2gb0 Citations

Monomeric sarcosine oxidase: structure of a covalently flavinylated amine oxidizing enzyme.

Structure 7 331-45 (1999)
Cited: 75 times
EuropePMC logo PMID: 10368302



Monomeric sarcosine oxidases (MSOXs) are among the simplest members of a recently recognized family of eukaryotic and prokaryotic enzymes that catalyze similar oxidative reactions with various secondary or tertiary amino acids and contain covalently bound flavins. Other members of this family include heterotetrameric sarcosine oxidase, N-methyltryptophan oxidase and pipecolate oxidase. Mammalian sarcosine dehydrogenase and dimethylglycine dehydrogenase may be more distantly related family members.


The X-ray crystal structure of MSOX from Bacillus sp. B-0618, expressed in Escherichia coli, has been solved at 2.0 A resolution by multiwavelength anomalous dispersion (MAD) from crystals of the selenomethionine-substituted enzyme. Fourteen selenium sites, belonging to two MSOX molecules in the asymmetric unit, were used for MAD phasing and to define the local twofold symmetry axis for electron-density averaging. The structures of the native enzyme and of two enzyme-inhibitor complexes were also determined.


MSOX is a two-domain protein with an overall topology most similar to that of D-amino acid oxidase, with which it shares 14% sequence identity. The flavin ring is located in a very basic environment, making contact with sidechains of arginine, lysine, histidine and the N-terminal end of a helix dipole. The flavin is covalently attached through an 8alpha-S-cysteinyl linkage to Cys315 of the catalytic domain. Covalent attachment is probably self-catalyzed through interactions with the positive sidechains and the helix dipole. Substrate binding is probably stabilized by hydrogen bonds between the substrate carboxylate and two basic sidechains, Arg52 and Lys348, located above the re face of the flavin ring.

Articles - 2gb0 mentioned but not cited (2)

  1. Protein beta-sheet nucleation is driven by local modular formation. Wathen B, Jia Z. J. Biol. Chem. 285 18376-18384 (2010)
  2. Crystal structure of novel dye-linked L-proline dehydrogenase from hyperthermophilic archaeon Aeropyrum pernix. Sakuraba H, Satomura T, Kawakami R, Kim K, Hara Y, Yoneda K, Ohshima T. J. Biol. Chem. 287 20070-20080 (2012)

Reviews citing this publication (11)

  1. Combining solvent isotope effects with substrate isotope effects in mechanistic studies of alcohol and amine oxidation by enzymes. Fitzpatrick PF. Biochim. Biophys. Acta 1854 1746-1755 (2015)
  2. Distribution in Different Organisms of Amino Acid Oxidases with FAD or a Quinone As Cofactor and Their Role as Antimicrobial Proteins in Marine Bacteria. Campillo-Brocal JC, Lucas-Elío P, Sanchez-Amat A. Mar Drugs 13 7403-7418 (2015)
  3. Prokaryotic assembly factors for the attachment of flavin to complex II. McNeil MB, Fineran PC. Biochim. Biophys. Acta 1827 637-647 (2013)
  4. Flavoprotein oxidases: classification and applications. Dijkman WP, de Gonzalo G, Mattevi A, Fraaije MW. Appl. Microbiol. Biotechnol. 97 5177-5188 (2013)
  5. Oxidation of amines by flavoproteins. Fitzpatrick PF. Arch. Biochem. Biophys. 493 13-25 (2010)
  6. What's in a covalent bond? On the role and formation of covalently bound flavin cofactors. Heuts DP, Scrutton NS, McIntire WS, Fraaije MW. FEBS J. 276 3405-3427 (2009)
  7. New roles of flavoproteins in molecular cell biology: histone demethylase LSD1 and chromatin. Forneris F, Battaglioli E, Mattevi A, Binda C. FEBS J. 276 4304-4312 (2009)
  8. Enzymatic deglycation of proteins. Wu X, Monnier VM. Arch. Biochem. Biophys. 419 16-24 (2003)
  9. [Structural and functional analysis of enzymes and their application to clinical analysis--study on Pseudomonas putida formaldehyde dehydrogenase]. Ito K. Yakugaku Zasshi 122 805-811 (2002)
  10. Sequence-structure analysis of FAD-containing proteins. Dym O, Eisenberg D. Protein Sci. 10 1712-1728 (2001)
  11. The covalent FAD of monoamine oxidase: structural and functional role and mechanism of the flavinylation reaction. Edmondson DE, Newton-Vinson P. Antioxid. Redox Signal. 3 789-806 (2001)

Articles citing this publication (62)

  1. Adenine recognition: a motif present in ATP-, CoA-, NAD-, NADP-, and FAD-dependent proteins. Denessiouk KA, Rantanen VV, Johnson MS. Proteins 44 282-291 (2001)
  2. Channelling and formation of 'active' formaldehyde in dimethylglycine oxidase. Leys D, Basran J, Scrutton NS. EMBO J. 22 4038-4048 (2003)
  3. FOXRED1, encoding an FAD-dependent oxidoreductase complex-I-specific molecular chaperone, is mutated in infantile-onset mitochondrial encephalopathy. Fassone E, Duncan AJ, Taanman JW, Pagnamenta AT, Sadowski MI, Holand T, Qasim W, Rutland P, Calvo SE, Mootha VK, Bitner-Glindzicz M, Rahman S. Hum. Mol. Genet. 19 4837-4847 (2010)
  4. Insights into the mechanism of flavoprotein-catalyzed amine oxidation from nitrogen isotope effects on the reaction of N-methyltryptophan oxidase. Ralph EC, Hirschi JS, Anderson MA, Cleland WW, Singleton DA, Fitzpatrick PF. Biochemistry 46 7655-7664 (2007)
  5. Cloning, sequence analysis, and purification of choline oxidase from Arthrobacter globiformis: a bacterial enzyme involved in osmotic stress tolerance. Fan F, Ghanem M, Gadda G. Arch. Biochem. Biophys. 421 149-158 (2004)
  6. Structure of adenylylsulfate reductase from the hyperthermophilic Archaeoglobus fulgidus at 1.6-A resolution. Fritz G, Roth A, Schiffer A, Büchert T, Bourenkov G, Bartunik HD, Huber H, Stetter KO, Kroneck PM, Ermler U. Proc. Natl. Acad. Sci. U.S.A. 99 1836-1841 (2002)
  7. Identification of the oxygen activation site in monomeric sarcosine oxidase: role of Lys265 in catalysis. Zhao G, Bruckner RC, Jorns MS. Biochemistry 47 9124-9135 (2008)
  8. Mechanistic studies of the flavoenzyme tryptophan 2-monooxygenase: deuterium and 15N kinetic isotope effects on alanine oxidation by an L-amino acid oxidase. Ralph EC, Anderson MA, Cleland WW, Fitzpatrick PF. Biochemistry 45 15844-15852 (2006)
  9. Biosynthesis of covalently bound flavin: isolation and in vitro flavinylation of the monomeric sarcosine oxidase apoprotein. Hassan-Abdallah A, Bruckner RC, Zhao G, Jorns MS. Biochemistry 44 6452-6462 (2005)
  10. Improving lysine production by Corynebacterium glutamicum through DNA microarray-based identification of novel target genes. Sindelar G, Wendisch VF. Appl. Microbiol. Biotechnol. 76 677-689 (2007)
  11. pH dependence of a mammalian polyamine oxidase: insights into substrate specificity and the role of lysine 315. Henderson Pozzi M, Gawandi V, Fitzpatrick PF. Biochemistry 48 1508-1516 (2009)
  12. Crystal structure of the deglycating enzyme fructosamine oxidase (amadoriase II). Collard F, Zhang J, Nemet I, Qanungo KR, Monnier VM, Yee VC. J. Biol. Chem. 283 27007-27016 (2008)
  13. Overexpression of a recombinant wild-type and His-tagged Bacillus subtilis glycine oxidase in Escherichia coli. Job V, Molla G, Pilone MS, Pollegioni L. Eur. J. Biochem. 269 1456-1463 (2002)
  14. Oxygen reactivity in flavoenzymes: context matters. McDonald CA, Fagan RL, Collard F, Monnier VM, Palfey BA. J. Am. Chem. Soc. 133 16809-16811 (2011)
  15. Covalent flavinylation of vanillyl-alcohol oxidase is an autocatalytic process. Jin J, Mazon H, van den Heuvel RH, Heck AJ, Janssen DB, Fraaije MW. FEBS J. 275 5191-5200 (2008)
  16. Probing oxygen activation sites in two flavoprotein oxidases using chloride as an oxygen surrogate. Kommoju PR, Chen ZW, Bruckner RC, Mathews FS, Jorns MS. Biochemistry 50 5521-5534 (2011)
  17. Discovery of a eugenol oxidase from Rhodococcus sp. strain RHA1. Jin J, Mazon H, van den Heuvel RH, Janssen DB, Fraaije MW. FEBS J. 274 2311-2321 (2007)
  18. Peroxisome biogenesis and function. Kaur N, Reumann S, Hu J. Arabidopsis Book 7 e0123 (2009)
  19. Kinetic mechanisms of glycine oxidase from Bacillus subtilis. Molla G, Motteran L, Job V, Pilone MS, Pollegioni L. Eur. J. Biochem. 270 1474-1482 (2003)
  20. A lysine conserved in the monoamine oxidase family is involved in oxidation of the reduced flavin in mouse polyamine oxidase. Henderson Pozzi M, Fitzpatrick PF. Arch. Biochem. Biophys. 498 83-88 (2010)
  21. Crystal structure analysis of free and substrate-bound 6-hydroxy-L-nicotine oxidase from Arthrobacter nicotinovorans. Kachalova GS, Bourenkov GP, Mengesdorf T, Schenk S, Maun HR, Burghammer M, Riekel C, Decker K, Bartunik HD. J. Mol. Biol. 396 785-799 (2010)
  22. Heterotetrameric sarcosine oxidase: structure of a diflavin metalloenzyme at 1.85 A resolution. Chen ZW, Hassan-Abdulah A, Zhao G, Jorns MS, Mathews FS. J. Mol. Biol. 360 1000-1018 (2006)
  23. Active site analysis of fructosyl amine oxidase using homology modeling and site-directed mutagenesis. Miura S, Ferri S, Tsugawa W, Kim S, Sode K. Biotechnol. Lett. 28 1895-1900 (2006)
  24. Structural and kinetic analyses of the H121A mutant of cholesterol oxidase. Lim L, Molla G, Guinn N, Ghisla S, Pollegioni L, Vrielink A. Biochem. J. 400 13-22 (2006)
  25. pH and kinetic isotope effects on sarcosine oxidation by N-methyltryptophan oxidase. Ralph EC, Fitzpatrick PF. Biochemistry 44 3074-3081 (2005)
  26. Spectral and kinetic characterization of the michaelis charge transfer complex in monomeric sarcosine oxidase. Zhao G, Jorns MS. Biochemistry 45 5985-5992 (2006)
  27. Ionization of zwitterionic amine substrates bound to monomeric sarcosine oxidase. Zhao G, Jorns MS. Biochemistry 44 16866-16874 (2005)
  28. Structural characterization of mutations at the oxygen activation site in monomeric sarcosine oxidase . Jorns MS, Chen ZW, Mathews FS. Biochemistry 49 3631-3639 (2010)
  29. Crystal structure of heterotetrameric sarcosine oxidase from Corynebacterium sp. U-96. Ida K, Moriguchi T, Suzuki H. Biochem. Biophys. Res. Commun. 333 359-366 (2005)
  30. Engineering of dye-mediated dehydrogenase property of fructosyl amino acid oxidases by site-directed mutagenesis studies of its putative proton relay system. Kim S, Nibe E, Ferri S, Tsugawa W, Sode K. Biotechnol. Lett. 32 1123-1129 (2010)
  31. NikD, an unusual amino acid oxidase essential for nikkomycin biosynthesis: structures of closed and open forms at 1.15 and 1.90 A resolution. Carrell CJ, Bruckner RC, Venci D, Zhao G, Jorns MS, Mathews FS. Structure 15 928-941 (2007)
  32. An inter-order horizontal gene transfer event enables the catabolism of compatible solutes by Colwellia psychrerythraea 34H. Collins RE, Deming JW. Extremophiles 17 601-610 (2013)
  33. Characterization of mitochondrial FOXRED1 in the assembly of respiratory chain complex I. Formosa LE, Mimaki M, Frazier AE, McKenzie M, Stait TL, Thorburn DR, Stroud DA, Ryan MT. Hum. Mol. Genet. 24 2952-2965 (2015)
  34. Identification, purification, and characterization of iminodiacetate oxidase from the EDTA-degrading bacterium BNC1. Liu Y, Louie TM, Payne J, Bohuslavek J, Bolton H, Xun L. Appl. Environ. Microbiol. 67 696-701 (2001)
  35. The X-ray structure of N-methyltryptophan oxidase reveals the structural determinants of substrate specificity. Ilari A, Bonamore A, Franceschini S, Fiorillo A, Boffi A, Colotti G. Proteins 71 2065-2075 (2008)
  36. Cloning, expression and crystallization of heterotetrameric sarcosine oxidase from Pseudomonas maltophilia. Hassan-Abdallah A, Zhao G, Eschenbrenner M, Chen ZW, Mathews FS, Jorns MS. Protein Expr. Purif. 43 33-43 (2005)
  37. Characterization of a novel dye-linked L-proline dehydrogenase from an aerobic hyperthermophilic archaeon, Pyrobaculum calidifontis. Satomura T, Zhang XD, Hara Y, Doi K, Sakuraba H, Ohshima T. Appl. Microbiol. Biotechnol. 89 1075-1082 (2011)
  38. Insights into the mechanisms of flavoprotein oxidases from kinetic isotope effects. Fitzpatrick PF. J Labelled Comp Radiopharm 50 1016-1025 (2007)
  39. Structures of dimethylsulfoniopropionate-dependent demethylase from the marine organism Pelagabacter ubique. Schuller DJ, Reisch CR, Moran MA, Whitman WB, Lanzilotta WN. Protein Sci. 21 289-298 (2012)
  40. X-ray, ESR, and quantum mechanics studies unravel a spin well in the cofactor-less urate oxidase. Gabison L, Chopard C, Colloc'h N, Peyrot F, Castro B, El Hajji M, Altarsha M, Monard G, Chiadmi M, Prangé T. Proteins 79 1964-1976 (2011)
  41. Oxygen Pathways and Allostery in Monomeric Sarcosine Oxidase via Single-Sweep Free-Energy Reconstruction. Bucci A, Abrams CF. J Chem Theory Comput 10 2668-2676 (2014)
  42. Glycine oxidase from Bacillus subtilis: role of histidine 244 and methionine 261. Boselli A, Rosini E, Marcone GL, Sacchi S, Motteran L, Pilone MS, Pollegioni L, Molla G. Biochimie 89 1372-1380 (2007)
  43. Catalytic and structural role of a conserved active site histidine in berberine bridge enzyme. Wallner S, Winkler A, Riedl S, Dully C, Horvath S, Gruber K, Macheroux P. Biochemistry 51 6139-6147 (2012)
  44. Spectral and kinetic characterization of intermediates in the aromatization reaction catalyzed by NikD, an unusual amino acid oxidase. Bruckner RC, Jorns MS. Biochemistry 48 4455-4465 (2009)
  45. Probing the role of active site residues in NikD, an unusual amino acid oxidase that catalyzes an aromatization reaction important in nikkomycin biosynthesis. Kommoju PR, Bruckner RC, Ferreira P, Jorns MS. Biochemistry 48 6951-6962 (2009)
  46. Dynamic changes in proteins during apple (Malus x domestica) fruit ripening and storage. Shi Y, Jiang L, Zhang L, Kang R, Yu Z. Hortic Res 1 6 (2014)
  47. Kinetic mechanism of putrescine oxidase from Rhodococcus erythropolis. Kopacz MM, Heuts DP, Fraaije MW. FEBS J. 281 4384-4393 (2014)
  48. Mechanistic and structural analyses of the role of His67 in the yeast polyamine oxidase Fms1. Adachi MS, Taylor AB, Hart PJ, Fitzpatrick PF. Biochemistry 51 4888-4897 (2012)
  49. FAD binding in glycine oxidase from Bacillus subtilis. Caldinelli L, Pedotti M, Motteran L, Molla G, Pollegioni L. Biochimie 91 1499-1508 (2009)
  50. Factors that affect oxygen activation and coupling of the two redox cycles in the aromatization reaction catalyzed by NikD, an unusual amino acid oxidase. Kommoju PR, Bruckner RC, Ferreira P, Carrell CJ, Mathews FS, Jorns MS. Biochemistry 48 9542-9555 (2009)
  51. A continuous enzyme assay and characterisation of fructosyl amine oxidase enzymes (EC 1.5.3). Miller AG, Hegge S, Uhlmann A, Gerrard JA. Arch. Biochem. Biophys. 434 60-66 (2005)
  52. Binding of the Covalent Flavin Assembly Factor to the Flavoprotein Subunit of Complex II. Maklashina E, Rajagukguk S, Starbird CA, McDonald WH, Koganitsky A, Eisenbach M, Iverson TM, Cecchini G. J. Biol. Chem. 291 2904-2916 (2016)
  53. The cation-π interaction between Lys53 and the flavin of fructosamine oxidase (FAOX-II) is critical for activity. Collard F, Fagan RL, Zhang J, Nemet I, Palfey BA, Monnier VM. Biochemistry 50 7977-7986 (2011)
  54. Pleiotropic impact of a single lysine mutation on biosynthesis of and catalysis by N-methyltryptophan oxidase. Bruckner RC, Winans J, Jorns MS. Biochemistry 50 4949-4962 (2011)
  55. Catalytic and redox properties of glycine oxidase from Bacillus subtilis. Pedotti M, Ghisla S, Motteran L, Molla G, Pollegioni L. Biochimie 91 604-612 (2009)
  56. A mutant sarcosine oxidase in which activity depends on flavin adenine dinucleotide. Nishiya Y. Protein Expr. Purif. 20 95-97 (2000)
  57. Identification of a stable flavin-thiolate adduct in heterotetrameric sarcosine oxidase. Hynson RM, Mathews FS, Schuman Jorns M. J. Mol. Biol. 362 656-663 (2006)
  58. Deuterium kinetic isotope effects in heterotetrameric sarcosine oxidase from Corynebacterium sp. U-96: the anionic form of the substrate in the enzyme-substrate complex is a reactive species. Saito M, Itoh A, Suzuki H. J. Biochem. 151 633-642 (2012)
  59. Turning a monocovalent flavoprotein into a bicovalent flavoprotein by structure-inspired mutagenesis. Kopacz MM, Fraaije MW. Bioorg. Med. Chem. 22 5621-5627 (2014)
  60. Enantioselective Oxidative Aerobic Dealkylation of N-Ethyl Benzylisoquinolines by Employing the Berberine Bridge Enzyme. Gandomkar S, Fischereder EM, Schrittwieser JH, Wallner S, Habibi Z, Macheroux P, Kroutil W. Angew. Chem. Int. Ed. Engl. 54 15051-15054 (2015)
  61. Kinetics of O2 Entry and Exit in Monomeric Sarcosine Oxidase via Markovian Milestoning Molecular Dynamics. Bucci A, Yu TQ, Vanden-Eijnden E, Abrams CF. J Chem Theory Comput 12 2964-2972 (2016)
  62. X-ray structures of fructosyl peptide oxidases revealing residues responsible for gating oxygen access in the oxidative half reaction. Shimasaki T, Yoshida H, Kamitori S, Sode K. Sci Rep 7 2790 (2017)