2guo Citations

Structures of MART-126/27-35 Peptide/HLA-A2 complexes reveal a remarkable disconnect between antigen structural homology and T cell recognition.

J Mol Biol 372 1123-36 (2007)
Related entries: 2gt9, 2gtw, 2gtz

Cited: 70 times
EuropePMC logo PMID: 17719062

Abstract

Small structural changes in peptides presented by major histocompatibility complex (MHC) molecules often result in large changes in immunogenicity, supporting the notion that T cell receptors are exquisitely sensitive to antigen structure. Yet there are striking examples of TCR recognition of structurally dissimilar ligands. The resulting unpredictability of how T cells will respond to different or modified antigens impacts both our understanding of the physical bases for TCR specificity as well as efforts to engineer peptides for immunomodulation. In cancer immunotherapy, epitopes and variants derived from the MART-1/Melan-A protein are widely used as clinical vaccines. Two overlapping epitopes spanning amino acid residues 26 through 35 are of particular interest: numerous clinical studies have been performed using variants of the MART-1 26-35 decamer, although only the 27-35 nonamer has been found on the surface of targeted melanoma cells. Here, we show that the 26-35 and 27-35 peptides adopt strikingly different conformations when bound to HLA-A2. Nevertheless, clonally distinct MART-1(26/27-35)-reactive T cells show broad cross-reactivity towards these ligands. Simultaneously, however, many of the cross-reactive T cells remain unable to recognize anchor-modified variants with very subtle structural differences. These dichotomous observations challenge our thinking about how structural information on unligated peptide/MHC complexes should be best used when addressing questions of TCR specificity. Our findings also indicate that caution is warranted in the design of immunotherapeutics based on the MART-1 26/27-35 epitopes, as neither cross-reactivity nor selectivity is predictable based on the analysis of the structures alone.

Articles - 2guo mentioned but not cited (8)

  1. Structures of MART-126/27-35 Peptide/HLA-A2 complexes reveal a remarkable disconnect between antigen structural homology and T cell recognition. Borbulevych OY, Insaidoo FK, Baxter TK, Powell DJ, Johnson LA, Restifo NP, Baker BM. J Mol Biol 372 1123-1136 (2007)
  2. Constraints within major histocompatibility complex class I restricted peptides: presentation and consequences for T-cell recognition. Theodossis A, Guillonneau C, Welland A, Ely LK, Clements CS, Williamson NA, Webb AI, Wilce JA, Mulder RJ, Dunstone MA, Doherty PC, McCluskey J, Purcell AW, Turner SJ, Rossjohn J. Proc Natl Acad Sci U S A 107 5534-5539 (2010)
  3. Broad TCR repertoire and diverse structural solutions for recognition of an immunodominant CD8+ T cell epitope. Song I, Gil A, Mishra R, Ghersi D, Selin LK, Stern LJ. Nat Struct Mol Biol 24 395-406 (2017)
  4. Structure-function analysis of rotavirus NSP2 octamer by using a novel complementation system. Taraporewala ZF, Jiang X, Vasquez-Del Carpio R, Jayaram H, Prasad BV, Patton JT. J Virol 80 7984-7994 (2006)
  5. Prediction and identification of T cell epitopes in the H5N1 influenza virus nucleoprotein in chicken. Hou Y, Guo Y, Wu C, Shen N, Jiang Y, Wang J. PLoS One 7 e39344 (2012)
  6. Predicting HLA class I non-permissive amino acid residues substitutions. Binkowski TA, Marino SR, Joachimiak A. PLoS One 7 e41710 (2012)
  7. Changing the peptide specificity of a human T-cell receptor by directed evolution. Smith SN, Wang Y, Baylon JL, Singh NK, Baker BM, Tajkhorshid E, Kranz DM. Nat Commun 5 5223 (2014)
  8. Predicting peptide binding affinities to MHC molecules using a modified semi-empirical scoring function. Liao WW, Arthur JW. PLoS One 6 e25055 (2011)


Reviews citing this publication (9)

  1. T cell antigen receptor recognition of antigen-presenting molecules. Rossjohn J, Gras S, Miles JJ, Turner SJ, Godfrey DI, McCluskey J. Annu Rev Immunol 33 169-200 (2015)
  2. Conformational changes and flexibility in T-cell receptor recognition of peptide-MHC complexes. Armstrong KM, Piepenbrink KH, Baker BM. Biochem J 415 183-196 (2008)
  3. Structural and dynamic control of T-cell receptor specificity, cross-reactivity, and binding mechanism. Baker BM, Scott DR, Blevins SJ, Hawse WF. Immunol Rev 250 10-31 (2012)
  4. Thermodynamics of T-cell receptor-peptide/MHC interactions: progress and opportunities. Armstrong KM, Insaidoo FK, Baker BM. J Mol Recognit 21 275-287 (2008)
  5. Emerging Concepts in TCR Specificity: Rationalizing and (Maybe) Predicting Outcomes. Singh NK, Riley TP, Baker SCB, Borrman T, Weng Z, Baker BM. J Immunol 199 2203-2213 (2017)
  6. The structural bases of direct T-cell allorecognition: implications for T-cell-mediated transplant rejection. Gras S, Kjer-Nielsen L, Chen Z, Rossjohn J, McCluskey J. Immunol Cell Biol 89 388-395 (2011)
  7. Improving T cell responses to modified peptides in tumor vaccines. Buhrman JD, Slansky JE. Immunol Res 55 34-47 (2013)
  8. Peptide and Peptide-Dependent Motions in MHC Proteins: Immunological Implications and Biophysical Underpinnings. Ayres CM, Corcelli SA, Baker BM. Front Immunol 8 935 (2017)
  9. Peptide mimotopes alter T cell function in cancer and autoimmunity. Slansky JE, Nakayama M. Semin Immunol 47 101395 (2020)

Articles citing this publication (53)

  1. Genomic and bioinformatic profiling of mutational neoepitopes reveals new rules to predict anticancer immunogenicity. Duan F, Duitama J, Al Seesi S, Ayres CM, Corcelli SA, Pawashe AP, Blanchard T, McMahon D, Sidney J, Sette A, Baker BM, Mandoiu II, Srivastava PK. J Exp Med 211 2231-2248 (2014)
  2. Germ line-governed recognition of a cancer epitope by an immunodominant human T-cell receptor. Cole DK, Yuan F, Rizkallah PJ, Miles JJ, Gostick E, Price DA, Gao GF, Jakobsen BK, Sewell AK. J Biol Chem 284 27281-27289 (2009)
  3. TCRs used in cancer gene therapy cross-react with MART-1/Melan-A tumor antigens via distinct mechanisms. Borbulevych OY, Santhanagopolan SM, Hossain M, Baker BM. J Immunol 187 2453-2463 (2011)
  4. Modification of MHC anchor residues generates heteroclitic peptides that alter TCR binding and T cell recognition. Cole DK, Edwards ES, Wynn KK, Clement M, Miles JJ, Ladell K, Ekeruche J, Gostick E, Adams KJ, Skowera A, Peakman M, Wooldridge L, Price DA, Sewell AK. J Immunol 185 2600-2610 (2010)
  5. Computational design of the affinity and specificity of a therapeutic T cell receptor. Pierce BG, Hellman LM, Hossain M, Singh NK, Vander Kooi CW, Weng Z, Baker BM. PLoS Comput Biol 10 e1003478 (2014)
  6. Conformational melding permits a conserved binding geometry in TCR recognition of foreign and self molecular mimics. Borbulevych OY, Piepenbrink KH, Baker BM. J Immunol 186 2950-2958 (2011)
  7. A flexible docking approach for prediction of T cell receptor-peptide-MHC complexes. Pierce BG, Weng Z. Protein Sci 22 35-46 (2013)
  8. Structural basis for ineffective T-cell responses to MHC anchor residue-improved "heteroclitic" peptides. Madura F, Rizkallah PJ, Holland CJ, Fuller A, Bulek A, Godkin AJ, Schauenburg AJ, Cole DK, Sewell AK. Eur J Immunol 45 584-591 (2015)
  9. T cell receptor cross-reactivity expanded by dramatic peptide-MHC adaptability. Riley TP, Hellman LM, Gee MH, Mendoza JL, Alonso JA, Foley KC, Nishimura MI, Vander Kooi CW, Garcia KC, Baker BM. Nat Chem Biol 14 934-942 (2018)
  10. Loss of T cell antigen recognition arising from changes in peptide and major histocompatibility complex protein flexibility: implications for vaccine design. Insaidoo FK, Borbulevych OY, Hossain M, Santhanagopolan SM, Baxter TK, Baker BM. J Biol Chem 286 40163-40173 (2011)
  11. Structure Based Prediction of Neoantigen Immunogenicity. Riley TP, Keller GLJ, Smith AR, Davancaze LM, Arbuiso AG, Devlin JR, Baker BM. Front Immunol 10 2047 (2019)
  12. Re-Directing CD4(+) T Cell Responses with the Flanking Residues of MHC Class II-Bound Peptides: The Core is Not Enough. Holland CJ, Cole DK, Godkin A. Front Immunol 4 172 (2013)
  13. T-cell receptor-optimized peptide skewing of the T-cell repertoire can enhance antigen targeting. Ekeruche-Makinde J, Clement M, Cole DK, Edwards ES, Ladell K, Miles JJ, Matthews KK, Fuller A, Lloyd KA, Madura F, Dolton GM, Pentier J, Lissina A, Gostick E, Baxter TK, Baker BM, Rizkallah PJ, Price DA, Wooldridge L, Sewell AK. J Biol Chem 287 37269-37281 (2012)
  14. Differential scanning fluorimetry based assessments of the thermal and kinetic stability of peptide-MHC complexes. Hellman LM, Yin L, Wang Y, Blevins SJ, Riley TP, Belden OS, Spear TT, Nishimura MI, Stern LJ, Baker BM. J Immunol Methods 432 95-101 (2016)
  15. T-cell receptor specificity maintained by altered thermodynamics. Madura F, Rizkallah PJ, Miles KM, Holland CJ, Bulek AM, Fuller A, Schauenburg AJ, Miles JJ, Liddy N, Sami M, Li Y, Hossain M, Baker BM, Jakobsen BK, Sewell AK, Cole DK. J Biol Chem 288 18766-18775 (2013)
  16. How an alloreactive T-cell receptor achieves peptide and MHC specificity. Wang Y, Singh NK, Spear TT, Hellman LM, Piepenbrink KH, McMahan RH, Rosen HR, Vander Kooi CW, Nishimura MI, Baker BM. Proc Natl Acad Sci U S A 114 E4792-E4801 (2017)
  17. DockTope: a Web-based tool for automated pMHC-I modelling. Rigo MM, Antunes DA, Vaz de Freitas M, Fabiano de Almeida Mendes M, Meira L, Sinigaglia M, Vieira GF. Sci Rep 5 18413 (2015)
  18. Specific increase in potency via structure-based design of a TCR. Malecek K, Grigoryan A, Zhong S, Gu WJ, Johnson LA, Rosenberg SA, Cardozo T, Krogsgaard M. J Immunol 193 2587-2599 (2014)
  19. How T cell receptors interact with peptide-MHCs: a multiple steered molecular dynamics study. Cuendet MA, Zoete V, Michielin O. Proteins 79 3007-3024 (2011)
  20. Distortion of the Major Histocompatibility Complex Class I Binding Groove to Accommodate an Insulin-derived 10-Mer Peptide. Motozono C, Pearson JA, De Leenheer E, Rizkallah PJ, Beck K, Trimby A, Sewell AK, Wong FS, Cole DK. J Biol Chem 290 18924-18933 (2015)
  21. T-cell promiscuity in autoimmune diabetes. Li L, Wang B, Frelinger JA, Tisch R. Diabetes 57 2099-2106 (2008)
  22. MHC-class I-restricted CD4 T cells: a nanomolar affinity TCR has improved anti-tumor efficacy in vivo compared to the micromolar wild-type TCR. Soto CM, Stone JD, Chervin AS, Engels B, Schreiber H, Roy EJ, Kranz DM. Cancer Immunol Immunother 62 359-369 (2013)
  23. Structures of native and affinity-enhanced WT1 epitopes bound to HLA-A*0201: implications for WT1-based cancer therapeutics. Borbulevych OY, Do P, Baker BM. Mol Immunol 47 2519-2524 (2010)
  24. Dynamically Driven Allostery in MHC Proteins: Peptide-Dependent Tuning of Class I MHC Global Flexibility. Ayres CM, Abualrous ET, Bailey A, Abraham C, Hellman LM, Corcelli SA, Noé F, Elliott T, Baker BM. Front Immunol 10 966 (2019)
  25. Proline substitution independently enhances H-2D(b) complex stabilization and TCR recognition of melanoma-associated peptides. Uchtenhagen H, Abualrous ET, Stahl E, Allerbring EB, Sluijter M, Zacharias M, Sandalova T, van Hall T, Springer S, Nygren PÅ, Achour A. Eur J Immunol 43 3051-3060 (2013)
  26. Analysis of relationships between peptide/MHC structural features and naive T cell frequency in humans. Reiser JB, Legoux F, Gras S, Trudel E, Chouquet A, Léger A, Le Gorrec M, Machillot P, Bonneville M, Saulquin X, Housset D. J Immunol 193 5816-5826 (2014)
  27. Cancer Neoepitopes for Immunotherapy: Discordance Between Tumor-Infiltrating T Cell Reactivity and Tumor MHC Peptidome Display. Wickström SL, Lövgren T, Volkmar M, Reinhold B, Duke-Cohan JS, Hartmann L, Rebmann J, Mueller A, Melief J, Maas R, Ligtenberg M, Hansson J, Offringa R, Seliger B, Poschke I, Reinherz EL, Kiessling R. Front Immunol 10 2766 (2019)
  28. TCR-induced alteration of primary MHC peptide anchor residue. Madura F, Rizkallah PJ, Legut M, Holland CJ, Fuller A, Bulek A, Schauenburg AJ, Trimby A, Hopkins JR, Wells SA, Godkin A, Miles JJ, Sami M, Li Y, Liddy N, Jakobsen BK, Loveridge EJ, Cole DK, Sewell AK. Eur J Immunol 49 1052-1066 (2019)
  29. Structural allele-specific patterns adopted by epitopes in the MHC-I cleft and reconstruction of MHC:peptide complexes to cross-reactivity assessment. Antunes DA, Vieira GF, Rigo MM, Cibulski SP, Sinigaglia M, Chies JA. PLoS One 5 e10353 (2010)
  30. Structure-based design of altered MHC class II-restricted peptide ligands with heterogeneous immunogenicity. Chen S, Li Y, Depontieu FR, McMiller TL, English AM, Shabanowitz J, Kos F, Sidney J, Sette A, Rosenberg SA, Hunt DF, Mariuzza RA, Topalian SL. J Immunol 191 5097-5106 (2013)
  31. HLA-Arena: A Customizable Environment for the Structural Modeling and Analysis of Peptide-HLA Complexes for Cancer Immunotherapy. Antunes DA, Abella JR, Hall-Swan S, Devaurs D, Conev A, Moll M, Lizée G, Kavraki LE. JCO Clin Cancer Inform 4 623-636 (2020)
  32. A general and efficient approach for NMR studies of peptide dynamics in class I MHC peptide binding grooves. Insaidoo FK, Zajicek J, Baker BM. Biochemistry 48 9708-9710 (2009)
  33. Chemical Modification of Influenza CD8+ T-Cell Epitopes Enhances Their Immunogenicity Regardless of Immunodominance. Rosendahl Huber SK, Luimstra JJ, van Beek J, Hoppes R, Jacobi RH, Hendriks M, Kapteijn K, Ouwerkerk C, Rodenko B, Ovaa H, de Jonge J. PLoS One 11 e0156462 (2016)
  34. Deciphering the unusual HLA-A2/Melan-A/MART-1-specific TCR repertoire in humans. Romero P, Speiser DE, Rufer N. Eur J Immunol 44 2567-2570 (2014)
  35. Structurally silent peptide anchor modifications allosterically modulate T cell recognition in a receptor-dependent manner. Smith AR, Alonso JA, Ayres CM, Singh NK, Hellman LM, Baker BM. Proc Natl Acad Sci U S A 118 e2018125118 (2021)
  36. Conditional superagonist CTL ligands for the promotion of tumor-specific CTL responses. Abdul-Alim CS, Li Y, Yee C. J Immunol 184 6514-6521 (2010)
  37. Crystal structures of HLA-A*0201 complexed with Melan-A/MART-1(26(27L)-35) peptidomimetics reveal conformational heterogeneity and highlight degeneracy of T cell recognition. Douat-Casassus C, Borbulevych O, Tarbe M, Gervois N, Jotereau F, Baker BM, Quideau S. J Med Chem 53 7061-7066 (2010)
  38. The Immunogenicity of a Proline-Substituted Altered Peptide Ligand toward the Cancer-Associated TEIPP Neoepitope Trh4 Is Unrelated to Complex Stability. Hafstrand I, Doorduijn EM, Sun R, Talyzina A, Sluijter M, Pellegrino S, Sandalova T, Duru AD, van Hall T, Achour A. J Immunol 200 2860-2868 (2018)
  39. Modeling Sequence-Dependent Peptide Fluctuations in Immunologic Recognition. Ayres CM, Riley TP, Corcelli SA, Baker BM. J Chem Inf Model 57 1990-1998 (2017)
  40. Phlebotomus papatasi SP15: mRNA expression variability and amino acid sequence polymorphisms of field populations. Ramalho-Ortigão M, Coutinho-Abreu IV, Balbino VQ, Figueiredo CA, Mukbel R, Dayem H, Hanafi HA, El-Hossary SS, Fawaz Eel-D, Abo-Shehada M, Hoel DF, Stayback G, Wadsworth M, Shoue DA, Abrudan J, Lobo NF, Mahon AR, Emrich SJ, Kamhawi S, Collins FH, McDowell MA. Parasit Vectors 8 298 (2015)
  41. T-cell receptors: tugging on the anchor for a tighter hold on the tumor-associated peptide. Dyson J. Eur J Immunol 45 380-382 (2015)
  42. CD8 T-cell responses against the immunodominant Theileria parva peptide Tp249-59 are composed of two distinct populations specific for overlapping 11-mer and 10-mer epitopes. Connelley TK, Li X, MacHugh N, Colau D, Graham SP, van der Bruggen P, Taracha EL, Gill A, Morrison WI. Immunology 149 172-185 (2016)
  43. Overlapping Peptides Elicit Distinct CD8+ T Cell Responses following Influenza A Virus Infection. Assmus LM, Guan J, Wu T, Farenc C, Sng XYX, Zareie P, Nguyen A, Nguyen AT, Tscharke DC, Thomas PG, Rossjohn J, Gras S, Croft NP, Purcell AW, La Gruta NL. J Immunol 205 1731-1742 (2020)
  44. Sequence homology between HLA-bound cytomegalovirus and human peptides: A potential trigger for alloreactivity. Hall CE, Koparde VN, Jameson-Lee M, Elnasseh AG, Scalora AF, Kobulnicky DJ, Serrano MG, Roberts CH, Buck GA, Neale MC, Nixon DE, Toor AA. PLoS One 12 e0178763 (2017)
  45. Amino-terminal extended peptide single-chain trimers are potent synthetic agonists for memory human CD8+ T cells. Carreno BM, Becker-Hapak M, Chan M, Lie WR, Wang X, Hansen TH, Linette GP. J Immunol 188 5839-5849 (2012)
  46. Design, synthesis and evaluation of β-lactam antigenic peptide hybrids; unusual opening of the β-lactam ring in acidic media. Tarbe M, Azcune I, Balentová E, Miles JJ, Edwards EE, Miles KM, Do P, Baker BM, Sewell AK, Aizpurua JM, Douat-Casassus C, Quideau S. Org Biomol Chem 8 5345-5353 (2010)
  47. Synthesis and Biological Evaluation of Hapten-Clicked Analogues of The Antigenic Peptide Melan-A/MART-126(27L)-35. Tarbe M, Miles JJ, Edwards ESJ, Miles KM, Sewell AK, Baker BM, Quideau S. ChemMedChem 15 799-807 (2020)
  48. A Novel Cell-based Luciferase Reporter Platform for the Development and Characterization of T-Cell Redirecting Therapies and Vaccine Development. Grailer J, Cheng ZJ, Hartnett J, Slater M, Fan F, Cong M. J Immunother 46 96-106 (2023)
  49. Immunosurveillance shapes the emergence of neo-epitope landscapes of sarcomas, revealing prime targets for immunotherapy. Osei-Hwedieh DO, Sedlacek AL, Hernandez LM, Yamoah AA, Iyer SG, Weiss KR, Binder RJ. JCI Insight 8 e170324 (2023)
  50. Physicochemical Heuristics for Identifying High Fidelity, Near-Native Structural Models of Peptide/MHC Complexes. Keller GLJ, Weiss LI, Baker BM. Front Immunol 13 887759 (2022)
  51. Structural and physical features that distinguish tumor-controlling from inactive cancer neoepitopes. Custodio JM, Ayres CM, Rosales TJ, Brambley CA, Arbuiso AG, Landau LM, Keller GLJ, Srivastava PK, Baker BM. Proc Natl Acad Sci U S A 120 e2312057120 (2023)
  52. Usefulness of Docking and Molecular Dynamics in Selecting Tumor Neoantigens to Design Personalized Cancer Vaccines: A Proof of Concept. Amaya-Ramirez D, Martinez-Enriquez LC, Parra-López C. Vaccines (Basel) 11 1174 (2023)
  53. l- to d-Amino Acid Substitution in the Immunodominant LCMV-Derived Epitope gp33 Highlights the Sensitivity of the TCR Recognition Mechanism for the MHC/Peptide Structure and Dynamics. Ballabio F, Broggini L, Paissoni C, Han X, Peqini K, Sala BM, Sun R, Sandalova T, Barbiroli A, Achour A, Pellegrino S, Ricagno S, Camilloni C. ACS Omega 7 9622-9635 (2022)