2gbt Citations

The coupling between disulphide status, metallation and dimer interface strength in Cu/Zn superoxide dismutase.

J Mol Biol 365 333-42 (2007)
Related entries: 2gbu, 2gbv

Cited: 61 times
EuropePMC logo PMID: 17070542

Abstract

The gain of neurotoxic function in amyotrophic lateral sclerosis (ALS) has been linked to misfolding of the homodimeric enzyme Cu/Zn superoxide dismutase (SOD). Here, we present the crystal structure of fully cysteine-depleted human SOD (SOD(CallA)), representing a reduced, marginally stable intermediate on the folding pathway in vivo that has also been implicated as neurotoxic precursor state. A hallmark of this species is that it fails to dimerize and becomes trapped as a monomer in the absence of the active-site metals. The crystallographic data show that removal of the C57-C146 disulphide bond sets free the interface loop IV in the apo protein, whereas the same loop remains unaffected in the holo protein. Thus, the low dimerisation propensity of disulphide-reduced apoSOD seems to be of entropic origin due to increased loop flexibility in the monomeric state: in the disulphide-reduced holo protein this gain in configurational entropy upon splitting of the dimer interface is reduced by the metal coordination.

Reviews - 2gbt mentioned but not cited (1)

Articles - 2gbt mentioned but not cited (1)

  1. Diffuse binding of Zn(2+) to the denatured ensemble of Cu/Zn superoxide dismutase 1. Szpryngiel S, Oliveberg M, Mäler L. FEBS Open Bio 5 56-63 (2015)


Reviews citing this publication (10)

  1. The structural biochemistry of the superoxide dismutases. Perry JJ, Shin DS, Getzoff ED, Tainer JA. Biochim Biophys Acta 1804 245-262 (2010)
  2. An emerging role for misfolded wild-type SOD1 in sporadic ALS pathogenesis. Rotunno MS, Bosco DA. Front Cell Neurosci 7 253 (2013)
  3. A role for copper in the toxicity of zinc-deficient superoxide dismutase to motor neurons in amyotrophic lateral sclerosis. Trumbull KA, Beckman JS. Antioxid Redox Signal 11 1627-1639 (2009)
  4. Mechanisms of mutant SOD1 induced mitochondrial toxicity in amyotrophic lateral sclerosis. Vehviläinen P, Koistinaho J, Gundars G. Front Cell Neurosci 8 126 (2014)
  5. Mechanisms of SOD1 regulation by post-translational modifications. Banks CJ, Andersen JL. Redox Biol 26 101270 (2019)
  6. Oxygen-dependent activation of Cu,Zn-superoxide dismutase-1. M Fetherolf M, Boyd SD, Winkler DD, Winge DR. Metallomics 9 1047-1059 (2017)
  7. Energetics of oligomeric protein folding and association. Doyle CM, Rumfeldt JA, Broom HR, Broom A, Stathopulos PB, Vassall KA, Almey JJ, Meiering EM. Arch Biochem Biophys 531 44-64 (2013)
  8. The Role of Metal Binding in the Amyotrophic Lateral Sclerosis-Related Aggregation of Copper-Zinc Superoxide Dismutase. Sirangelo I, Iannuzzi C. Molecules 22 E1429 (2017)
  9. SOD1 in ALS: Taking Stock in Pathogenic Mechanisms and the Role of Glial and Muscle Cells. Peggion C, Scalcon V, Massimino ML, Nies K, Lopreiato R, Rigobello MP, Bertoli A. Antioxidants (Basel) 11 614 (2022)
  10. Molecular and pharmacological chaperones for SOD1. Wright GSA. Biochem Soc Trans 48 1795-1806 (2020)

Articles citing this publication (49)

  1. Different regulation of wild-type and mutant Cu,Zn superoxide dismutase localization in mammalian mitochondria. Kawamata H, Manfredi G. Hum Mol Genet 17 3303-3317 (2008)
  2. Quantitative proteomics identifies redox switches for global translation modulation by mitochondrially produced reactive oxygen species. Topf U, Suppanz I, Samluk L, Wrobel L, Böser A, Sakowska P, Knapp B, Pietrzyk MK, Chacinska A, Warscheid B. Nat Commun 9 324 (2018)
  3. Structural characterization of zinc-deficient human superoxide dismutase and implications for ALS. Roberts BR, Tainer JA, Getzoff ED, Malencik DA, Anderson SR, Bomben VC, Meyers KR, Karplus PA, Beckman JS. J Mol Biol 373 877-890 (2007)
  4. Dynamical roles of metal ions and the disulfide bond in Cu, Zn superoxide dismutase folding and aggregation. Ding F, Dokholyan NV. Proc Natl Acad Sci U S A 105 19696-19701 (2008)
  5. SOD1 targeted to the mitochondrial intermembrane space prevents motor neuropathy in the Sod1 knockout mouse. Fischer LR, Igoudjil A, Magrané J, Li Y, Hansen JM, Manfredi G, Glass JD. Brain 134 196-209 (2011)
  6. Using quantitative redox proteomics to dissect the yeast redoxome. Brandes N, Reichmann D, Tienson H, Leichert LI, Jakob U. J Biol Chem 286 41893-41903 (2011)
  7. Mutation-dependent polymorphism of Cu,Zn-superoxide dismutase aggregates in the familial form of amyotrophic lateral sclerosis. Furukawa Y, Kaneko K, Yamanaka K, Nukina N. J Biol Chem 285 22221-22231 (2010)
  8. Functional features cause misfolding of the ALS-provoking enzyme SOD1. Nordlund A, Leinartaite L, Saraboji K, Aisenbrey C, Gröbner G, Zetterström P, Danielsson J, Logan DT, Oliveberg M. Proc Natl Acad Sci U S A 106 9667-9672 (2009)
  9. Zinc binding modulates the entire folding free energy surface of human Cu,Zn superoxide dismutase. Kayatekin C, Zitzewitz JA, Matthews CR. J Mol Biol 384 540-555 (2008)
  10. Activation of Cu,Zn-superoxide dismutase in the absence of oxygen and the copper chaperone CCS. Leitch JM, Jensen LT, Bouldin SD, Outten CE, Hart PJ, Culotta VC. J Biol Chem 284 21863-21871 (2009)
  11. Shotgun redox proteomics identifies specifically modified cysteines in key metabolic enzymes under oxidative stress in Saccharomyces cerevisiae. McDonagh B, Ogueta S, Lasarte G, Padilla CA, Bárcena JA. J Proteomics 72 677-689 (2009)
  12. Metal deficiency increases aberrant hydrophobicity of mutant superoxide dismutases that cause amyotrophic lateral sclerosis. Tiwari A, Liba A, Sohn SH, Seetharaman SV, Bilsel O, Matthews CR, Hart PJ, Valentine JS, Hayward LJ. J Biol Chem 284 27746-27758 (2009)
  13. Strategies for stabilizing superoxide dismutase (SOD1), the protein destabilized in the most common form of familial amyotrophic lateral sclerosis. Auclair JR, Boggio KJ, Petsko GA, Ringe D, Agar JN. Proc Natl Acad Sci U S A 107 21394-21399 (2010)
  14. Nonamyloid aggregates arising from mature copper/zinc superoxide dismutases resemble those observed in amyotrophic lateral sclerosis. Hwang YM, Stathopulos PB, Dimmick K, Yang H, Badiei HR, Tong MS, Rumfeldt JA, Chen P, Karanassios V, Meiering EM. J Biol Chem 285 41701-41711 (2010)
  15. Calcium ions promote superoxide dismutase 1 (SOD1) aggregation into non-fibrillar amyloid: a link to toxic effects of calcium overload in amyotrophic lateral sclerosis (ALS)? Leal SS, Cardoso I, Valentine JS, Gomes CM. J Biol Chem 288 25219-25228 (2013)
  16. Cutting off functional loops from homodimeric enzyme superoxide dismutase 1 (SOD1) leaves monomeric β-barrels. Danielsson J, Kurnik M, Lang L, Oliveberg M. J Biol Chem 286 33070-33083 (2011)
  17. Metal-free ALS variants of dimeric human Cu,Zn-superoxide dismutase have enhanced populations of monomeric species. Svensson AK, Bilsel O, Kayatekin C, Adefusika JA, Zitzewitz JA, Matthews CR. PLoS One 5 e10064 (2010)
  18. Cu,Zn-superoxide dismutase increases toxicity of mutant and zinc-deficient superoxide dismutase by enhancing protein stability. Garner MA, Ricart KC, Roberts BR, Bomben VC, Basso M, Ye Y, Sahawneh J, Franco MC, Beckman JS, Estévez AG. J Biol Chem 285 33885-33897 (2010)
  19. A faulty interaction between SOD1 and hCCS in neurodegenerative disease. Wright GS, Antonyuk SV, Hasnain SS. Sci Rep 6 27691 (2016)
  20. Global structural motions from the strain of a single hydrogen bond. Danielsson J, Awad W, Saraboji K, Kurnik M, Lang L, Leinartaite L, Marklund SL, Logan DT, Oliveberg M. Proc Natl Acad Sci U S A 110 3829-3834 (2013)
  21. SOD1 exhibits allosteric frustration to facilitate metal binding affinity. Das A, Plotkin SS. Proc Natl Acad Sci U S A 110 3871-3876 (2013)
  22. SOD1-associated ALS: a promising system for elucidating the origin of protein-misfolding disease. Nordlund A, Oliveberg M. HFSP J 2 354-364 (2008)
  23. Structural and thermodynamic effects of post-translational modifications in mutant and wild type Cu, Zn superoxide dismutase. Proctor EA, Ding F, Dokholyan NV. J Mol Biol 408 555-567 (2011)
  24. Post-translational modification by cysteine protects Cu/Zn-superoxide dismutase from oxidative damage. Auclair JR, Johnson JL, Liu Q, Salisbury JP, Rotunno MS, Petsko GA, Ringe D, Brown RH, Bosco DA, Agar JN. Biochemistry 52 6137-6144 (2013)
  25. Alternative splicing studies of the reactive oxygen species gene network in Populus reveal two isoforms of high-isoelectric-point superoxide dismutase. Srivastava V, Srivastava MK, Chibani K, Nilsson R, Rouhier N, Melzer M, Wingsle G. Plant Physiol 149 1848-1859 (2009)
  26. Redox properties of the disulfide bond of human Cu,Zn superoxide dismutase and the effects of human glutaredoxin 1. Bouldin SD, Darch MA, Hart PJ, Outten CE. Biochem J 446 59-67 (2012)
  27. Disulfide bond as a switch for copper-zinc superoxide dismutase activity in asthma. Ghosh S, Willard B, Comhair SA, Dibello P, Xu W, Shiva S, Aulak KS, Kinter M, Erzurum SC. Antioxid Redox Signal 18 412-423 (2013)
  28. Mechanical probes of SOD1 predict systematic trends in metal and dimer affinity of ALS-associated mutants. Das A, Plotkin SS. J Mol Biol 425 850-874 (2013)
  29. Structural consequences of cysteinylation of Cu/Zn-superoxide dismutase. Auclair JR, Brodkin HR, D'Aquino JA, Petsko GA, Ringe D, Agar JN. Biochemistry 52 6145-6150 (2013)
  30. Using theoretical protein isotopic distributions to parse small-mass-difference post-translational modifications via mass spectrometry. Rhoads TW, Williams JR, Lopez NI, Morré JT, Bradford CS, Beckman JS. J Am Soc Mass Spectrom 24 115-124 (2013)
  31. Probing the free energy landscapes of ALS disease mutants of SOD1 by NMR spectroscopy. Sekhar A, Rumfeldt JAO, Broom HR, Doyle CM, Sobering RE, Meiering EM, Kay LE. Proc Natl Acad Sci U S A 113 E6939-E6945 (2016)
  32. Aberrant zinc binding to immature conformers of metal-free copper-zinc superoxide dismutase triggers amorphous aggregation. Leal SS, Cristóvão JS, Biesemeier A, Cardoso I, Gomes CM. Metallomics 7 333-346 (2015)
  33. Mechanistic aspects of hSOD1 maturation from the solution structure of Cu(I) -loaded hCCS domain 1 and analysis of disulfide-free hSOD1 mutants. Banci L, Cantini F, Kozyreva T, Rubino JT. Chembiochem 14 1839-1844 (2013)
  34. Metalation kinetics of the human α-metallothionein 1a fragment is dependent on the fluxional structure of the apo-protein. Irvine GW, Duncan KE, Gullons M, Stillman MJ. Chemistry 21 1269-1279 (2015)
  35. Purification and crystallization of human Cu/Zn superoxide dismutase recombinantly produced in the protozoan Leishmania tarentolae. Gazdag EM, Cirstea IC, Breitling R, Lukes J, Blankenfeldt W, Alexandrov K. Acta Crystallogr Sect F Struct Biol Cryst Commun 66 871-877 (2010)
  36. TFE-induced local unfolding and fibrillation of SOD1: bridging the experiment and simulation studies. Kumar V, Prakash A, Pandey P, Lynn AM, Hassan MI. Biochem J 475 1701-1719 (2018)
  37. Early steps in thermal unfolding of superoxide dismutase 1 are similar to the conformational changes associated with the ALS-associated A4V mutation. Schmidlin T, Ploeger K, Jonsson AL, Daggett V. Protein Eng Des Sel 26 503-513 (2013)
  38. A primary role for disulfide formation in the productive folding of prokaryotic Cu,Zn-superoxide dismutase. Sakurai Y, Anzai I, Furukawa Y. J Biol Chem 289 20139-20149 (2014)
  39. Molecular dynamics of a far positioned SOD1 mutant V14M reveals pathogenic misfolding behavior. Tompa DR, Kadhirvel S. J Biomol Struct Dyn 36 4085-4098 (2018)
  40. Structural basis of Cu, Zn-superoxide dismutase amyloid fibril formation involves interaction of multiple peptide core regions. Ida M, Ando M, Adachi M, Tanaka A, Machida K, Hongo K, Mizobata T, Yamakawa MY, Watanabe Y, Nakashima K, Kawata Y. J Biochem 159 247-260 (2016)
  41. Evolutionary Analyses of Sequence and Structure Space Unravel the Structural Facets of SOD1. Chowdhury S, Sanyal D, Sen S, Uversky VN, Maulik U, Chattopadhyay K. Biomolecules 9 E826 (2019)
  42. Free energy calculations of ALS-causing SOD1 mutants reveal common perturbations to stability and dynamics along the maturation pathway. Wells NGM, Tillinghast GA, O'Neil AL, Smith CA. Protein Sci 30 1804-1817 (2021)
  43. Conformational dynamics of superoxide dismutase (SOD1) in osmolytes: a molecular dynamics simulation study. Jahan I, Nayeem SM. RSC Adv 10 27598-27614 (2020)
  44. Molecular dynamics analysis of superoxide dismutase 1 mutations suggests decoupling between mechanisms underlying ALS onset and progression. Kalia M, Miotto M, Ness D, Opie-Martin S, Spargo TP, Di Rienzo L, Biagini T, Petrizzelli F, Al Khleifat A, Kabiljo R, Project MinE ALS Sequencing Consortium, SOD1-ALS clinical and genetic data collection group, Mazza T, Ruocco G, Milanetti E, Dobson RJ, Al-Chalabi A, Iacoangeli A. Comput Struct Biotechnol J 21 5296-5308 (2023)
  45. Native Mass Spectrometry Coupled to Spectroscopic Methods to Investigate the Effect of Soybean Isoflavones on Structural Stability and Aggregation of Zinc Deficient and Metal-Free Superoxide Dismutase. Bian X, Zhuang X, Xing J, Liu S, Liu Z, Song F. Molecules 27 7303 (2022)
  46. Nucleation and kinetics of SOD1 aggregation in human cells for ALS1. Workman A. Mol Cell Biochem 466 117-128 (2020)
  47. Study on the disulfide bond and disulfide loop of native and mutated SOD1 protein. Keerthana SP, Kolandaivel P. J Mol Graph Model 50 78-89 (2014)
  48. First Principles Calculation of Protein-Protein Dimer Affinities of ALS-Associated SOD1 Mutants. Hsueh SCC, Nijland M, Peng X, Hilton B, Plotkin SS. Front Mol Biosci 9 845013 (2022)
  49. The dimeric assembly of Photobacterium leiognathi and Salmonella typhimurium SodC1 Cu,Zn superoxide dismutases is affected differently by active site demetallation and pH: an analytical ultracentrifuge study. Catacchio B, D'Orazio M, Battistoni A, Chiancone E. Arch Biochem Biophys 471 77-84 (2008)