y8g, 1zmu, 1zmv, 1zmw

Cited: 42 times
EuropePMC logo PMID: 16803889

Abstract

The microtubule-associated protein (MAP)/microtubule affinity regulating kinase (MARK)/Par-1 phosphorylates microtubule-associated proteins tau, MAP2, and MAP4 and is involved in the regulation of microtubule-based transport. Par-1, a homologue of MARK in Drosophila and Caenorhabditis elegans, is essential for the development of embryonic polarity. Four isoforms of MARK are found in humans. Recently, we reported the crystal structure of the catalytic and ubiquitin-associated domains of MARK2, an isoform enriched in brain (Panneerselvam, S., Marx, A., Mandelkow, E.-M., and Mandelkow, E. (2006) Structure 14, 173-183). It showed that the ubiquitin-associated domain (UBA) domain has an unusual fold and binds to the N-terminal lobe of the catalytic domain. This is at variance with a previous low resolution structure derived from small angle solution scattering (Jaleel, M., Villa, F., Deak, M., Toth, R., Prescott, A. R., Van Aalten, D. M., and Alessi, D. R. (2006) Biochem. J. 394, 545-555), which predicts binding of the UBA domain to the larger, C-terminal lobe. Here we report the crystal structure of the catalytic and UBA domain of another isoform, MARK1. Although the crystal packing of the two isoforms are unrelated, the overall conformations of the molecules are similar. Notably, the UBA domain has the same unusual conformation as in MARK2, and it binds at the same site. Remarkable differences occur in the catalytic domain at helix C, the catalytic loop, and the activation segment.

Reviews - 2hak mentioned but not cited (1)

  1. Structure and regulation of MARK, a kinase involved in abnormal phosphorylation of Tau protein. Timm T, Marx A, Panneerselvam S, Mandelkow E, Mandelkow EM. BMC Neurosci 9 Suppl 2 S9 (2008)

Articles - 2hak mentioned but not cited (11)

  1. SU11248 (sunitinib) directly inhibits the activity of mammalian 5'-AMP-activated protein kinase (AMPK). Laderoute KR, Calaoagan JM, Madrid PB, Klon AE, Ehrlich PJ. Cancer Biol Ther 10 68-76 (2010)
  2. Structural insight into the mechanism of synergistic autoinhibition of SAD kinases. Wu JX, Cheng YS, Wang J, Chen L, Ding M, Wu JW. Nat Commun 6 8953 (2015)
  3. Molecular determinants of KA1 domain-mediated autoinhibition and phospholipid activation of MARK1 kinase. Emptage RP, Lemmon MA, Ferguson KM. Biochem J 474 385-398 (2017)
  4. Structural basis for the regulation of maternal embryonic leucine zipper kinase. Cao LS, Wang J, Chen Y, Deng H, Wang ZX, Wu JW. PLoS One 8 e70031 (2013)
  5. Structural Basis for MARK1 Kinase Autoinhibition by Its KA1 Domain. Emptage RP, Lemmon MA, Ferguson KM, Marmorstein R. Structure 26 1137-1143.e3 (2018)
  6. Assessing the accuracy of template-based structure prediction metaservers by comparison with structural genomics structures. Gront D, Grabowski M, Zimmerman MD, Raynor J, Tkaczuk KL, Minor W. J Struct Funct Genomics 13 213-225 (2012)
  7. The rational design of a novel potent analogue of the 5'-AMP-activated protein kinase inhibitor compound C with improved selectivity and cellular activity. Machrouhi F, Ouhamou N, Laderoute K, Calaoagan J, Bukhtiyarova M, Ehrlich PJ, Klon AE. Bioorg Med Chem Lett 20 6394-6399 (2010)
  8. The structure of Legionella pneumophila LegK4 type four secretion system (T4SS) effector reveals a novel dimeric eukaryotic-like kinase. Flayhan A, Bergé C, Baïlo N, Doublet P, Bayliss R, Terradot L. Sci Rep 5 14602 (2015)
  9. Dasatinib-SIK2 Binding Elucidated by Homology Modeling, Molecular Docking, and Dynamics Simulations. Shi M, Wang L, Li P, Liu J, Chen L, Xu D. ACS Omega 6 11025-11038 (2021)
  10. In-silico screening and in-vitro assay show the antiviral effect of Indomethacin against SARS-CoV-2. Chakraborty R, Bhattacharje G, Baral J, Manna B, Mullick J, Mathapati BS, Abraham P, J M, Hasija Y, Ghosh A, Das AK. Comput Biol Med 147 105788 (2022)
  11. CARDIO-PRED: an in silico tool for predicting cardiovascular-disorder associated proteins. Jain P, Thukral N, Gahlot LK, Hasija Y. Syst Synth Biol 9 55-66 (2015)


Reviews citing this publication (7)

  1. The tau of MARK: a polarized view of the cytoskeleton. Matenia D, Mandelkow EM. Trends Biochem Sci 34 332-342 (2009)
  2. The regulation and function of mammalian AMPK-related kinases. Bright NJ, Thornton C, Carling D. Acta Physiol (Oxf) 196 15-26 (2009)
  3. Structure and function of polarity-inducing kinase family MARK/Par-1 within the branch of AMPK/Snf1-related kinases. Marx A, Nugoor C, Panneerselvam S, Mandelkow E. FASEB J 24 1637-1648 (2010)
  4. Microtubule affinity-regulating kinase 4: structure, function, and regulation. Naz F, Anjum F, Islam A, Ahmad F, Hassan MI. Cell Biochem Biophys 67 485-499 (2013)
  5. Regulation of Cell Polarity by PAR-1/MARK Kinase. Wu Y, Griffin EE. Curr Top Dev Biol 123 365-397 (2017)
  6. Review: unchained maladie - a reassessment of the role of Ubb(+1) -capped polyubiquitin chains in Alzheimer's disease. Chadwick L, Gentle L, Strachan J, Layfield R. Neuropathol Appl Neurobiol 38 118-131 (2012)
  7. The role of PAS kinase in PASsing the glucose signal. Grose JH, Rutter J. Sensors (Basel) 10 5668-5682 (2010)

Articles citing this publication (23)

  1. Structural insight into the autoinhibition mechanism of AMP-activated protein kinase. Chen L, Jiao ZH, Zheng LS, Zhang YY, Xie ST, Wang ZX, Wu JW. Nature 459 1146-1149 (2009)
  2. Glycogen synthase kinase (GSK) 3beta directly phosphorylates Serine 212 in the regulatory loop and inhibits microtubule affinity-regulating kinase (MARK) 2. Timm T, Balusamy K, Li X, Biernat J, Mandelkow E, Mandelkow EM. J Biol Chem 283 18873-18882 (2008)
  3. Classifying protein kinase structures guides use of ligand-selectivity profiles to predict inactive conformations: structure of lck/imatinib complex. Jacobs MD, Caron PR, Hare BJ. Proteins 70 1451-1460 (2008)
  4. Conformational instability of the MARK3 UBA domain compromises ubiquitin recognition and promotes interaction with the adjacent kinase domain. Murphy JM, Korzhnev DM, Ceccarelli DF, Briant DJ, Zarrine-Afsar A, Sicheri F, Kay LE, Pawson T. Proc Natl Acad Sci U S A 104 14336-14341 (2007)
  5. The effect of a DeltaK280 mutation on the unfolded state of a microtubule-binding repeat in Tau. Huang A, Stultz CM. PLoS Comput Biol 4 e1000155 (2008)
  6. The structural analysis of MARK4 and the exploration of specific inhibitors for the MARK family: a computational approach to obstruct the role of MARK4 in prostate cancer progression. Jenardhanan P, Mannu J, Mathur PP. Mol Biosyst 10 1845-1868 (2014)
  7. IKKbeta inhibitors identification part I: homology model assisted structure based virtual screening. Nagarajan S, Doddareddy Mr, Choo H, Cho YS, Oh KS, Lee BH, Pae AN. Bioorg Med Chem 17 2759-2766 (2009)
  8. Alterations at dispersed sites cause phosphorylation and activation of SNF1 protein kinase during growth on high glucose. Momcilovic M, Carlson M. J Biol Chem 286 23544-23551 (2011)
  9. Interactions of MAP/microtubule affinity regulating kinases with the adaptor complex AP-2 of clathrin-coated vesicles. Schmitt-Ulms G, Matenia D, Drewes G, Mandelkow EM. Cell Motil Cytoskeleton 66 661-672 (2009)
  10. Intramolecular autoinhibition of checkpoint kinase 1 is mediated by conserved basic motifs of the C-terminal kinase-associated 1 domain. Emptage RP, Schoenberger MJ, Ferguson KM, Marmorstein R. J Biol Chem 292 19024-19033 (2017)
  11. The UBA domain of SnRK1 promotes activation and maintains catalytic activity. Emanuelle S, Doblin MS, Gooley PR, Gentry MS. Biochem Biophys Res Commun 497 127-132 (2018)
  12. HYPK coordinates degradation of polyneddylated proteins by autophagy. Ghosh DK, Ranjan A. Autophagy 18 1763-1784 (2022)
  13. Interconversion of inactive to active conformation of MARK2: Insights from molecular modeling and molecular dynamics simulation. Ahrari S, Mogharrab N, Navapour L. Arch Biochem Biophys 630 66-80 (2017)
  14. MARK2/Par1b kinase present at centrosomes and retraction fibres corrects spindle off-centring induced by actin disassembly. Hart M, Zulkipli I, Shrestha RL, Dang D, Conti D, Gul P, Kujawiak I, Draviam VM. Open Biol 9 180263 (2019)
  15. Protein kinase A rescues microtubule affinity-regulating kinase 2-induced microtubule instability and neurite disruption by phosphorylating serine 409. Deng SS, Wu LY, Wang YC, Cao PR, Xu L, Li QR, Liu M, Zhang L, Jiang YJ, Yang XY, Sun SN, Tan MJ, Qian M, Zang Y, Feng L, Li J. J Biol Chem 290 3149-3160 (2015)
  16. Pharmacophore modeling and hybrid virtual screening for the discovery of novel IκB kinase 2 (IKK2) inhibitors. Xie HZ, Liu LY, Ren JX, Zhou JP, Zheng RL, Li LL, Yang SY. J Biomol Struct Dyn 29 165-179 (2011)
  17. Molecular dynamics simulations of the conformational plasticity in the active pocket of salt-inducible kinase 2 (SIK2) multi-state binding with bosutinib. Shi M, Wang L, Liu K, Chen Y, Hu M, Yang L, He J, Chen L, Xu D. Comput Struct Biotechnol J 20 2574-2586 (2022)
  18. Computational analysis of regulatory regions in human protein kinases. Pei J, Cong Q. Protein Sci 32 e4764 (2023)
  19. Effects of T208E activating mutation on MARK2 protein structure and dynamics: Modeling and simulation. Ahrari S, Mogharrab N. Mol Biol Res Commun 3 149-164 (2014)
  20. Kinase Activity of PAR1b, Which Mediates Nuclear Translocation of the BRCA1 Tumor Suppressor, Is Potentiated by Nucleic Acid-Mediated PAR1b Multimerization. Nishikawa H, Christiany P, Hayashi T, Iizasa H, Yoshiyama H, Hatakeyama M. Int J Mol Sci 23 6634 (2022)
  21. Identification of a reciprocal negative feedback loop between tau-modifying proteins MARK2 kinase and CBP acetyltransferase. Tabassum Z, Tseng JH, Isemann C, Tian X, Chen Y, Herring LE, Cohen TJ. J Biol Chem 298 101977 (2022)
  22. Interactions between curcumin and human salt-induced kinase 3 elucidated from computational tools and experimental methods. Shi M, Zhou Y, Wei H, Zhang X, Du M, Zhou Y, Yin Y, Li X, Tang X, Sun L, Xu D, Li X. Front Pharmacol 14 1116098 (2023)
  23. Optimization of Selectivity and Pharmacokinetic Properties of Salt-Inducible Kinase Inhibitors that Led to the Discovery of Pan-SIK Inhibitor GLPG3312. Temal-Laib T, Peixoto C, Desroy N, De Lemos E, Bonnaterre F, Bienvenu N, Picolet O, Sartori E, Bucher D, López-Ramos M, Roca Magadán C, Laenen W, Flower T, Mollat P, Bugaud O, Touitou R, Pereira Fernandes A, Lavazais S, Monjardet A, Borgonovi M, Gosmini R, Brys R, Amantini D, De Vos S, Andrews M. J Med Chem 67 380-401 (2024)


Related citations provided by authors (1)

  1. Structure of the catalytic and ubiquitin-associated domains of the protein kinase MARK/Par-1.. Panneerselvam S, Marx A, Mandelkow EM, Mandelkow E Structure 14 173-83 (2006)