2grp Citations

Lysine activation and functional analysis of E2-mediated conjugation in the SUMO pathway.

Nat Struct Mol Biol 13 491-9 (2006)
Related entries: 2grn, 2gro, 2grq, 2grr

Cited: 134 times
EuropePMC logo PMID: 16732283

Abstract

E2 conjugating proteins that transfer ubiquitin and ubiquitin-like modifiers to substrate lysine residues must first activate the lysine nucleophile for conjugation. Genetic complementation revealed three side chains of the E2 Ubc9 that were crucial for normal growth. Kinetic analysis revealed modest binding defects but substantially lowered catalytic rates for these mutant alleles with respect to wild-type Ubc9. X-ray structures for wild-type and mutant human Ubc9-RanGAP1 complexes showed partial loss of contacts to the substrate lysine in mutant complexes. Computational analysis predicted pK perturbations for the substrate lysine, and Ubc9 mutations weakened pK suppression through improper side chain coordination. Biochemical studies with p53, RanGAP1 and the Nup358/RanBP2 E3 were used to determine rate constants and pK values, confirming both structural and computational predictions. It seems that Ubc9 uses an indirect mechanism to activate lysine for conjugation that may be conserved among E2 family members.

Reviews citing this publication (37)

  1. The ubiquitin code. Komander D, Rape M. Annu Rev Biochem 81 203-229 (2012)
  2. The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Gareau JR, Lima CD. Nat Rev Mol Cell Biol 11 861-871 (2010)
  3. Ubiquitin Ligases: Structure, Function, and Regulation. Zheng N, Shabek N. Annu Rev Biochem 86 129-157 (2017)
  4. New insights into ubiquitin E3 ligase mechanism. Berndsen CE, Wolberger C. Nat Struct Mol Biol 21 301-307 (2014)
  5. Protein neddylation: beyond cullin-RING ligases. Enchev RI, Schulman BA, Peter M. Nat Rev Mol Cell Biol 16 30-44 (2015)
  6. Structural insights into the catalysis and regulation of E3 ubiquitin ligases. Buetow L, Huang DT. Nat Rev Mol Cell Biol 17 626-642 (2016)
  7. E2 enzymes: more than just middle men. Stewart MD, Ritterhoff T, Klevit RE, Brzovic PS. Cell Res 26 423-440 (2016)
  8. Ubiquitin-like Protein Conjugation: Structures, Chemistry, and Mechanism. Cappadocia L, Lima CD. Chem Rev 118 889-918 (2018)
  9. Perilous journey: a tour of the ubiquitin-proteasome system. Kleiger G, Mayor T. Trends Cell Biol 24 352-359 (2014)
  10. E2s: structurally economical and functionally replete. Wenzel DM, Stoll KE, Klevit RE. Biochem J 433 31-42 (2011)
  11. Protein monoubiquitination and polyubiquitination generate structural diversity to control distinct biological processes. Sadowski M, Suryadinata R, Tan AR, Roesley SN, Sarcevic B. IUBMB Life 64 136-142 (2012)
  12. K11-linked ubiquitin chains as novel regulators of cell division. Wickliffe KE, Williamson A, Meyer HJ, Kelly A, Rape M. Trends Cell Biol 21 656-663 (2011)
  13. Structural and functional insights to ubiquitin-like protein conjugation. Streich FC, Lima CD. Annu Rev Biophys 43 357-379 (2014)
  14. SUMOylation and deSUMOylation at a glance. Wang Y, Dasso M. J Cell Sci 122 4249-4252 (2009)
  15. Taking it step by step: mechanistic insights from structural studies of ubiquitin/ubiquitin-like protein modification pathways. Capili AD, Lima CD. Curr Opin Struct Biol 17 726-735 (2007)
  16. Structure, function and mechanism of the anaphase promoting complex (APC/C). Barford D. Q Rev Biophys 44 153-190 (2011)
  17. Structural mechanisms of HECT-type ubiquitin ligases. Lorenz S. Biol Chem 399 127-145 (2018)
  18. Unraveling the complexity of ubiquitin signaling. Strieter ER, Korasick DA. ACS Chem Biol 7 52-63 (2012)
  19. Macromolecular juggling by ubiquitylation enzymes. Lorenz S, Cantor AJ, Rape M, Kuriyan J. BMC Biol 11 65 (2013)
  20. Cellular strategies for making monoubiquitin signals. Ramanathan HN, Ye Y. Crit Rev Biochem Mol Biol 47 17-28 (2012)
  21. A broad view of scaffolding suggests that scaffolding proteins can actively control regulation and signaling of multienzyme complexes through allostery. Nussinov R, Ma B, Tsai CJ. Biochim Biophys Acta 1834 820-829 (2013)
  22. Specificity and disease in the ubiquitin system. Chaugule VK, Walden H. Biochem Soc Trans 44 212-227 (2016)
  23. Purification of SUMO conjugating enzymes and kinetic analysis of substrate conjugation. Yunus AA, Lima CD. Methods Mol Biol 497 167-186 (2009)
  24. Arylfluorosulfate-Based Electrophiles for Covalent Protein Labeling: A New Addition to the Arsenal. Martín-Gago P, Olsen CA. Angew Chem Int Ed Engl 58 957-966 (2019)
  25. Targeting the ubiquitin-proteasome system to activate wild-type p53 for cancer therapy. Allende-Vega N, Saville MK. Semin Cancer Biol 20 29-39 (2010)
  26. Protein SUMOylation in neuropathological conditions. Anderson DB, Wilkinson KA, Henley JM. Drug News Perspect 22 255-265 (2009)
  27. Protein Engineering in the Ubiquitin System: Tools for Discovery and Beyond. Zhao B, Tsai YC, Jin B, Wang B, Wang Y, Zhou H, Carpenter T, Weissman AM, Yin J. Pharmacol Rev 72 380-413 (2020)
  28. Decrypting UFMylation: How Proteins Are Modified with UFM1. Banerjee S, Kumar M, Wiener R. Biomolecules 10 E1442 (2020)
  29. Mechanisms of ubiquitin transfer by the anaphase-promoting complex. Matyskiela ME, Rodrigo-Brenni MC, Morgan DO. J Biol 8 92 (2009)
  30. Binding Features and Functions of ATG3. Fang D, Xie H, Hu T, Shan H, Li M. Front Cell Dev Biol 9 685625 (2021)
  31. Molecular Basis for K63-Linked Ubiquitination Processes in Double-Strand DNA Break Repair: A Focus on Kinetics and Dynamics. Lee BL, Singh A, Mark Glover JN, Hendzel MJ, Spyracopoulos L. J Mol Biol 429 3409-3429 (2017)
  32. A new dawn beyond lysine ubiquitination. Squair DR, Virdee S. Nat Chem Biol 18 802-811 (2022)
  33. Non-lysine ubiquitylation: Doing things differently. Kelsall IR. Front Mol Biosci 9 1008175 (2022)
  34. An Insight into the Factors Influencing Specificity of the SUMO System in Plants. Srivastava M, Sadanandom A. Plants (Basel) 9 E1788 (2020)
  35. Using protein motion to read, write, and erase ubiquitin signals. Phillips AH, Corn JE. J Biol Chem 290 26437-26444 (2015)
  36. SUMO conjugating enzyme: a vital player of SUMO pathway in plants. Ghimire S, Tang X, Liu W, Fu X, Zhang H, Zhang N, Si H. Physiol Mol Biol Plants 27 2421-2431 (2021)
  37. The converging path of protein SUMOylation in phytohormone signalling: highlights and new frontiers. Srivastava M, Verma V, Srivastava AK. Plant Cell Rep 40 2047-2061 (2021)

Articles citing this publication (97)

  1. Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Jin L, Williamson A, Banerjee S, Philipp I, Rape M. Cell 133 653-665 (2008)
  2. Structure of a RING E3 ligase and ubiquitin-loaded E2 primed for catalysis. Plechanovová A, Jaffray EG, Tatham MH, Naismith JH, Hay RT. Nature 489 115-120 (2012)
  3. UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids. Wenzel DM, Lissounov A, Brzovic PS, Klevit RE. Nature 474 105-108 (2011)
  4. BIRC7-E2 ubiquitin conjugate structure reveals the mechanism of ubiquitin transfer by a RING dimer. Dou H, Buetow L, Sibbet GJ, Cameron K, Huang DT. Nat Struct Mol Biol 19 876-883 (2012)
  5. The mechanism of linkage-specific ubiquitin chain elongation by a single-subunit E2. Wickliffe KE, Lorenz S, Wemmer DE, Kuriyan J, Rape M. Cell 144 769-781 (2011)
  6. Insights into ubiquitin transfer cascades from a structure of a UbcH5B approximately ubiquitin-HECT(NEDD4L) complex. Kamadurai HB, Kamadurai HB, Souphron J, Scott DC, Duda DM, Miller DJ, Stringer D, Piper RC, Schulman BA. Mol Cell 36 1095-1102 (2009)
  7. Structural mechanisms underlying posttranslational modification by ubiquitin-like proteins. Dye BT, Schulman BA. Annu Rev Biophys Biomol Struct 36 131-150 (2007)
  8. An allosteric inhibitor of the human Cdc34 ubiquitin-conjugating enzyme. Ceccarelli DF, Tang X, Pelletier B, Orlicky S, Xie W, Plantevin V, Neculai D, Chou YC, Ogunjimi A, Al-Hakim A, Varelas X, Koszela J, Wasney GA, Vedadi M, Dhe-Paganon S, Cox S, Xu S, Lopez-Girona A, Mercurio F, Wrana J, Durocher D, Meloche S, Webb DR, Tyers M, Sicheri F. Cell 145 1075-1087 (2011)
  9. Active site remodelling accompanies thioester bond formation in the SUMO E1. Olsen SK, Capili AD, Lu X, Tan DS, Lima CD. Nature 463 906-912 (2010)
  10. Structural basis for ligase-specific conjugation of linear ubiquitin chains by HOIP. Stieglitz B, Rana RR, Koliopoulos MG, Morris-Davies AC, Schaeffer V, Christodoulou E, Howell S, Brown NR, Dikic I, Rittinger K. Nature 503 422-426 (2013)
  11. Structure of a RING E3 trapped in action reveals ligation mechanism for the ubiquitin-like protein NEDD8. Scott DC, Sviderskiy VO, Monda JK, Lydeard JR, Cho SE, Harper JW, Schulman BA. Cell 157 1671-1684 (2014)
  12. NEDD8 nucleates a multivalent cullin-RING-UBE2D ubiquitin ligation assembly. Baek K, Krist DT, Prabu JR, Hill S, Klügel M, Neumaier LM, von Gronau S, Kleiger G, Schulman BA. Nature 578 461-466 (2020)
  13. Activity-based E3 ligase profiling uncovers an E3 ligase with esterification activity. Pao KC, Wood NT, Knebel A, Rafie K, Stanley M, Mabbitt PD, Sundaramoorthy R, Hofmann K, van Aalten DMF, Virdee S. Nature 556 381-385 (2018)
  14. Atg12-Atg5 conjugate enhances E2 activity of Atg3 by rearranging its catalytic site. Sakoh-Nakatogawa M, Matoba K, Asai E, Kirisako H, Ishii J, Noda NN, Inagaki F, Nakatogawa H, Ohsumi Y. Nat Struct Mol Biol 20 433-439 (2013)
  15. Structure and analysis of a complex between SUMO and Ubc9 illustrates features of a conserved E2-Ubl interaction. Capili AD, Lima CD. J Mol Biol 369 608-618 (2007)
  16. Chemo- and Regioselective Lysine Modification on Native Proteins. Matos MJ, Oliveira BL, Martínez-Sáez N, Guerreiro A, Cal PMSD, Bertoldo J, Maneiro M, Perkins E, Howard J, Deery MJ, Chalker JM, Corzana F, Jiménez-Osés G, Bernardes GJL. J Am Chem Soc 140 4004-4017 (2018)
  17. Arabidopsis small ubiquitin-like modifier paralogs have distinct functions in development and defense. van den Burg HA, Kini RK, Schuurink RC, Takken FL. Plant Cell 22 1998-2016 (2010)
  18. Structure of a ubiquitin E1-E2 complex: insights to E1-E2 thioester transfer. Olsen SK, Lima CD. Mol Cell 49 884-896 (2013)
  19. Essential role for ubiquitin-ubiquitin-conjugating enzyme interaction in ubiquitin discharge from Cdc34 to substrate. Saha A, Lewis S, Kleiger G, Kuhlman B, Deshaies RJ. Mol Cell 42 75-83 (2011)
  20. Structural basis for SENP2 protease interactions with SUMO precursors and conjugated substrates. Reverter D, Lima CD. Nat Struct Mol Biol 13 1060-1068 (2006)
  21. Structure of the Siz/PIAS SUMO E3 ligase Siz1 and determinants required for SUMO modification of PCNA. Yunus AA, Lima CD. Mol Cell 35 669-682 (2009)
  22. Essentiality of a non-RING element in priming donor ubiquitin for catalysis by a monomeric E3. Dou H, Buetow L, Sibbet GJ, Cameron K, Huang DT. Nat Struct Mol Biol 20 982-986 (2013)
  23. The unique N terminus of the UbcH10 E2 enzyme controls the threshold for APC activation and enhances checkpoint regulation of the APC. Summers MK, Pan B, Mukhyala K, Jackson PK. Mol Cell 31 544-556 (2008)
  24. Activation of a primed RING E3-E2-ubiquitin complex by non-covalent ubiquitin. Buetow L, Gabrielsen M, Anthony NG, Dou H, Patel A, Aitkenhead H, Sibbet GJ, Smith BO, Huang DT. Mol Cell 58 297-310 (2015)
  25. A human ubiquitin conjugating enzyme (E2)-HECT E3 ligase structure-function screen. Sheng Y, Hong JH, Doherty R, Srikumar T, Shloush J, Avvakumov GV, Walker JR, Xue S, Neculai D, Wan JW, Kim SK, Arrowsmith CH, Raught B, Dhe-Paganon S. Mol Cell Proteomics 11 329-341 (2012)
  26. Structural basis for the RING-catalyzed synthesis of K63-linked ubiquitin chains. Branigan E, Plechanovová A, Jaffray EG, Naismith JH, Hay RT. Nat Struct Mol Biol 22 597-602 (2015)
  27. Crystal structure of UbcH5b~ubiquitin intermediate: insight into the formation of the self-assembled E2~Ub conjugates. Sakata E, Satoh T, Yamamoto S, Yamaguchi Y, Yagi-Utsumi M, Kurimoto E, Tanaka K, Wakatsuki S, Kato K. Structure 18 138-147 (2010)
  28. Catalysis of lysine 48-specific ubiquitin chain assembly by residues in E2 and ubiquitin. Rodrigo-Brenni MC, Foster SA, Morgan DO. Mol Cell 39 548-559 (2010)
  29. Anatomy of the E2 ligase fold: implications for enzymology and evolution of ubiquitin/Ub-like protein conjugation. Burroughs AM, Jaffee M, Iyer LM, Aravind L. J Struct Biol 162 205-218 (2008)
  30. research-article Mechanisms of mono- and poly-ubiquitination: Ubiquitination specificity depends on compatibility between the E2 catalytic core and amino acid residues proximal to the lysine. Sadowski M, Sarcevic B. Cell Div 5 19 (2010)
  31. The ubiquitin-conjugating enzyme (E2) Ube2w ubiquitinates the N terminus of substrates. Scaglione KM, Basrur V, Ashraf NS, Konen JR, Elenitoba-Johnson KS, Todi SV, Paulson HL. J Biol Chem 288 18784-18788 (2013)
  32. Capturing a substrate in an activated RING E3/E2-SUMO complex. Streich FC, Lima CD. Nature 536 304-308 (2016)
  33. A molecular basis for phosphorylation-dependent SUMO conjugation by the E2 UBC9. Mohideen F, Capili AD, Bilimoria PM, Yamada T, Bonni A, Lima CD. Nat Struct Mol Biol 16 945-952 (2009)
  34. Determinants of small ubiquitin-like modifier 1 (SUMO1) protein specificity, E3 ligase, and SUMO-RanGAP1 binding activities of nucleoporin RanBP2. Gareau JR, Reverter D, Lima CD. J Biol Chem 287 4740-4751 (2012)
  35. Structural insights into Atg10-mediated formation of the autophagy-essential Atg12-Atg5 conjugate. Yamaguchi M, Noda NN, Yamamoto H, Shima T, Kumeta H, Kobashigawa Y, Akada R, Ohsumi Y, Inagaki F. Structure 20 1244-1254 (2012)
  36. The performance of ZDOCK and ZRANK in rounds 6-11 of CAPRI. Wiehe K, Pierce B, Tong WW, Hwang H, Mintseris J, Weng Z. Proteins 69 719-725 (2007)
  37. Structure of a SUMO-binding-motif mimic bound to Smt3p-Ubc9p: conservation of a non-covalent ubiquitin-like protein-E2 complex as a platform for selective interactions within a SUMO pathway. Duda DM, van Waardenburg RC, Borg LA, McGarity S, Nourse A, Waddell MB, Bjornsti MA, Schulman BA. J Mol Biol 369 619-630 (2007)
  38. A conserved asparagine has a structural role in ubiquitin-conjugating enzymes. Berndsen CE, Wiener R, Yu IW, Ringel AE, Wolberger C. Nat Chem Biol 9 154-156 (2013)
  39. E2~Ub conjugates regulate the kinase activity of Shigella effector OspG during pathogenesis. Pruneda JN, Smith FD, Daurie A, Swaney DL, Villén J, Scott JD, Stadnyk AW, Le Trong I, Stenkamp RE, Klevit RE, Rohde JR, Brzovic PS. EMBO J 33 437-449 (2014)
  40. The serine/arginine-rich protein SF2/ASF regulates protein sumoylation. Pelisch F, Gerez J, Druker J, Schor IE, Muñoz MJ, Risso G, Petrillo E, Westman BJ, Lamond AI, Arzt E, Srebrow A. Proc Natl Acad Sci U S A 107 16119-16124 (2010)
  41. Crystal structures of two bacterial HECT-like E3 ligases in complex with a human E2 reveal atomic details of pathogen-host interactions. Lin DY, Diao J, Chen J. Proc Natl Acad Sci U S A 109 1925-1930 (2012)
  42. Molecular basis for lysine specificity in the yeast ubiquitin-conjugating enzyme Cdc34. Sadowski M, Suryadinata R, Lai X, Heierhorst J, Sarcevic B. Mol Cell Biol 30 2316-2329 (2010)
  43. Covalent Inhibition of Ubc13 Affects Ubiquitin Signaling and Reveals Active Site Elements Important for Targeting. Hodge CD, Edwards RA, Markin CJ, McDonald D, Pulvino M, Huen MS, Zhao J, Spyracopoulos L, Hendzel MJ, Glover JN. ACS Chem Biol 10 1718-1728 (2015)
  44. Ubiquitination site preferences in anaphase promoting complex/cyclosome (APC/C) substrates. Min M, Mayor U, Lindon C. Open Biol 3 130097 (2013)
  45. Structural insights into Parkin substrate lysine targeting from minimal Miro substrates. Klosowiak JL, Park S, Smith KP, French ME, Focia PJ, Freymann DM, Rice SE. Sci Rep 6 33019 (2016)
  46. Structure of Importin13-Ubc9 complex: nuclear import and release of a key regulator of sumoylation. Grünwald M, Bono F. EMBO J 30 427-438 (2011)
  47. Crystal structure of UBA2(ufd)-Ubc9: insights into E1-E2 interactions in Sumo pathways. Wang J, Taherbhoy AM, Hunt HW, Seyedin SN, Miller DW, Miller DJ, Huang DT, Schulman BA. PLoS One 5 e15805 (2010)
  48. Modulation of K11-linkage formation by variable loop residues within UbcH5A. Bosanac I, Phu L, Pan B, Zilberleyb I, Maurer B, Dixit VM, Hymowitz SG, Kirkpatrick DS. J Mol Biol 408 420-431 (2011)
  49. DNA activates the Nse2/Mms21 SUMO E3 ligase in the Smc5/6 complex. Varejão N, Ibars E, Lascorz J, Colomina N, Torres-Rosell J, Reverter D. EMBO J 37 e98306 (2018)
  50. Structural basis for RING-Cys-Relay E3 ligase activity and its role in axon integrity. Mabbitt PD, Loreto A, Déry MA, Fletcher AJ, Stanley M, Pao KC, Wood NT, Coleman MP, Virdee S. Nat Chem Biol 16 1227-1236 (2020)
  51. Human Cdc34 employs distinct sites to coordinate attachment of ubiquitin to a substrate and assembly of polyubiquitin chains. Gazdoiu S, Yamoah K, Wu K, Pan ZQ. Mol Cell Biol 27 7041-7052 (2007)
  52. The molecular basis of lysine 48 ubiquitin chain synthesis by Ube2K. Middleton AJ, Day CL. Sci Rep 5 16793 (2015)
  53. E2 superfamily of ubiquitin-conjugating enzymes: constitutively active or activated through phosphorylation in the catalytic cleft. Valimberti I, Tiberti M, Lambrughi M, Sarcevic B, Papaleo E. Sci Rep 5 14849 (2015)
  54. Role of a non-canonical surface of Rad6 in ubiquitin conjugating activity. Kumar P, Kumar P, Magala P, Geiger-Schuller KR, Majumdar A, Tolman JR, Wolberger C. Nucleic Acids Res 43 9039-9050 (2015)
  55. Rod/Zw10 complex is required for PIASy-dependent centromeric SUMOylation. Ryu H, Azuma Y. J Biol Chem 285 32576-32585 (2010)
  56. Solution structure and dynamics of human ubiquitin conjugating enzyme Ube2g2. Ju T, Bocik W, Majumdar A, Tolman JR. Proteins 78 1291-1301 (2010)
  57. Protein-protein interactions regulate Ubl conjugation. Knipscheer P, Sixma TK. Curr Opin Struct Biol 17 665-673 (2007)
  58. A mechanistic view of the role of E3 in sumoylation. Tozluoğlu M, Karaca E, Nussinov R, Haliloğlu T. PLoS Comput Biol 6 e1000913 (2010)
  59. Paths of long-range communication in the E2 enzymes of family 3: a molecular dynamics investigation. Papaleo E, Lindorff-Larsen K, De Gioia L. Phys Chem Chem Phys 14 12515-12525 (2012)
  60. RING domains act as both substrate and enzyme in a catalytic arrangement to drive self-anchored ubiquitination. Kiss L, Clift D, Renner N, Neuhaus D, James LC. Nat Commun 12 1220 (2021)
  61. Identification of a non-covalent ternary complex formed by PIAS1, SUMO1, and UBC9 proteins involved in transcriptional regulation. Mascle XH, Lussier-Price M, Cappadocia L, Estephan P, Raiola L, Omichinski JG, Aubry M. J Biol Chem 288 36312-36327 (2013)
  62. A holistic approach to protein docking. Qin S, Zhou HX. Proteins 69 743-749 (2007)
  63. E2-mediated small ubiquitin-like modifier (SUMO) modification of thymine DNA glycosylase is efficient but not selective for the enzyme-product complex. Coey CT, Fitzgerald ME, Maiti A, Reiter KH, Guzzo CM, Matunis MJ, Drohat AC. J Biol Chem 289 15810-15819 (2014)
  64. Linkage-specific ubiquitin chain formation depends on a lysine hydrocarbon ruler. Liwocha J, Krist DT, van der Heden van Noort GJ, Hansen FM, Truong VH, Karayel O, Purser N, Houston D, Burton N, Bostock MJ, Sattler M, Mann M, Harrison JS, Kleiger G, Ovaa H, Schulman BA. Nat Chem Biol 17 272-279 (2021)
  65. Mechanism of Lysine 48 Selectivity during Polyubiquitin Chain Formation by the Ube2R1/2 Ubiquitin-Conjugating Enzyme. Hill S, Harrison JS, Lewis SM, Kuhlman B, Kleiger G. Mol Cell Biol 36 1720-1732 (2016)
  66. Molecular and structural insight into lysine selection on substrate and ubiquitin lysine 48 by the ubiquitin-conjugating enzyme Cdc34. Suryadinata R, Holien JK, Yang G, Parker MW, Papaleo E, Šarčević B. Cell Cycle 12 1732-1744 (2013)
  67. Multimodal mechanism of action for the Cdc34 acidic loop: a case study for why ubiquitin-conjugating enzymes have loops and tails. Ziemba A, Hill S, Sandoval D, Webb K, Bennett EJ, Kleiger G. J Biol Chem 288 34882-34896 (2013)
  68. Mechanistic insights revealed by a UBE2A mutation linked to intellectual disability. de Oliveira JF, do Prado PFV, da Costa SS, Sforça ML, Canateli C, Ranzani AT, Maschietto M, de Oliveira PSL, Otto PA, Klevit RE, Krepischi ACV, Rosenberg C, Franchini KG. Nat Chem Biol 15 62-70 (2019)
  69. A comprehensive in silico analysis of sortase superfamily. Malik A, Kim SB. J Microbiol 57 431-443 (2019)
  70. Determination of the pKa of the N-terminal amino group of ubiquitin by NMR. Oregioni A, Stieglitz B, Kelly G, Rittinger K, Frenkiel T. Sci Rep 7 43748 (2017)
  71. E3 ubiquitin-protein ligase TRIM21-mediated lysine capture by UBE2E1 reveals substrate-targeting mode of a ubiquitin-conjugating E2. Anandapadamanaban M, Kyriakidis NC, Csizmók V, Wallenhammar A, Espinosa AC, Ahlner A, Round AR, Trewhella J, Moche M, Wahren-Herlenius M, Sunnerhagen M. J Biol Chem 294 11404-11419 (2019)
  72. Structural basis for UFM1 transfer from UBA5 to UFC1. Kumar M, Padala P, Fahoum J, Hassouna F, Tsaban T, Zoltsman G, Banerjee S, Cohen-Kfir E, Dessau M, Rosenzweig R, Isupov MN, Schueler-Furman O, Wiener R. Nat Commun 12 5708 (2021)
  73. Chemical shift perturbation mapping of the Ubc9-CRMP2 interface identifies a pocket in CRMP2 amenable for allosteric modulation of Nav1.7 channels. François-Moutal L, Scott DD, Perez-Miller S, Gokhale V, Khanna M, Khanna R. Channels (Austin) 12 219-227 (2018)
  74. The SUMO Conjugation Complex Self-Assembles into Nuclear Bodies Independent of SIZ1 and COP1. Mazur MJ, Kwaaitaal M, Mateos MA, Maio F, Kini RK, Prins M, van den Burg HA. Plant Physiol 179 168-183 (2019)
  75. Inhibitors of the Cdc34 acidic loop: A computational investigation integrating molecular dynamics, virtual screening and docking approaches. Arrigoni A, Bertini L, De Gioia L, Papaleo E. FEBS Open Bio 4 473-484 (2014)
  76. Insights into the ubiquitin transfer cascade catalyzed by the Legionella effector SidC. Wasilko DJ, Huang Q, Mao Y. Elife 7 e36154 (2018)
  77. The ubiquitin conjugating enzyme, TaU4 regulates wheat defence against the phytopathogen Zymoseptoria tritici. Millyard L, Lee J, Zhang C, Yates G, Sadanandom A. Sci Rep 6 35683 (2016)
  78. SUMO assay with peptide arrays on solid support: insights into SUMO target sites. Schwamborn K, Knipscheer P, van Dijk E, van Dijk WJ, Sixma TK, Meloen RH, Langedijk JP. J Biochem 144 39-49 (2008)
  79. The UBC9 E2 SUMO conjugating enzyme binds the PR-Set7 histone methyltransferase to facilitate target gene repression. Spektor TM, Congdon LM, Veerappan CS, Rice JC. PLoS One 6 e22785 (2011)
  80. Crystal structures of an E1-E2-ubiquitin thioester mimetic reveal molecular mechanisms of transthioesterification. Yuan L, Lv Z, Adams MJ, Olsen SK. Nat Commun 12 2370 (2021)
  81. Exploring the RING-catalyzed ubiquitin transfer mechanism by MD and QM/MM calculations. Zhen Y, Qin G, Luo C, Jiang H, Yu K, Chen G. PLoS One 9 e101663 (2014)
  82. article-commentary Structural biology: A protein engagement RING. Lima CD, Schulman BA. Nature 489 43-44 (2012)
  83. Leveraging protein quaternary structure to identify oncogenic driver mutations. Ryslik GA, Cheng Y, Modis Y, Zhao H. BMC Bioinformatics 17 137 (2016)
  84. A filter enhanced sampling and combinatorial scoring study for protein docking in CAPRI. Gong XQ, Chang S, Zhang QH, Li CH, Shen LZ, Ma XH, Wang MH, Liu B, He HQ, Chen WZ, Wang CX. Proteins 69 859-865 (2007)
  85. Comment Divide and conquer: the E2 active site. Knipscheer P, Sixma TK. Nat Struct Mol Biol 13 474-476 (2006)
  86. Mutations of Rad6 E2 ubiquitin-conjugating enzymes at alanine-126 in helix-3 affect ubiquitination activity and decrease enzyme stability. Shukla PK, Sinha D, Leng AM, Bissell JE, Thatipamula S, Ganguly R, Radmall KS, Skalicky JJ, Shrieve DC, Chandrasekharan MB. J Biol Chem 298 102524 (2022)
  87. Molecular dynamics simulations reveal a new role for a conserved active site asparagine in a ubiquitin-conjugating enzyme. Wilson RH, Zamfir S, Sumner I. J Mol Graph Model 76 403-411 (2017)
  88. Reconstitution and Structural Analysis of a HECT Ligase-Ubiquitin Complex via an Activity-Based Probe. Nair RM, Seenivasan A, Liu B, Chen D, Lowe ED, Lorenz S. ACS Chem Biol 16 1615-1621 (2021)
  89. An in vitro Förster resonance energy transfer-based high-throughput screening assay identifies inhibitors of SUMOylation E2 Ubc9. Wang YZ, Liu X, Way G, Madarha V, Zhou QT, Yang DH, Liao JY, Wang MW. Acta Pharmacol Sin 41 1497-1506 (2020)
  90. DeTEKting ubiquitination of APC/C substrates. Haas AL, Wilkinson KD. Cell 133 570-572 (2008)
  91. Identification of Unintuitive Features of Sumoylation through Mathematical Modeling. Puntambekar SS, Nyayanit D, Saxena P, Gadgil CJ. J Biol Chem 291 9458-9468 (2016)
  92. Site-Specific Albumin-Selective Ligation to Human Serum Albumin under Physiological Conditions. Yu X, Ruan M, Wang Y, Nguyen A, Xiao W, Ajena Y, Solano LN, Liu R, Lam KS. Bioconjug Chem 33 2332-2340 (2022)
  93. Structural snapshots along K48-linked ubiquitin chain formation by the HECT E3 UBR5. Hehl LA, Horn-Ghetko D, Prabu JR, Vollrath R, Vu DT, Pérez Berrocal DA, Mulder MPC, van der Heden van Noort GJ, Schulman BA. Nat Chem Biol 20 190-200 (2024)
  94. Catalysis of non-canonical protein ubiquitylation by the ARIH1 ubiquitin ligase. Purser N, Tripathi-Giesgen I, Li J, Scott DC, Horn-Ghetko D, Baek K, Schulman BA, Alpi AF, Kleiger G. Biochem J 480 1817-1831 (2023)
  95. Molecular mechanism of K65 acetylation-induced attenuation of Ubc9 and the NDSM interaction. Naik MT, Kang M, Ho CC, Liao PH, Hsieh YL, Naik NM, Wang SH, Chang I, Shih HM, Huang TH. Sci Rep 7 17391 (2017)
  96. Structural insights into the regulation of the human E2∼SUMO conjugate through analysis of its stable mimetic. Goffinont S, Coste F, Prieu-Serandon P, Mance L, Gaudon V, Garnier N, Castaing B, Suskiewicz MJ. J Biol Chem 299 104870 (2023)
  97. UBE2A and UBE2B are recruited by an atypical E3 ligase module in UBR4. Barnsby-Greer L, Mabbitt PD, Dery MA, Squair DR, Wood NT, Lamoliatte F, Lange SM, Virdee S. Nat Struct Mol Biol (2024)