2gls Citations

Refined atomic model of glutamine synthetase at 3.5 A resolution.

J Biol Chem 264 17681-90 (1989)
Cited: 79 times
EuropePMC logo PMID: 2572586

Abstract

An atomic model of 43,692 non-hydrogen atoms has been determined for the 12-subunit enzyme glutamine synthetase from Salmonella typhimurium, by methods of x-ray diffraction including restrained least-squares atomic refinement against 65,223 unique reflections. At 3.5 A resolution the crystallographic R-factor (on 2 sigma data) is 25.8%. As reported earlier for the unrefined structure, the 12 subunits are arranged in two layers of six; at the interface of pairs of subunits within each layer, cylindrical active sites are formed by six anti-parallel beta strands contributed by one subunit and two strands by the neighboring subunit. This interpretation of the electron density map has now been supported by comparison with glutamine synthetase from Escherichia coli by the Fourier difference method. Each active site cylinder holds two Mn2+ ions, with each ion having as ligands three protein side chains and two water molecules (one water shared by both metals), as well as a histidyl side chain just beyond liganding distance. The protein ligands to Mn2+ 469 are Glu-131, Glu-212, and Glu-220; those to Mn2+ 470 are Glu-129, His-269, and Glu-357. The two layers of subunits are held together largely by the apolar COOH terminus, a helical thong, which inserts into a hydrophobic pocket formed by two neighboring subunits on the opposite ring. Also between layers, there is a hydrogen-bonded beta sheet interaction, as there is between subunits within a ring, but hydrophobic interactions account for most of the intersubunit stability. The central loop, which extends into the central aqueous channel, is subject to attack by at least five enzymes and is discussed as an enzyme "passive site."

Reviews - 2gls mentioned but not cited (1)

Articles - 2gls mentioned but not cited (10)

  1. Small but versatile: the extraordinary functional and structural diversity of the beta-grasp fold. Burroughs AM, Balaji S, Iyer LM, Aravind L. Biol Direct 2 18 (2007)
  2. Identifying the subproteome of kinetically stable proteins via diagonal 2D SDS/PAGE. Xia K, Manning M, Hesham H, Lin Q, Bystroff C, Colón W. Proc Natl Acad Sci U S A 104 17329-17334 (2007)
  3. De Novo Structural Pattern Mining in Cellular Electron Cryotomograms. Xu M, Singla J, Tocheva EI, Chang YW, Stevens RC, Jensen GJ, Alber F. Structure 27 679-691.e14 (2019)
  4. Sulphur Atoms from Methionines Interacting with Aromatic Residues Are Less Prone to Oxidation. Aledo JC, Cantón FR, Veredas FJ. Sci Rep 5 16955 (2015)
  5. Crystallization and preliminary crystallographic characterization of glutamine synthetase from Medicago truncatula. Seabra AR, Carvalho H, Pereira PJ. Acta Crystallogr Sect F Struct Biol Cryst Commun 65 1309-1312 (2009)
  6. A Fast Variational Method for the Construction of Resolution Adaptive C-Smooth Molecular Surfaces. Bajaj CL, Xu G, Zhang Q. Comput Methods Appl Mech Eng 198 1684-1690 (2009)
  7. A dynamic data structure for flexible molecular maintenance and informatics. Bajaj C, Chowdhury RA, Rasheed M. Bioinformatics 27 55-62 (2011)
  8. Interaction network and mass spectrometry data of Xanthomonas citri subsp. citri surface proteins from differential proteomic analysis of infectious and non-infectious cells. Carnielli CM, Artier J, Franco de Oliveira JC, Novo-Mansur MT. Data Brief 8 1400-1411 (2016)
  9. Multi-task Learning for Macromolecule Classification, Segmentation and Coarse Structural Recovery in Cryo-Tomography. Liu C, Zeng X, Wang KW, Guo Q, Xu M. BMVC 2018 1007 (2018)
  10. Assessment of scoring functions to rank the quality of 3D subtomogram clusters from cryo-electron tomography. Singla J, White KL, Stevens RC, Alber F. J Struct Biol 213 107727 (2021)


Reviews citing this publication (9)

  1. Nitrogen control in bacteria. Merrick MJ, Edwards RA. Microbiol Rev 59 604-622 (1995)
  2. P(II) signal transduction proteins, pivotal players in microbial nitrogen control. Arcondéguy T, Jack R, Merrick M. Microbiol Mol Biol Rev 65 80-105 (2001)
  3. Nitrogen assimilation in Escherichia coli: putting molecular data into a systems perspective. van Heeswijk WC, Westerhoff HV, Boogerd FC. Microbiol Mol Biol Rev 77 628-695 (2013)
  4. Methionine oxidation and reduction in proteins. Kim G, Weiss SJ, Levine RL. Biochim Biophys Acta 1840 901-905 (2014)
  5. Genetic map of Salmonella typhimurium, edition VIII. Sanderson KE, Hessel A, Rudd KE. Microbiol Rev 59 241-303 (1995)
  6. Large macromolecular complexes in the Protein Data Bank: a status report. Dutta S, Berman HM. Structure 13 381-388 (2005)
  7. Adenylylation: renaissance of a forgotten post-translational modification. Itzen A, Blankenfeldt W, Goody RS. Trends Biochem Sci 36 221-228 (2011)
  8. Glutamine synthetase in legumes: recent advances in enzyme structure and functional genomics. Betti M, García-Calderón M, Pérez-Delgado CM, Credali A, Estivill G, Galván F, Vega JM, Márquez AJ. Int J Mol Sci 13 7994-8024 (2012)
  9. Enzyme inhibitors as chemical tools to study enzyme catalysis: rational design, synthesis, and applications. Hiratake J. Chem Rec 5 209-228 (2005)

Articles citing this publication (59)

  1. Stereochemical quality of protein structure coordinates. Morris AL, MacArthur MW, Hutchinson EG, Thornton JM. Proteins 12 345-364 (1992)
  2. Crystal structures of mammalian glutamine synthetases illustrate substrate-induced conformational changes and provide opportunities for drug and herbicide design. Krajewski WW, Collins R, Holmberg-Schiavone L, Jones TA, Karlberg T, Mowbray SL. J Mol Biol 375 217-228 (2008)
  3. Crystal structure of UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase from Escherichia coli. Bertrand JA, Auger G, Fanchon E, Martin L, Blanot D, van Heijenoort J, Dideberg O. EMBO J 16 3416-3425 (1997)
  4. Glutamine synthetase gene evolution: a good molecular clock. Pesole G, Bozzetti MP, Lanave C, Preparata G, Saccone C. Proc Natl Acad Sci U S A 88 522-526 (1991)
  5. A common fold for peptide synthetases cleaving ATP to ADP: glutathione synthetase and D-alanine:d-alanine ligase of Escherichia coli. Fan C, Moews PC, Shi Y, Walsh CT, Knox JR. Proc Natl Acad Sci U S A 92 1172-1176 (1995)
  6. Discovery of the ammonium substrate site on glutamine synthetase, a third cation binding site. Liaw SH, Kuo I, Eisenberg D. Protein Sci 4 2358-2365 (1995)
  7. Structure of Mycobacterium tuberculosis glutamine synthetase in complex with a transition-state mimic provides functional insights. Krajewski WW, Jones TA, Mowbray SL. Proc Natl Acad Sci U S A 102 10499-10504 (2005)
  8. Crystallographic and functional studies of very short patch repair endonuclease. Tsutakawa SE, Muto T, Kawate T, Jingami H, Kunishima N, Ariyoshi M, Kohda D, Nakagawa M, Morikawa K. Mol Cell 3 621-628 (1999)
  9. Glutamine synthetase inactivation by protein-protein interaction. García-Domínguez M, Reyes JC, Florencio FJ. Proc Natl Acad Sci U S A 96 7161-7166 (1999)
  10. gp160, the envelope glycoprotein of human immunodeficiency virus type 1, is a dimer of 125-kilodalton subunits stabilized through interactions between their gp41 domains. Thomas DJ, Wall JS, Hainfeld JF, Kaczorek M, Booy FP, Trus BL, Eiserling FA, Steven AC. J Virol 65 3797-3803 (1991)
  11. Oxidative turnover of soybean root glutamine synthetase. In vitro and in vivo studies Ortega JL, Roche D, Sengupta-Gopalan C. Plant Physiol 119 1483-1496 (1999)
  12. A new type of glutamine synthetase in cyanobacteria: the protein encoded by the glnN gene supports nitrogen assimilation in Synechocystis sp. strain PCC 6803. Reyes JC, Florencio FJ. J Bacteriol 176 1260-1267 (1994)
  13. The product of the nitrogen fixation regulatory gene nfrX of Azotobacter vinelandii is functionally and structurally homologous to the uridylyltransferase encoded by glnD in enteric bacteria. Contreras A, Drummond M, Bali A, Blanco G, Garcia E, Bush G, Kennedy C, Merrick M. J Bacteriol 173 7741-7749 (1991)
  14. Generalized protein tertiary structure recognition using associative memory Hamiltonians. Friedrichs MS, Goldstein RA, Wolynes PG. J Mol Biol 222 1013-1034 (1991)
  15. Feedback inhibition of fully unadenylylated glutamine synthetase from Salmonella typhimurium by glycine, alanine, and serine. Liaw SH, Pan C, Eisenberg D. Proc Natl Acad Sci U S A 90 4996-5000 (1993)
  16. Identification of mutations (D128G, H141L) in the liver arginase gene of patients with hyperargininemia. Vockley JG, Tabor DE, Kern RM, Goodman BK, Wissmann PB, Kang DS, Grody WW, Cederbaum SD. Hum Mutat 4 150-154 (1994)
  17. Total Glutamine Synthetase Activity during Soybean Nodule Development Is Controlled at the Level of Transcription and Holoprotein Turnover. Temple SJ, Kunjibettu S, Roche D, Sengupta-Gopalan C. Plant Physiol 112 1723-1733 (1996)
  18. Lengsin is a survivor of an ancient family of class I glutamine synthetases re-engineered by evolution for a role in the vertebrate lens. Wyatt K, White HE, Wang L, Bateman OA, Slingsby C, Orlova EV, Wistow G. Structure 14 1823-1834 (2006)
  19. The inactivating factor of glutamine synthetase, IF7, is a "natively unfolded" protein. Muro-Pastor MI, Barrera FN, Reyes JC, Florencio FJ, Neira JL. Protein Sci 12 1443-1454 (2003)
  20. Purification and characterization of a new type of glutamine synthetase from cyanobacteria. García-Domínguez M, Reyes JC, Florencio FJ. Eur J Biochem 244 258-264 (1997)
  21. Mutations in Bacillus subtilis glutamine synthetase that block its interaction with transcription factor TnrA. Fisher SH, Brandenburg JL, Wray LV. Mol Microbiol 45 627-635 (2002)
  22. Oxidation of the active site of glutamine synthetase: conversion of arginine-344 to gamma-glutamyl semialdehyde. Climent I, Levine RL. Arch Biochem Biophys 289 371-375 (1991)
  23. Biochemical and mutational analysis of glutamine synthetase type III from the rumen anaerobe Ruminococcus albus 8. Amaya KR, Kocherginskaya SA, Mackie RI, Cann IK. J Bacteriol 187 7481-7491 (2005)
  24. Chloroplast Glutamine Synthetase, the Key Regulator of Nitrogen Metabolism in Wheat, Performs Its Role by Fine Regulation of Enzyme Activity via Negative Cooperativity of Its Subunits. Németh E, Nagy Z, Pécsváradi A. Front Plant Sci 9 191 (2018)
  25. Crystal structure of Saccharomyces cerevisiae glutamine synthetase Gln1 suggests a nanotube-like supramolecular assembly. He YX, Gui L, Liu YZ, Du Y, Zhou Y, Li P, Zhou CZ. Proteins 76 249-254 (2009)
  26. Structural changes in GroEL effected by binding a denatured protein substrate. Falke S, Fisher MT, Gogol EP. J Mol Biol 308 569-577 (2001)
  27. The Rhizobium leguminosarum biovar phaseoli glnT gene, encoding glutamine synthetase III. Chiurazzi M, Meza R, Lara M, Lahm A, Defez R, Iaccarino M, Espín G. Gene 119 1-8 (1992)
  28. YbdK is a carboxylate-amine ligase with a gamma-glutamyl:Cysteine ligase activity: crystal structure and enzymatic assays. Lehmann C, Doseeva V, Pullalarevu S, Krajewski W, Howard A, Herzberg O. Proteins 56 376-383 (2004)
  29. Functional importance of Asp56 from the alpha-polypeptide of Phaseolus vulgaris glutamine synthetase. An essential residue for transferase but not for biosynthetic enzyme activity. Clemente MT, Márquez AJ. Eur J Biochem 264 453-460 (1999)
  30. A sensing role of the glutamine synthetase in the nitrogen regulation network in Fusarium fujikuroi. Wagner D, Wiemann P, Huß K, Brandt U, Fleißner A, Tudzynski B. PLoS One 8 e80740 (2013)
  31. Probing the molecular determinants of aniline dioxygenase substrate specificity by saturation mutagenesis. Ang EL, Obbard JP, Zhao H. FEBS J 274 928-939 (2007)
  32. Regeneration of catalytic activity of glutamine synthetase mutants by chemical activation: exploration of the role of arginines 339 and 359 in activity. Dhalla AM, Li B, Alibhai MF, Yost KJ, Hemmingsen JM, Atkins WM, Schineller J, Villafranca JJ. Protein Sci 3 476-481 (1994)
  33. Altered regulation of the glnRA operon in a Bacillus subtilis mutant that produces methionine sulfoximine-tolerant glutamine synthetase. Schreier HJ, Rostkowski CA, Kellner EM. J Bacteriol 175 892-897 (1993)
  34. Site-directed mutagenesis of Glu-297 from the alpha-polypeptide of Phaseolus vulgaris glutamine synthetase alters kinetic and structural properties and confers resistance to L-methionine sulfoximine. Clemente MT, Márquez AJ. Plant Mol Biol 40 835-845 (1999)
  35. Three-dimensional structure of a type III glutamine synthetase by single-particle reconstruction. van Rooyen JM, Abratt VR, Sewell BT. J Mol Biol 361 796-810 (2006)
  36. Bisphosphonic acids as effective inhibitors of Mycobacterium tuberculosis glutamine synthetase. Kosikowska P, Bochno M, Macegoniuk K, Forlani G, Kafarski P, Berlicki Ł. J Enzyme Inhib Med Chem 31 931-938 (2016)
  37. Structural Analysis of Glutamine Synthetase from Helicobacter pylori. Joo HK, Park YW, Jang YY, Lee JY. Sci Rep 8 11657 (2018)
  38. Thermal unfolding of dodecameric glutamine synthetase: inhibition of aggregation by urea. Nosworthy NJ, Ginsburg A. Protein Sci 6 2617-2623 (1997)
  39. Urea-induced dissociation and unfolding of dodecameric glutamine synthetase from Escherichia coli: calorimetric and spectral studies. Zolkiewski M, Nosworthy NJ, Ginsburg A. Protein Sci 4 1544-1552 (1995)
  40. Classification and reconstruction of a heterogeneous set of electron microscopic images: a case study of GroEL-substrate complexes. Falke S, Fisher MT, Gogol EP. J Struct Biol 133 203-213 (2001)
  41. A structural model for fidelity in transcription. Eichhorn GL, Chuknyisky PP, Butzow JJ, Beal RB, Garland C, Janzen CP, Clark P, Tarien E. Proc Natl Acad Sci U S A 91 7613-7617 (1994)
  42. Mutational analysis of Asp51 of Anabaena azollae glutamine synthetase. D51E mutation confers resistance to the active site inhibitors L-methionine-DL-sulfoximine and phosphinothricin. Crespo JL, Guerrero MG, Florencio FJ. Eur J Biochem 266 1202-1209 (1999)
  43. The central loop of Escherichia coli glutamine synthetase is flexible and functionally passive. Pearson JT, Dabrowski MJ, Kung I, Atkins WM. Arch Biochem Biophys 436 397-405 (2005)
  44. Characterization and improved properties of Glutamine synthetase from Providencia vermicola by site-directed mutagenesis. Zuo W, Nie L, Baskaran R, Kumar A, Liu Z. Sci Rep 8 15640 (2018)
  45. Extending the diffraction limit of protein crystals: the example of glutamine synthetase from Salmonella typhimurium in the presence of its cofactor ATP. Liaw SH, Jun G, Eisenberg D. Protein Sci 2 470-471 (1993)
  46. Investigating the effects of posttranslational adenylylation on the metal binding sites of Escherichia coli glutamine synthetase using lanthanide luminescence spectroscopy. Reynaldo LP, Villafranca JJ, Horrocks WD. Protein Sci 5 2532-2544 (1996)
  47. Physiological Studies of Glutamine Synthetases I and III from Synechococcus sp. WH7803 Reveal Differential Regulation. Domínguez-Martín MA, Díez J, García-Fernández JM. Front Microbiol 7 969 (2016)
  48. Evolution of the concept of conformational dynamics of enzyme functions over half of a century: A personal view. Závodszky P, Hajdú I. Biopolymers 99 263-269 (2013)
  49. Heliorhodopsin binds and regulates glutamine synthetase activity. Cho SG, Song M, Chuon K, Shim JG, Meas S, Jung KH. PLoS Biol 20 e3001817 (2022)
  50. Nicked multifunctional loop of glutathione synthetase still protects the catalytic intermediate. Tanaka T, Nishioka T, Oda J. Arch Biochem Biophys 339 151-156 (1997)
  51. Purification, characterization, and expression of multiple glutamine synthetases from Prevotella ruminicola 23. Kim JN, Cann IK, Mackie RI. J Bacteriol 194 176-184 (2012)
  52. Self-assembly of cyclic hexamers of γ-cyclodextrin in a metallosupramolecular framework with d-penicillamine. Somsri S, Kuwamura N, Kojima T, Yoshinari N, Konno T. Chem Sci 11 9246-9253 (2020)
  53. Gold nanoparticles partition to and increase the activity of glucose-6-phosphatase in a synthetic phospholipid membrane system. MacCormack TJ, Rundle AM, Malek M, Raveendran A, Meli MV. PLoS One 12 e0183274 (2017)
  54. Probing the catalytic roles of n2-site glutamate residues in Escherichia coli glutamine synthetase by mutagenesis. Witmer MR, Palmieri-Young D, Villafranca JJ. Protein Sci 3 1746-1759 (1994)
  55. Stucture of the complex between Mucor pusillus pepsin and the key domain of κ-casein for site-directed mutagenesis: a combined molecular modeling and docking approach. Li T, Wang J, Li Y, Zhang L, Zheng L, Li Z, Yang Z, Luo Q. J Mol Model 17 1661-1668 (2011)
  56. Application of emission Mössbauer spectroscopy to the study of cobalt coordination in the active centers of bacterial glutamine synthetase. Kamnev AA, Antonyuk LP, Smirnova VE, Kulikov LA, Perfiliev YD, Kuzmann E, Vértes A. Dokl Biochem Biophys 393 321-325 (2003)
  57. Computational structural analysis and kinetic studies of a cytosolic glutamine synthetase from Camellia sinensis (L.) O. Kuntze. Yadav SK. Protein J 28 428-434 (2009)
  58. Multiple oxidative post-translational modifications of human glutamine synthetase mediate peroxynitrite-dependent enzyme inactivation and aggregation. Campolo N, Mastrogiovanni M, Mariotti M, Issoglio FM, Estrin D, Hägglund P, Grune T, Davies MJ, Bartesaghi S, Radi R. J Biol Chem 299 102941 (2023)
  59. The role of filamentation in activation and DNA sequence specificity of the sequence-specific endonuclease SgrAI. Lyumkis D, Horton NC. Biochem Soc Trans 50 1703-1714 (2022)


Related citations provided by authors (2)

  1. Novel Subunit-Subunit Interactions in the Structure of Glutamine Synthetase. Almassy RJ, Janson CA, Hamlin R, Xuong N-H, Eisenberg D Nature 323 304- (1986)
  2. Sequence of Glutamine Synthetase from Salmonella Typhimurium and Implications for the Protein Structure. Janson CA, Kayne PS, Almassy RJ, Grunstein M, Eisenberg D Gene 46 297- (1986)