2gmx Citations

Aminopyridine-based c-Jun N-terminal kinase inhibitors with cellular activity and minimal cross-kinase activity.

Abstract

The c-Jun N-terminal kinases (JNK-1, -2, and -3) are members of the mitogen activated protein (MAP) kinase family of enzymes. They are activated in response to certain cytokines, as well as by cellular stresses including chemotoxins, peroxides, and irradiation. They have been implicated in the pathology of a variety of different diseases with an inflammatory component including asthma, stroke, Alzheimer's disease, and type 2 diabetes mellitus. In this work, high-throughput screening identified a JNK inhibitor with an excellent kinase selectivity profile. Using X-ray crystallography and biochemical screening to guide our lead optimization, we prepared compounds with inhibitory potencies in the low-double-digit nanomolar range, activity in whole cells, and pharmacokinetics suitable for in vivo use. The new compounds were over 1,000-fold selective for JNK-1 and -2 over other MAP kinases including ERK2, p38alpha, and p38delta and showed little inhibitory activity against a panel of 74 kinases.

Reviews - 2gmx mentioned but not cited (3)

  1. Inhibitors of c-Jun N-terminal kinases: JuNK no more? Bogoyevitch MA, Arthur PG. Biochim Biophys Acta 1784 76-93 (2008)
  2. Computational insights for the discovery of non-ATP competitive inhibitors of MAP kinases. Schnieders MJ, Kaoud TS, Yan C, Dalby KN, Ren P. Curr Pharm Des 18 1173-1185 (2012)
  3. C-Jun N-terminal kinase inhibitors: Structural insight into kinase-inhibitor complexes. Duong MTH, Lee JH, Ahn HC. Comput Struct Biotechnol J 18 1440-1457 (2020)

Articles - 2gmx mentioned but not cited (17)

  1. The design and application of target-focused compound libraries. Harris CJ, Hill RD, Sheppard DW, Slater MJ, Stouten PF. Comb Chem High Throughput Screen 14 521-531 (2011)
  2. How to deal with multiple binding poses in alchemical relative protein-ligand binding free energy calculations. Kaus JW, Harder E, Lin T, Abel R, McCammon JA, Wang L. J Chem Theory Comput 11 2670-2679 (2015)
  3. Classifying kinase conformations using a machine learning approach. McSkimming DI, Rasheed K, Kannan N. BMC Bioinformatics 18 86 (2017)
  4. Prioritizing Small Sets of Molecules for Synthesis through in-silico Tools: A Comparison of Common Ranking Methods. Breznik M, Ge Y, Bluck JP, Briem H, Hahn DF, Christ CD, Mortier J, Mobley DL, Meier K. ChemMedChem 18 e202200425 (2023)
  5. Best practices for constructing, preparing, and evaluating protein-ligand binding affinity benchmarks [Article v0.1]. Hahn DF, Bayly CI, Macdonald HEB, Chodera JD, Mey ASJS, Mobley DL, Benito LP, Schindler CEM, Tresadern G, Warren GL. Living J Comput Mol Sci 4 1497 (2022)
  6. Sampling Conformational Changes of Bound Ligands Using Nonequilibrium Candidate Monte Carlo and Molecular Dynamics. Sasmal S, Gill SC, Lim NM, Mobley DL. J Chem Theory Comput 16 1854-1865 (2020)
  7. Deciphering the underlying mechanisms of Diesun Miaofang in traumatic injury from a systems pharmacology perspective. Zheng CS, Fu CL, Pan CB, Bao HJ, Chen XQ, Ye HZ, Ye JX, Wu GW, Li XH, Xu HF, Xu XJ, Liu XX. Mol Med Rep 12 1769-1776 (2015)
  8. Fenretinide combines perturbation of signaling kinases, cell-extracellular matrix interactions and matrix metalloproteinase activation to inhibit invasion in oral squamous cell carcinoma cells. Wang D, Pei P, Shea FF, Bissonnette C, Nieto K, Din C, Liu Y, Schwendeman SP, Lin YX, Spinney R, Mallery SR. Carcinogenesis 43 851-864 (2022)
  9. Network Pharmacology-Based Investigation of the Therapeutic Mechanisms of Action of Danning Tablets in Nonalcoholic Fatty Liver Disease. Lin T, Li L, Liang C, Peng L. Evid Based Complement Alternat Med 2021 3495360 (2021)
  10. Computational Design of Miniprotein Inhibitors Targeting SARS-CoV-2 Spike Protein. Wu J, Zhang J, Zhang HX. Langmuir 38 10690-10703 (2022)
  11. The order of PDZ3 and TrpCage in fusion chimeras determines their properties-a biophysical characterization. Bousova K, Bednarova L, Zouharova M, Vetyskova V, Postulkova K, Hofbauerová K, Petrvalska O, Vanek O, Tripsianes K, Vondrasek J. Protein Sci 30 1653-1666 (2021)
  12. Assessing the effect of forcefield parameter sets on the accuracy of relative binding free energy calculations. Sun S, Huggins DJ. Front Mol Biosci 9 972162 (2022)
  13. In Vitro and In Silico Studies of Functionalized Polyurethane Surfaces toward Understanding Biologically Relevant Interactions. Chytrosz-Wrobel P, Golda-Cepa M, Drozdz K, Rysz J, Kubisiak P, Kulig W, Brzychczy-Wloch M, Cwiklik L, Kotarba A. ACS Biomater Sci Eng 9 6112-6122 (2023)
  14. Insight into the Conformational Transitions of Serine Acetyl Transferase Isoforms in E. histolytica: Implications for Structural and Functional Balance. Idrees D, Naqvi AAT, Hassan MI, Ahmad F, Gourinath S. ACS Omega 7 24626-24637 (2022)
  15. MM/PB(GB)SA benchmarks on soluble proteins and membrane proteins. Wang S, Sun X, Cui W, Yuan S. Front Pharmacol 13 1018351 (2022)
  16. Proposing the Promiscuous Protein Structures in JNK1 and JNK3 for Virtual Screening in Pursuit of Potential Leads. Sailapathi A, Murugan G, Somarathinam K, Gunalan S, Jagadeesan R, Yoosuf N, Kanagaraj S, Kothandan G. ACS Omega 5 3969-3978 (2020)
  17. Relative binding free energy calculations with transformato: A molecular dynamics engine-independent tool. Karwounopoulos J, Wieder M, Boresch S. Front Mol Biosci 9 954638 (2022)


Reviews citing this publication (8)

  1. Uses for JNK: the many and varied substrates of the c-Jun N-terminal kinases. Bogoyevitch MA, Kobe B. Microbiol Mol Biol Rev 70 1061-1095 (2006)
  2. JNK signalling in cancer: in need of new, smarter therapeutic targets. Bubici C, Papa S. Br J Pharmacol 171 24-37 (2014)
  3. Mitogen-activated protein kinases in hemostasis and thrombosis. Adam F, Kauskot A, Rosa JP, Bryckaert M. J Thromb Haemost 6 2007-2016 (2008)
  4. The JNK Signaling Pathway in Inflammatory Skin Disorders and Cancer. Hammouda MB, Ford AE, Liu Y, Zhang JY. Cells 9 E857 (2020)
  5. A guide to picking the most selective kinase inhibitor tool compounds for pharmacological validation of drug targets. Uitdehaag JC, Verkaar F, Alwan H, de Man J, Buijsman RC, Zaman GJ. Br J Pharmacol 166 858-876 (2012)
  6. The mitogen-activated protein kinase signaling pathways: role in megakaryocyte differentiation. Séverin S, Ghevaert C, Mazharian A. J Thromb Haemost 8 17-26 (2010)
  7. The role of cellular senescence in Werner syndrome: toward therapeutic intervention in human premature aging. Davis T, Wyllie FS, Rokicki MJ, Bagley MC, Kipling D. Ann N Y Acad Sci 1100 455-469 (2007)
  8. c-Jun N-terminal kinase pathways in diabetes. Yang R, Trevillyan JM. Int J Biochem Cell Biol 40 2702-2706 (2008)

Articles citing this publication (65)

  1. Identification of the JNK signaling pathway as a functional target of the tumor suppressor PTEN. Vivanco I, Palaskas N, Tran C, Finn SP, Getz G, Kennedy NJ, Jiao J, Rose J, Xie W, Loda M, Golub T, Mellinghoff IK, Davis RJ, Wu H, Sawyers CL. Cancer Cell 11 555-569 (2007)
  2. JNK Activation Turns on LPS- and Gram-Negative Bacteria-Induced NADPH Oxidase-Dependent Suicidal NETosis. Khan MA, Farahvash A, Douda DN, Licht JC, Grasemann H, Sweezey N, Palaniyar N. Sci Rep 7 3409 (2017)
  3. Cytokine production in myelofibrosis exhibits differential responsiveness to JAK-STAT, MAP kinase, and NFκB signaling. Fisher DAC, Miner CA, Engle EK, Hu H, Collins TB, Zhou A, Allen MJ, Malkova ON, Oh ST. Leukemia 33 1978-1995 (2019)
  4. Oncostatin M suppresses oestrogen receptor-α expression and is associated with poor outcome in human breast cancer. West NR, Murphy LC, Watson PH. Endocr Relat Cancer 19 181-195 (2012)
  5. Roles for the mitogen-activated protein kinase (MAPK) phosphatase, DUSP1, in feedback control of inflammatory gene expression and repression by dexamethasone. Shah S, King EM, Chandrasekhar A, Newton R. J Biol Chem 289 13667-13679 (2014)
  6. AP-1 regulates cyclin D1 and c-MYC transcription in an AKT-dependent manner in response to mTOR inhibition: role of AIP4/Itch-mediated JUNB degradation. Vartanian R, Masri J, Martin J, Cloninger C, Holmes B, Artinian N, Funk A, Ruegg T, Gera J. Mol Cancer Res 9 115-130 (2011)
  7. Identification of a novel amino acid response pathway triggering ATF2 phosphorylation in mammals. Chaveroux C, Jousse C, Cherasse Y, Maurin AC, Parry L, Carraro V, Derijard B, Bruhat A, Fafournoux P. Mol Cell Biol 29 6515-6526 (2009)
  8. Adipocyte lipolysis-stimulated interleukin-6 production requires sphingosine kinase 1 activity. Zhang W, Mottillo EP, Zhao J, Gartung A, VanHecke GC, Lee JF, Maddipati KR, Xu H, Ahn YH, Proia RL, Granneman JG, Lee MJ. J Biol Chem 289 32178-32185 (2014)
  9. Synthesis, biological evaluation, X-ray structure, and pharmacokinetics of aminopyrimidine c-jun-N-terminal kinase (JNK) inhibitors. Kamenecka T, Jiang R, Song X, Duckett D, Chen W, Ling YY, Habel J, Laughlin JD, Chambers J, Figuera-Losada M, Cameron MD, Lin L, Ruiz CH, LoGrasso PV. J Med Chem 53 419-431 (2010)
  10. A switch from canonical to noncanonical Wnt signaling mediates early differentiation of human neural stem cells. Bengoa-Vergniory N, Gorroño-Etxebarria I, González-Salazar I, Kypta RM. Stem Cells 32 3196-3208 (2014)
  11. Mitogen-activated protein kinase phosphatase-1 negatively regulates the expression of interleukin-6, interleukin-8, and cyclooxygenase-2 in A549 human lung epithelial cells. Turpeinen T, Nieminen R, Moilanen E, Korhonen R. J Pharmacol Exp Ther 333 310-318 (2010)
  12. Design, synthesis, and structure-activity relationship of substrate competitive, selective, and in vivo active triazole and thiadiazole inhibitors of the c-Jun N-terminal kinase. De SK, Stebbins JL, Chen LH, Riel-Mehan M, Machleidt T, Dahl R, Yuan H, Emdadi A, Barile E, Chen V, Murphy R, Pellecchia M. J Med Chem 52 1943-1952 (2009)
  13. Structure-activity relationships and X-ray structures describing the selectivity of aminopyrazole inhibitors for c-Jun N-terminal kinase 3 (JNK3) over p38. Kamenecka T, Habel J, Duckett D, Chen W, Ling YY, Frackowiak B, Jiang R, Shin Y, Song X, LoGrasso P. J Biol Chem 284 12853-12861 (2009)
  14. Benzo[a]pyrene diol epoxide stimulates an inflammatory response in normal human lung fibroblasts through a p53 and JNK mediated pathway. Dreij K, Rhrissorrakrai K, Gunsalus KC, Geacintov NE, Scicchitano DA. Carcinogenesis 31 1149-1157 (2010)
  15. A critical step for JNK activation: isomerization by the prolyl isomerase Pin1. Park JE, Lee JA, Park SG, Lee DH, Kim SJ, Kim HJ, Uchida C, Uchida T, Park BC, Cho S. Cell Death Differ 19 153-161 (2012)
  16. Identification and characterization of a novel class of c-Jun N-terminal kinase inhibitors. Schepetkin IA, Kirpotina LN, Khlebnikov AI, Hanks TS, Kochetkova I, Pascual DW, Jutila MA, Quinn MT. Mol Pharmacol 81 832-845 (2012)
  17. Analysis of conditions affecting auto-phosphorylation of human kinases during expression in bacteria. Shrestha A, Hamilton G, O'Neill E, Knapp S, Elkins JM. Protein Expr Purif 81 136-143 (2012)
  18. Discovery of a new class of 4-anilinopyrimidines as potent c-Jun N-terminal kinase inhibitors: Synthesis and SAR studies. Liu M, Wang S, Clampit JE, Gum RJ, Haasch DL, Rondinone CM, Trevillyan JM, Abad-Zapatero C, Fry EH, Sham HL, Liu G. Bioorg Med Chem Lett 17 668-672 (2007)
  19. Attenuation of the acute inflammatory response by dual specificity phosphatase 1 by inhibition of p38 MAP kinase. Korhonen R, Turpeinen T, Taimi V, Nieminen R, Goulas A, Moilanen E. Mol Immunol 48 2059-2068 (2011)
  20. Discovery, synthesis and biological evaluation of isoquinolones as novel and highly selective JNK inhibitors (2). Asano Y, Kitamura S, Ohra T, Itoh F, Kajino M, Tamura T, Kaneko M, Ikeda S, Igata H, Kawamoto T, Sogabe S, Matsumoto S, Tanaka T, Yamaguchi M, Kimura H, Fukumoto S. Bioorg Med Chem 16 4699-4714 (2008)
  21. Inhibition of JNK signaling in the Asian malaria vector Anopheles stephensi extends mosquito longevity and improves resistance to Plasmodium falciparum infection. Souvannaseng L, Hun LV, Baker H, Klyver JM, Wang B, Pakpour N, Bridgewater JM, Napoli E, Giulivi C, Riehle MA, Luckhart S. PLoS Pathog 14 e1007418 (2018)
  22. Synthesis and SAR of aminopyrimidines as novel c-Jun N-terminal kinase (JNK) inhibitors. Alam M, Beevers RE, Ceska T, Davenport RJ, Dickson KM, Fortunato M, Gowers L, Haughan AF, James LA, Jones MW, Kinsella N, Lowe C, Meissner JW, Nicolas AL, Perry BG, Phillips DJ, Pitt WR, Platt A, Ratcliffe AJ, Sharpe A, Tait LJ. Bioorg Med Chem Lett 17 3463-3467 (2007)
  23. c-Jun N-terminal kinase inhibitor II (SP600125) activates Mullerian inhibiting substance type II receptor-mediated signal transduction. Renlund N, Pieretti-Vanmarcke R, O'Neill FH, Zhang L, Donahoe PK, Teixeira J. Endocrinology 149 108-115 (2008)
  24. Characterization of a novel JNK (c-Jun N-terminal kinase) inhibitory peptide. Ngoei KR, Catimel B, Church N, Lio DS, Dogovski C, Perugini MA, Watt PM, Cheng HC, Ng DC, Bogoyevitch MA. Biochem J 434 399-413 (2011)
  25. Oxidative stress impairs multiple regulatory events to drive persistent cytokine-stimulated STAT3 phosphorylation. Ng IH, Yeap YY, Ong LS, Jans DA, Bogoyevitch MA. Biochim Biophys Acta 1843 483-494 (2014)
  26. 3,5-Disubstituted quinolines as novel c-Jun N-terminal kinase inhibitors. Jiang R, Duckett D, Chen W, Habel J, Ling YY, LoGrasso P, Kamenecka TM. Bioorg Med Chem Lett 17 6378-6382 (2007)
  27. Cytokine-induced loss of glucocorticoid function: effect of kinase inhibitors, long-acting β(2)-adrenoceptor [corrected] agonist and glucocorticoid receptor ligands. Rider CF, Shah S, Miller-Larsson A, Giembycz MA, Newton R. PLoS One 10 e0116773 (2015)
  28. Synthesis and SAR of novel quinazolines as potent and brain-penetrant c-jun N-terminal kinase (JNK) inhibitors. He Y, Kamenecka TM, Shin Y, Song X, Jiang R, Noel R, Duckett D, Chen W, Ling YY, Cameron MD, Lin L, Khan S, Koenig M, LoGrasso PV. Bioorg Med Chem Lett 21 1719-1723 (2011)
  29. Structure-based design and parallel synthesis of N-benzyl isatin oximes as JNK3 MAP kinase inhibitors. Cao J, Gao H, Bemis G, Salituro F, Ledeboer M, Harrington E, Wilke S, Taslimi P, Pazhanisamy S, Xie X, Jacobs M, Green J. Bioorg Med Chem Lett 19 2891-2895 (2009)
  30. Discovery of 2-(5-nitrothiazol-2-ylthio)benzo[d]thiazoles as novel c-Jun N-terminal kinase inhibitors. De SK, Chen LH, Stebbins JL, Machleidt T, Riel-Mehan M, Dahl R, Chen V, Yuan H, Barile E, Emdadi A, Murphy R, Pellecchia M. Bioorg Med Chem 17 2712-2717 (2009)
  31. Activation of mitogen-activated protein kinases by 5,6-dimethylxanthenone-4-acetic acid (DMXAA) plays an important role in macrophage stimulation. Sun J, Wang LC, Fridlender ZG, Kapoor V, Cheng G, Ching LM, Albelda SM. Biochem Pharmacol 82 1175-1185 (2011)
  32. Coordinated Proliferation and Differentiation of Human-Induced Pluripotent Stem Cell-Derived Cardiac Progenitor Cells Depend on Bone Morphogenetic Protein Signaling Regulation by GREMLIN 2. Bylund JB, Trinh LT, Awgulewitsch CP, Paik DT, Jetter C, Jha R, Zhang J, Nolan K, Xu C, Thompson TB, Kamp TJ, Hatzopoulos AK. Stem Cells Dev 26 678-693 (2017)
  33. DUSP1 Maintains IRF1 and Leads to Increased Expression of IRF1-dependent Genes: A MECHANISM PROMOTING GLUCOCORTICOID INSENSITIVITY. Shah S, King EM, Mostafa MM, Altonsy MO, Newton R. J Biol Chem 291 21802-21816 (2016)
  34. Diaminopyridine-based potent and selective mps1 kinase inhibitors binding to an unusual flipped-Peptide conformation. Kusakabe K, Ide N, Daigo Y, Itoh T, Higashino K, Okano Y, Tadano G, Tachibana Y, Sato Y, Inoue M, Wada T, Iguchi M, Kanazawa T, Ishioka Y, Dohi K, Tagashira S, Kido Y, Sakamoto S, Yasuo K, Maeda M, Yamamoto T, Higaki M, Endoh T, Ueda K, Shiota T, Murai H, Nakamura Y. ACS Med Chem Lett 3 560-564 (2012)
  35. Aminopyridine carboxamides as c-Jun N-terminal kinase inhibitors: targeting the gatekeeper residue and beyond. Liu G, Zhao H, Liu B, Xin Z, Liu M, Kosogof C, Szczepankiewicz BG, Wang S, Clampit JE, Gum RJ, Haasch DL, Trevillyan JM, Sham HL. Bioorg Med Chem Lett 16 5723-5730 (2006)
  36. Synthesis and SAR of piperazine amides as novel c-jun N-terminal kinase (JNK) inhibitors. Shin Y, Chen W, Habel J, Duckett D, Ling YY, Koenig M, He Y, Vojkovsky T, LoGrasso P, Kamenecka TM. Bioorg Med Chem Lett 19 3344-3347 (2009)
  37. Visualization of Compartmentalized Kinase Activity Dynamics Using Adaptable BimKARs. Depry C, Mehta S, Li R, Zhang J. Chem Biol 22 1470-1479 (2015)
  38. Endoplasmic reticulum stress causes insulin resistance by inhibiting delivery of newly synthesized insulin receptors to the cell surface. Brown M, Dainty S, Strudwick N, Mihai AD, Watson JN, Dendooven R, Paton AW, Paton JC, Schröder M. Mol Biol Cell 31 2597-2629 (2020)
  39. Structural basis and biological consequences for JNK2/3 isoform selective aminopyrazoles. Park H, Iqbal S, Hernandez P, Mora R, Zheng K, Feng Y, LoGrasso P. Sci Rep 5 8047 (2015)
  40. Hemodynamic effects of potent and selective JNK inhibitors in anesthetized rats: implication for targeting protein kinases in metabolic diseases. Liu G, Zhao H, Liu B, Xin Z, Liu M, Serby MD, Lubbers NL, Widomski DL, Polakowski JS, Beno DW, Trevillyan JM, Sham HL. Bioorg Med Chem Lett 17 495-500 (2007)
  41. Nanomolar levels of PAHs in extracts from urban air induce MAPK signaling in HepG2 cells. Jarvis IW, Bergvall C, Morales DA, Kummrow F, Umbuzeiro GA, Westerholm R, Stenius U, Dreij K. Toxicol Lett 229 25-32 (2014)
  42. Activation of MTK1/MEKK4 induces cardiomyocyte death and heart failure. Mizote I, Yamaguchi O, Hikoso S, Takeda T, Taneike M, Oka T, Tamai T, Oyabu J, Matsumura Y, Nishida K, Komuro I, Hori M, Otsu K. J Mol Cell Cardiol 48 302-309 (2010)
  43. Letter Development of indole/indazole-aminopyrimidines as inhibitors of c-Jun N-terminal kinase (JNK): optimization for JNK potency and physicochemical properties. Gong L, Han X, Silva T, Tan YC, Goyal B, Tivitmahaisoon P, Trejo A, Palmer W, Hogg H, Jahagir A, Alam M, Wagner P, Stein K, Filonova L, Loe B, Makra F, Rotstein D, Rapatova L, Dunn J, Zuo F, Dal Porto J, Wong B, Jin S, Chang A, Tran P, Hsieh G, Niu L, Shao A, Reuter D, Hermann J, Kuglstatter A, Goldstein D. Bioorg Med Chem Lett 23 3565-3569 (2013)
  44. Discovery of a novel series of 4-quinolone JNK inhibitors. Gong L, Tan YC, Boice G, Abbot S, McCaleb K, Iyer P, Zuo F, Dal Porto J, Wong B, Jin S, Chang A, Tran P, Hsieh G, Niu L, Shao A, Reuter D, Lukacs CM, Ursula Kammlott R, Kuglstatter A, Goldstein D. Bioorg Med Chem Lett 22 7381-7387 (2012)
  45. Synthesis and SAR of 4-substituted-2-aminopyrimidines as novel c-Jun N-terminal kinase (JNK) inhibitors. Humphries PS, Lafontaine JA, Agree CS, Alexander D, Chen P, Do QQ, Li LY, Lunney EA, Rajapakse RJ, Siegel K, Timofeevski SL, Wang T, Wilhite DM. Bioorg Med Chem Lett 19 2099-2102 (2009)
  46. Discovery of 3-alkyl-5-aryl-1-pyrimidyl-1H-pyrazole derivatives as a novel selective inhibitor scaffold of JNK3. Oh Y, Jang M, Cho H, Yang S, Im D, Moon H, Hah JM. J Enzyme Inhib Med Chem 35 372-376 (2020)
  47. Protection from interferon-β-induced neuronal apoptosis through stimulation of muscarinic acetylcholine receptors coupled to ERK1/2 activation. Olianas MC, Dedoni S, Onali P. Br J Pharmacol 173 2910-2928 (2016)
  48. Fluorescence polarization-based competition binding assay for c-Jun N-terminal kinases 1 and 2. Ansideri F, Dammann M, Boeckler FM, Koch P. Anal Biochem 532 26-28 (2017)
  49. Investigating the role of c-Jun N-terminal kinases in the proliferation of Werner syndrome fibroblasts using diaminopyridine inhibitors. Davis T, Dix MC, Rokicki MJ, Brook AJ, Widdowson CS, Kipling D, Bagley MC. Chem Cent J 5 83 (2011)
  50. Mutations in the transcription factor FOXO1 mimic positive selection signals to promote germinal center B cell expansion and lymphomagenesis. Roberto MP, Varano G, Vinas-Castells R, Holmes AB, Kumar R, Pasqualucci L, Farinha P, Scott DW, Dominguez-Sola D. Immunity 54 1807-1824.e14 (2021)
  51. Syntheses of phenylpyrazolodiazepin-7-ones as conformationally rigid analogs of aminopyrazole amide scaffold and their antiproliferative effects on cancer cells. Kim H, Kim M, Lee J, Yu H, Hah JM. Bioorg Med Chem 19 6760-6767 (2011)
  52. A novel retro-inverso peptide is a preferential JNK substrate-competitive inhibitor. Ngoei KR, Catimel B, Milech N, Watt PM, Bogoyevitch MA. Int J Biochem Cell Biol 45 1939-1950 (2013)
  53. A unique hinge binder of extremely selective aminopyridine-based Mps1 (TTK) kinase inhibitors with cellular activity. Kusakabe K, Ide N, Daigo Y, Itoh T, Yamamoto T, Kojima E, Mitsuoka Y, Tadano G, Tagashira S, Higashino K, Okano Y, Sato Y, Inoue M, Iguchi M, Kanazawa T, Ishioka Y, Dohi K, Kido Y, Sakamoto S, Ando S, Maeda M, Higaki M, Yoshizawa H, Murai H, Nakamura Y. Bioorg Med Chem 23 2247-2260 (2015)
  54. Hyperosmotic stress sustains cytokine-stimulated phosphorylation of STAT3, but slows its nuclear trafficking and impairs STAT3-dependent transcription. Ng IH, Jans DA, Bogoyevitch MA. Cell Signal 26 815-824 (2014)
  55. Synthesis, molecular modeling studies and bronchodilation properties of nicotinonitrile containing-compounds. Soliman EA, Panda SS, Aziz MN, Shalaby EM, Mishriky N, Asaad FM, Girgis AS. Eur J Med Chem 138 920-931 (2017)
  56. Identification and characterization of bi-thiazole-2,2'-diamines as kinase inhibitory scaffolds. Ngoei KR, Ng DC, Gooley PR, Fairlie DP, Stoermer MJ, Bogoyevitch MA. Biochim Biophys Acta 1834 1077-1088 (2013)
  57. Intramolecular aryl transfer to thionium ions in an approach to alpha-arylacetamides. Ovens C, Vogel JC, Martin NG, Procter DJ. Chem Commun (Camb) 3101-3103 (2009)
  58. Structural requirements of isoquinolones as novel selective c-Jun N-terminal kinase 1 inhibitors: 2D and 3D QSAR analyses. Du J, Xi L, Lei B, Liu H, Yao X. Chem Biol Drug Des 77 248-254 (2011)
  59. 2D QSAR Studies of Several Potent Aminopyridine, Anilinopyrimidine and Pyridine Carboxamide-based JNK Inhibitors. Sharma S, Bagchi B, Mukhopadhyay S, Bothra AK. Indian J Pharm Sci 73 165-170 (2011)
  60. Conformational restriction of a type II FMS inhibitor leading to discovery of 5-methyl-N-(2-aryl-1H-benzo[d]imidazo-5-yl)isoxazole-4-carboxamide analogues as selective FLT3 inhibitors. Im D, Moon H, Kim J, Oh Y, Jang M, Hah JM. J Enzyme Inhib Med Chem 34 1716-1721 (2019)
  61. Hit to Lead optimization of a novel class of squarate-containing polo-like kinases inhibitors. Zhang Q, Xia Z, Mitten MJ, Lasko LM, Klinghofer V, Bouska J, Johnson EF, Penning TD, Luo Y, Giranda VL, Shoemaker AR, Stewart KD, Djuric SW, Vasudevan A. Bioorg Med Chem Lett 22 7615-7622 (2012)
  62. Novel c-Jun N-Terminal Kinase (JNK) Inhibitors with an 11H-Indeno[1,2-b]quinoxalin-11-one Scaffold. Liakhov SA, Schepetkin IA, Karpenko OS, Duma HI, Haidarzhy NM, Kirpotina LN, Kovrizhina AR, Khlebnikov AI, Bagryanskaya IY, Quinn MT. Molecules 26 5688 (2021)
  63. Data Mining and Systems Pharmacology to Elucidate Effectiveness and Mechanisms of Chinese Medicine in Treating Primary Liver Cancer. Zhang Z, Li JW, Zeng PH, Gao WH, Tian XF. Chin J Integr Med 28 636-643 (2022)
  64. Design and synthesis of 1-aryl-5-anilinoindazoles as c-Jun N-terminal kinase inhibitors. Jiang R, Frackowiak B, Shin Y, Song X, Chen W, Lin L, Cameron MD, Duckett DR, Kamenecka TM. Bioorg Med Chem Lett 23 2683-2687 (2013)
  65. Discovery of 1-Pyrimidinyl-2-Aryl-4,6-Dihydropyrrolo [3,4-d]Imidazole-5(1H)-Carboxamide as a Novel JNK Inhibitor. Jang M, Oh Y, Cho H, Yang S, Moon H, Im D, Hah JM. Int J Mol Sci 21 E1698 (2020)


Related citations provided by authors (1)

  1. Synthesis and SAR of 1,9-dihydro-9-hydroxypyrazolo[3,4-b]quinolin-4-ones as novel, selective c-Jun N-terminal kinase inhibitors.. Liu M, Xin Z, Clampit JE, Wang S, Gum RJ, Haasch DL, Trevillyan JM, Abad-Zapatero C, Fry EH, Sham HL, Liu G Bioorg Med Chem Lett 16 2590-4 (2006)