2h4f Citations

Insights into the sirtuin mechanism from ternary complexes containing NAD+ and acetylated peptide.

Structure 14 1231-40 (2006)
Related entries: 2h4h, 2h4j, 2h59

Cited: 84 times
EuropePMC logo PMID: 16905097

Abstract

Sirtuin proteins comprise a unique class of NAD+-dependent protein deacetylases. Although several structures of sirtuins have been determined, the mechanism by which NAD+ cleavage occurs has remained unclear. We report the structures of ternary complexes containing NAD+ and acetylated peptide bound to the bacterial sirtuin Sir2Tm and to a catalytic mutant (Sir2Tm(H116Y)). NAD+ in these structures binds in a conformation different from that seen in previous structures, exposing the alpha face of the nicotinamide ribose to the carbonyl oxygen of the acetyl lysine substrate. The NAD+ conformation is identical in both structures, suggesting that proper coenzyme orientation is not dependent on contacts with the catalytic histidine. We also present the structure of Sir2Tm(H116A) bound to deacteylated peptide and 3'-O-acetyl ADP ribose. Taken together, these structures suggest a mechanism for nicotinamide cleavage in which an invariant phenylalanine plays a central role in promoting formation of the O-alkylamidate reaction intermediate and preventing nicotinamide exchange.

Reviews - 2h4f mentioned but not cited (7)

  1. Acylation of Biomolecules in Prokaryotes: a Widespread Strategy for the Control of Biological Function and Metabolic Stress. Hentchel KL, Escalante-Semerena JC. Microbiol Mol Biol Rev 79 321-346 (2015)
  2. Sirtuins in epigenetic regulation. Jing H, Lin H. Chem Rev 115 2350-2375 (2015)
  3. Modulation of epigenetic targets for anticancer therapy: clinicopathological relevance, structural data and drug discovery perspectives. Andreoli F, Barbosa AJ, Parenti MD, Del Rio A. Curr Pharm Des 19 578-613 (2013)
  4. Chemical and structural biology of protein lysine deacetylases. Yoshida M, Kudo N, Kosono S, Ito A. Proc Jpn Acad Ser B Phys Biol Sci 93 297-321 (2017)
  5. Catalysis and mechanistic insights into sirtuin activation. Dittenhafer-Reed KE, Feldman JL, Denu JM. Chembiochem 12 281-289 (2011)
  6. A Molecular Perspective on Sirtuin Activity. Teixeira CSS, Cerqueira NMFSA, Gomes P, Sousa SF. Int J Mol Sci 21 E8609 (2020)
  7. ADP-ribosylation systems in bacteria and viruses. Mikolčević P, Hloušek-Kasun A, Ahel I, Mikoč A. Comput Struct Biotechnol J 19 2366-2383 (2021)

Articles - 2h4f mentioned but not cited (16)

  1. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Du J, Zhou Y, Su X, Yu JJ, Khan S, Jiang H, Kim J, Woo J, Kim JH, Choi BH, He B, Chen W, Zhang S, Cerione RA, Auwerx J, Hao Q, Lin H. Science 334 806-809 (2011)
  2. Ex-527 inhibits Sirtuins by exploiting their unique NAD+-dependent deacetylation mechanism. Gertz M, Fischer F, Nguyen GT, Lakshminarasimhan M, Schutkowski M, Weyand M, Steegborn C. Proc Natl Acad Sci U S A 110 E2772-81 (2013)
  3. Crystal structures of human SIRT3 displaying substrate-induced conformational changes. Jin L, Wei W, Jiang Y, Peng H, Cai J, Mao C, Dai H, Choy W, Bemis JE, Jirousek MR, Milne JC, Westphal CH, Perni RB. J Biol Chem 284 24394-24405 (2009)
  4. Selective Sirt2 inhibition by ligand-induced rearrangement of the active site. Rumpf T, Schiedel M, Karaman B, Roessler C, North BJ, Lehotzky A, Oláh J, Ladwein KI, Schmidtkunz K, Gajer M, Pannek M, Steegborn C, Sinclair DA, Gerhardt S, Ovádi J, Schutkowski M, Sippl W, Einsle O, Jung M. Nat Commun 6 6263 (2015)
  5. Structural insights into intermediate steps in the Sir2 deacetylation reaction. Hawse WF, Hoff KG, Fatkins DG, Daines A, Zubkova OV, Schramm VL, Zheng W, Wolberger C. Structure 16 1368-1377 (2008)
  6. Identification of a Class of Protein ADP-Ribosylating Sirtuins in Microbial Pathogens. Rack JG, Morra R, Barkauskaite E, Kraehenbuehl R, Ariza A, Qu Y, Ortmayer M, Leidecker O, Cameron DR, Matic I, Peleg AY, Leys D, Traven A, Ahel I. Mol Cell 59 309-320 (2015)
  7. Highly dissociative and concerted mechanism for the nicotinamide cleavage reaction in Sir2Tm enzyme suggested by ab initio QM/MM molecular dynamics simulations. Hu P, Wang S, Zhang Y. J Am Chem Soc 130 16721-16728 (2008)
  8. The bicyclic intermediate structure provides insights into the desuccinylation mechanism of human sirtuin 5 (SIRT5). Zhou Y, Zhang H, He B, Du J, Lin H, Cerione RA, Hao Q. J Biol Chem 287 28307-28314 (2012)
  9. Mechanism of inhibition of the human sirtuin enzyme SIRT3 by nicotinamide: computational and experimental studies. Guan X, Lin P, Knoll E, Chakrabarti R. PLoS One 9 e107729 (2014)
  10. Plasmodium falciparum Sir2A preferentially hydrolyzes medium and long chain fatty acyl lysine. Zhu AY, Zhou Y, Khan S, Deitsch KW, Hao Q, Lin H. ACS Chem Biol 7 155-159 (2012)
  11. Structure-based mechanism of ADP-ribosylation by sirtuins. Hawse WF, Wolberger C. J Biol Chem 284 33654-33661 (2009)
  12. Selective overexpression of human SIRT1 in adipose tissue enhances energy homeostasis and prevents the deterioration of insulin sensitivity with ageing in mice. Xu C, Bai B, Fan P, Cai Y, Huang B, Law IK, Liu L, Xu A, Tung C, Li X, Siu FM, Che CM, Vanhoutte PM, Wang Y. Am J Transl Res 5 412-426 (2013)
  13. Side chain specificity of ADP-ribosylation by a sirtuin. Fahie K, Hu P, Swatkoski S, Cotter RJ, Zhang Y, Wolberger C. FEBS J 276 7159-7176 (2009)
  14. Structure of Sir2Tm bound to a propionylated peptide. Bheda P, Wang JT, Escalante-Semerena JC, Wolberger C. Protein Sci 20 131-139 (2011)
  15. Evolved, Selective Erasers of Distinct Lysine Acylations. Spinck M, Neumann-Staubitz P, Ecke M, Gasper R, Neumann H. Angew Chem Int Ed Engl 59 11142-11149 (2020)
  16. Human SIRT1 Multispecificity Is Modulated by Active-Site Vicinity Substitutions during Natural Evolution. Hendler A, Akiva E, Sandhu M, Goldberg D, Arbely E, Jackson CJ, Aharoni A. Mol Biol Evol 38 545-556 (2021)


Reviews citing this publication (22)

  1. Sirtuin 1 and sirtuin 3: physiological modulators of metabolism. Nogueiras R, Habegger KM, Chaudhary N, Finan B, Banks AS, Dietrich MO, Horvath TL, Sinclair DA, Pfluger PT, Tschöp MH. Physiol Rev 92 1479-1514 (2012)
  2. Chemical mechanisms of histone lysine and arginine modifications. Smith BC, Denu JM. Biochim Biophys Acta 1789 45-57 (2009)
  3. Chemical probes for histone-modifying enzymes. Cole PA. Nat Chem Biol 4 590-597 (2008)
  4. Disulfides as redox switches: from molecular mechanisms to functional significance. Wouters MA, Fan SW, Haworth NL. Antioxid Redox Signal 12 53-91 (2010)
  5. Chemistry of acetyl transfer by histone modifying enzymes: structure, mechanism and implications for effector design. Hodawadekar SC, Marmorstein R. Oncogene 26 5528-5540 (2007)
  6. The Substrate Specificity of Sirtuins. Bheda P, Jing H, Wolberger C, Lin H. Annu Rev Biochem 85 405-429 (2016)
  7. Structural basis for sirtuin function: what we know and what we don't. Sanders BD, Jackson B, Marmorstein R. Biochim Biophys Acta 1804 1604-1616 (2010)
  8. Mechanisms and molecular probes of sirtuins. Smith BC, Hallows WC, Denu JM. Chem Biol 15 1002-1013 (2008)
  9. Compartmentation of NAD+-dependent signalling. Koch-Nolte F, Fischer S, Haag F, Ziegler M. FEBS Lett 585 1651-1656 (2011)
  10. Sirtuin chemical mechanisms. Sauve AA. Biochim Biophys Acta 1804 1591-1603 (2010)
  11. Sirtuin 1 (SIRT1): the misunderstood HDAC. Stünkel W, Campbell RM. J Biomol Screen 16 1153-1169 (2011)
  12. Structural basis for sirtuin activity and inhibition. Yuan H, Marmorstein R. J Biol Chem 287 42428-42435 (2012)
  13. The chemical biology of sirtuins. Chen B, Zang W, Wang J, Huang Y, He Y, Yan L, Liu J, Zheng W. Chem Soc Rev 44 5246-5264 (2015)
  14. The Current State of NAD+ -Dependent Histone Deacetylases (Sirtuins) as Novel Therapeutic Targets. Schiedel M, Robaa D, Rumpf T, Sippl W, Jung M. Med Res Rev 38 147-200 (2018)
  15. Emerging role of SIRT3 in endothelial metabolism, angiogenesis, and cardiovascular disease. He X, Zeng H, Chen JX. J Cell Physiol 234 2252-2265 (2019)
  16. Protein Acetylation in Bacteria. VanDrisse CM, Escalante-Semerena JC. Annu Rev Microbiol 73 111-132 (2019)
  17. Using mitochondrial sirtuins as drug targets: disease implications and available compounds. Gertz M, Steegborn C. Cell Mol Life Sci 73 2871-2896 (2016)
  18. Nicotinamide adenine dinucleotide: beyond a redox coenzyme. Lin H. Org Biomol Chem 5 2541-2554 (2007)
  19. The sirtuin family in health and disease. Wu QJ, Zhang TN, Chen HH, Yu XF, Lv JL, Liu YY, Liu YS, Zheng G, Zhao JQ, Wei YF, Guo JY, Liu FH, Chang Q, Zhang YX, Liu CG, Zhao YH. Signal Transduct Target Ther 7 402 (2022)
  20. Sirtuin mechanism and inhibition: explored with N(ε)-acetyl-lysine analogs. Hirsch BM, Zheng W. Mol Biosyst 7 16-28 (2011)
  21. The Pleiotropic Function of Human Sirtuins as Modulators of Metabolic Pathways and Viral Infections. Alqarni MH, Foudah AI, Muharram MM, Labrou NE. Cells 10 460 (2021)
  22. The Double-Edged Sword of SIRT3 in Cancer and Its Therapeutic Applications. Ouyang S, Zhang Q, Lou L, Zhu K, Li Z, Liu P, Zhang X. Front Pharmacol 13 871560 (2022)

Articles citing this publication (39)

  1. SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine. Jiang H, Khan S, Wang Y, Charron G, He B, Sebastian C, Du J, Kim R, Ge E, Mostoslavsky R, Hang HC, Hao Q, Lin H. Nature 496 110-113 (2013)
  2. The cAMP/PKA pathway rapidly activates SIRT1 to promote fatty acid oxidation independently of changes in NAD(+). Gerhart-Hines Z, Dominy JE, Blättler SM, Jedrychowski MP, Banks AS, Lim JH, Chim H, Gygi SP, Puigserver P. Mol Cell 44 851-863 (2011)
  3. The sirtuins hst3 and Hst4p preserve genome integrity by controlling histone h3 lysine 56 deacetylation. Celic I, Masumoto H, Griffith WP, Meluh P, Cotter RJ, Boeke JD, Verreault A. Curr Biol 16 1280-1289 (2006)
  4. A molecular mechanism for direct sirtuin activation by resveratrol. Gertz M, Nguyen GT, Fischer F, Suenkel B, Schlicker C, Fränzel B, Tomaschewski J, Aladini F, Becker C, Wolters D, Steegborn C. PLoS One 7 e49761 (2012)
  5. Structural basis of inhibition of the human NAD+-dependent deacetylase SIRT5 by suramin. Schuetz A, Min J, Antoshenko T, Wang CL, Allali-Hassani A, Dong A, Loppnau P, Vedadi M, Bochkarev A, Sternglanz R, Plotnikov AN. Structure 15 377-389 (2007)
  6. Structural and functional analysis of human SIRT1. Davenport AM, Huber FM, Hoelz A. J Mol Biol 426 526-541 (2014)
  7. Reversible N epsilon-lysine acetylation regulates the activity of acyl-CoA synthetases involved in anaerobic benzoate catabolism in Rhodopseudomonas palustris. Crosby HA, Heiniger EK, Harwood CS, Escalante-Semerena JC. Mol Microbiol 76 874-888 (2010)
  8. Crystal structure analysis of human Sirt2 and its ADP-ribose complex. Moniot S, Schutkowski M, Steegborn C. J Struct Biol 182 136-143 (2013)
  9. SIRT3 substrate specificity determined by peptide arrays and machine learning. Smith BC, Settles B, Hallows WC, Craven MW, Denu JM. ACS Chem Biol 6 146-157 (2011)
  10. Crystal structures of Sirt3 complexes with 4'-bromo-resveratrol reveal binding sites and inhibition mechanism. Nguyen GT, Gertz M, Steegborn C. Chem Biol 20 1375-1385 (2013)
  11. Structural basis for potent inhibition of SIRT2 deacetylase by a macrocyclic peptide inducing dynamic structural change. Yamagata K, Goto Y, Nishimasu H, Morimoto J, Ishitani R, Dohmae N, Takeda N, Nagai R, Komuro I, Suga H, Nureki O. Structure 22 345-352 (2014)
  12. SirT1 catalytic activity is required for male fertility and metabolic homeostasis in mice. Seifert EL, Caron AZ, Morin K, Coulombe J, He XH, Jardine K, Dewar-Darch D, Boekelheide K, Harper ME, McBurney MW. FASEB J 26 555-566 (2012)
  13. Structures, substrates, and regulators of Mammalian sirtuins - opportunities and challenges for drug development. Moniot S, Weyand M, Steegborn C. Front Pharmacol 3 16 (2012)
  14. Structures of human sirtuin 3 complexes with ADP-ribose and with carba-NAD+ and SRT1720: binding details and inhibition mechanism. Nguyen GT, Schaefer S, Gertz M, Weyand M, Steegborn C. Acta Crystallogr D Biol Crystallogr 69 1423-1432 (2013)
  15. Histone deacetylase modulators provided by Mother Nature. Seidel C, Schnekenburger M, Dicato M, Diederich M. Genes Nutr 7 357-367 (2012)
  16. Comprehensive structural classification of ligand-binding motifs in proteins. Kinjo AR, Nakamura H. Structure 17 234-246 (2009)
  17. SIRT2 and lysine fatty acylation regulate the transforming activity of K-Ras4a. Jing H, Zhang X, Wisner SA, Chen X, Spiegelman NA, Linder ME, Lin H. Elife 6 e32436 (2017)
  18. Plasmodium falciparum Sir2 is an NAD+-dependent deacetylase and an acetyllysine-dependent and acetyllysine-independent NAD+ glycohydrolase. French JB, Cen Y, Sauve AA. Biochemistry 47 10227-10239 (2008)
  19. CobB1 deacetylase activity in Streptomyces coelicolor. Mikulik K, Felsberg J, Kudrnáčová E, Bezoušková S, Setinová D, Stodůlková E, Zídková J, Zídek V. Biochem Cell Biol 90 179-187 (2012)
  20. Anti-Trypanosoma cruzi activity of nicotinamide. Soares MB, Silva CV, Bastos TM, Guimarães ET, Figueira CP, Smirlis D, Azevedo WF. Acta Trop 122 224-229 (2012)
  21. Biochemical characterization of Plasmodium falciparum Sir2, a NAD+-dependent deacetylase. Chakrabarty SP, Saikumari YK, Bopanna MP, Balaram H. Mol Biochem Parasitol 158 139-151 (2008)
  22. Transition state of ADP-ribosylation of acetyllysine catalyzed by Archaeoglobus fulgidus Sir2 determined by kinetic isotope effects and computational approaches. Cen Y, Sauve AA. J Am Chem Soc 132 12286-12298 (2010)
  23. Potent mechanism-based sirtuin-2-selective inhibition by an in situ-generated occupant of the substrate-binding site, "selectivity pocket" and NAD+-binding site. Mellini P, Itoh Y, Tsumoto H, Li Y, Suzuki M, Tokuda N, Kakizawa T, Miura Y, Takeuchi J, Lahtela-Kakkonen M, Suzuki T. Chem Sci 8 6400-6408 (2017)
  24. Structure of novel enzyme in mannan biodegradation process 4-O-β-D-mannosyl-D-glucose phosphorylase MGP. Nakae S, Ito S, Higa M, Senoura T, Wasaki J, Hijikata A, Shionyu M, Ito S, Shirai T. J Mol Biol 425 4468-4478 (2013)
  25. Deacylation Mechanism by SIRT2 Revealed in the 1'-SH-2'-O-Myristoyl Intermediate Structure. Wang Y, Fung YME, Zhang W, He B, Chung MWH, Jin J, Hu J, Lin H, Hao Q. Cell Chem Biol 24 339-345 (2017)
  26. Sirtuin Deacetylation Mechanism and Catalytic Role of the Dynamic Cofactor Binding Loop. Shi Y, Zhou Y, Wang S, Zhang Y. J Phys Chem Lett 4 491-495 (2013)
  27. Overexpression of cytoplasmic TcSIR2RP1 and mitochondrial TcSIR2RP3 impacts on Trypanosoma cruzi growth and cell invasion. Ritagliati C, Alonso VL, Manarin R, Cribb P, Serra EC. PLoS Negl Trop Dis 9 e0003725 (2015)
  28. Substrate specificity of SIRT1-catalyzed lysine Nepsilon-deacetylation reaction probed with the side chain modified Nepsilon-acetyl-lysine analogs. Jamonnak N, Hirsch BM, Pang Y, Zheng W. Bioorg Chem 38 17-25 (2010)
  29. Facile chemoenzymatic synthesis of a novel stable mimic of NAD. Dai Z, Zhang XN, Nasertorabi F, Cheng Q, Pei H, Louie SG, Stevens RC, Zhang Y. Chem Sci 9 8337-8342 (2018)
  30. Mechanism-based affinity capture of sirtuins. Cen Y, Falco JN, Xu P, Youn DY, Sauve AA. Org Biomol Chem 9 987-993 (2011)
  31. Insight into the Mechanism of Intramolecular Inhibition of the Catalytic Activity of Sirtuin 2 (SIRT2). Li J, Flick F, Verheugd P, Carloni P, Lüscher B, Rossetti G. PLoS One 10 e0139095 (2015)
  32. 3-(N-arylsulfamoyl)benzamides, inhibitors of human sirtuin type 2 (SIRT2). Choi SH, Quinti L, Kazantsev AG, Silverman RB. Bioorg Med Chem Lett 22 2789-2793 (2012)
  33. News Sirtuins caught in the act. Smith BC, Denu JM. Structure 14 1207-1208 (2006)
  34. The crystal structure of the Leishmania infantum Silent Information Regulator 2 related protein 1: Implications to protein function and drug design. Ronin C, Costa DM, Tavares J, Faria J, Ciesielski F, Ciapetti P, Smith TK, MacDougall J, Cordeiro-da-Silva A, Pemberton IK. PLoS One 13 e0193602 (2018)
  35. The effect of calorie restriction on growth and development in silkworm, Bombyx mori. Li Y, Chen K, Yao Q, Li J, Wang Y, Liu H, Zhang C, Huang G. Arch Insect Biochem Physiol 71 159-172 (2009)
  36. Identification of Inhibitors to Trypanosoma cruzi Sirtuins Based on Compounds Developed to Human Enzymes. Matutino Bastos T, Botelho Pereira Soares M, Haddad Franco C, Alcântara L, Antonini L, Sabatino M, Mautone N, Holanda Freitas-Junior L, Moraes CB, Ragno R, Rotili D, Schenkman S, Mai A, Silvio Moretti N. Int J Mol Sci 21 E3659 (2020)
  37. Probing the catalytic mechanism of bovine CD38/NAD+ glycohydrolase by site directed mutagenesis of key active site residues. Kuhn I, Kellenberger E, Cakir-Kiefer C, Muller-Steffner H, Schuber F. Biochim Biophys Acta 1844 1317-1331 (2014)
  38. Bivalent SIRT1 inhibitors. Wang J, Zang W, Liu J, Zheng W. Bioorg Med Chem Lett 27 180-186 (2017)
  39. Structural Basis of Sirtuin 6-Catalyzed Nucleosome Deacetylation. Wang ZA, Markert JW, Whedon SD, Yapa Abeywardana M, Lee K, Jiang H, Suarez C, Lin H, Farnung L, Cole PA. J Am Chem Soc 145 6811-6822 (2023)