2g2i Citations

A Src-like inactive conformation in the abl tyrosine kinase domain.

PLoS Biol 4 e144 (2006)
Related entries: 2g1t, 2g2f, 2g2h

Cited: 183 times
EuropePMC logo PMID: 16640460

Abstract

The improper activation of the Abl tyrosine kinase results in chronic myeloid leukemia (CML). The recognition of an inactive conformation of Abl, in which a catalytically important Asp-Phe-Gly (DFG) motif is flipped by approximately 180 degrees with respect to the active conformation, underlies the specificity of the cancer drug imatinib, which is used to treat CML. The DFG motif is not flipped in crystal structures of inactive forms of the closely related Src kinases, and imatinib does not inhibit c-Src. We present a structure of the kinase domain of Abl, determined in complex with an ATP-peptide conjugate, in which the protein adopts an inactive conformation that resembles closely that of the Src kinases. An interesting aspect of the Src-like inactive structure, suggested by molecular dynamics simulations and additional crystal structures, is the presence of features that might facilitate the flip of the DFG motif by providing room for the phenylalanine to move and by coordinating the aspartate side chain as it leaves the active site. One class of mutations in BCR-Abl that confers resistance to imatinib appears more likely to destabilize the inactive Src-like conformation than the active or imatinib-bound conformations. Our results suggest that interconversion between distinctly different inactive conformations is a characteristic feature of the Abl kinase domain.

Reviews - 2g2i mentioned but not cited (2)

  1. Catalytic control in the EGF receptor and its connection to general kinase regulatory mechanisms. Jura N, Zhang X, Endres NF, Seeliger MA, Schindler T, Kuriyan J. Mol Cell 42 9-22 (2011)
  2. Structural features of the protein kinase domain and targeted binding by small-molecule inhibitors. Arter C, Trask L, Ward S, Yeoh S, Bayliss R. J Biol Chem 298 102247 (2022)

Articles - 2g2i mentioned but not cited (19)

  1. Activation of tyrosine kinases by mutation of the gatekeeper threonine. Azam M, Seeliger MA, Gray NS, Kuriyan J, Daley GQ. Nat Struct Mol Biol 15 1109-1118 (2008)
  2. Kinase dynamics. Using ancient protein kinases to unravel a modern cancer drug's mechanism. Wilson C, Agafonov RV, Hoemberger M, Kutter S, Zorba A, Halpin J, Buosi V, Otten R, Waterman D, Theobald DL, Kern D. Science 347 882-886 (2015)
  3. Structure-based reassessment of the caveolin signaling model: do caveolae regulate signaling through caveolin-protein interactions? Collins BM, Davis MJ, Hancock JF, Parton RG. Dev Cell 23 11-20 (2012)
  4. mCSM-lig: quantifying the effects of mutations on protein-small molecule affinity in genetic disease and emergence of drug resistance. Pires DE, Blundell TL, Ascher DB. Sci Rep 6 29575 (2016)
  5. Crystal structures of the FAK kinase in complex with TAE226 and related bis-anilino pyrimidine inhibitors reveal a helical DFG conformation. Lietha D, Eck MJ. PLoS One 3 e3800 (2008)
  6. Highly specific, bisubstrate-competitive Src inhibitors from DNA-templated macrocycles. Georghiou G, Kleiner RE, Pulkoski-Gross M, Liu DR, Seeliger MA. Nat Chem Biol 8 366-374 (2012)
  7. Design of substrate-based BCR-ABL kinase inhibitors using the cyclotide scaffold. Huang YH, Henriques ST, Wang CK, Thorstholm L, Daly NL, Kaas Q, Craik DJ. Sci Rep 5 12974 (2015)
  8. Targeting substrate-site in Jak2 kinase prevents emergence of genetic resistance. Kesarwani M, Huber E, Kincaid Z, Evelyn CR, Biesiada J, Rance M, Thapa MB, Shah NP, Meller J, Zheng Y, Azam M. Sci Rep 5 14538 (2015)
  9. AlphaFill: enriching AlphaFold models with ligands and cofactors. Hekkelman ML, de Vries I, Joosten RP, Perrakis A. Nat Methods 20 205-213 (2023)
  10. Convolutional neural network scoring and minimization in the D3R 2017 community challenge. Sunseri J, King JE, Francoeur PG, Koes DR, Koes DR. J Comput Aided Mol Des 33 19-34 (2019)
  11. Crystal structures of ABL-related gene (ABL2) in complex with imatinib, tozasertib (VX-680), and a type I inhibitor of the triazole carbothioamide class. Salah E, Ugochukwu E, Barr AJ, von Delft F, Knapp S, Elkins JM. J Med Chem 54 2359-2367 (2011)
  12. Crystal structure of an SH2-kinase construct of c-Abl and effect of the SH2 domain on kinase activity. Lorenz S, Deng P, Hantschel O, Superti-Furga G, Kuriyan J. Biochem J 468 283-291 (2015)
  13. Toward the design of mutation-resistant enzyme inhibitors: further evaluation of the substrate envelope hypothesis. Kairys V, Gilson MK, Lather V, Schiffer CA, Fernandes MX. Chem Biol Drug Des 74 234-245 (2009)
  14. Mutation in Abl kinase with altered drug-binding kinetics indicates a novel mechanism of imatinib resistance. Lyczek A, Berger BT, Rangwala AM, Paung Y, Tom J, Philipose H, Guo J, Albanese SK, Robers MB, Knapp S, Chodera JD, Seeliger MA. Proc Natl Acad Sci U S A 118 e2111451118 (2021)
  15. FTMove: A Web Server for Detection and Analysis of Cryptic and Allosteric Binding Sites by Mapping Multiple Protein Structures. Egbert M, Jones G, Collins MR, Kozakov D, Vajda S. J Mol Biol 434 167587 (2022)
  16. Allosteric regulation of autoinhibition and activation of c-Abl. Liu Y, Zhang M, Tsai CJ, Jang H, Nussinov R. Comput Struct Biotechnol J 20 4257-4270 (2022)
  17. Evolutionary divergence in the conformational landscapes of tyrosine vs serine/threonine kinases. Gizzio J, Thakur A, Haldane A, Levy RM. Elife 11 e83368 (2022)
  18. research-article AlphaFold2 models of the active form of all 437 catalytically competent human protein kinase domains. Faezov B, Dunbrack RL. bioRxiv 2023.07.21.550125 (2023)
  19. Evaluation of residue variability in a conformation-specific context and during evolutionary sequence reconstruction narrows drug resistance selection in Abl1 tyrosine kinase. Otsuka FAM, Bjelic S. Protein Sci 31 e4354 (2022)


Reviews citing this publication (32)

  1. Paul Ehrlich's magic bullet concept: 100 years of progress. Strebhardt K, Ullrich A. Nat Rev Cancer 8 473-480 (2008)
  2. Molecular biology of bcr-abl1-positive chronic myeloid leukemia. Quintás-Cardama A, Cortes J. Blood 113 1619-1630 (2009)
  3. Flying under the radar: the new wave of BCR-ABL inhibitors. Quintás-Cardama A, Kantarjian H, Cortes J. Nat Rev Drug Discov 6 834-848 (2007)
  4. The chemical biology of protein phosphorylation. Tarrant MK, Cole PA. Annu Rev Biochem 78 797-825 (2009)
  5. The capable ABL: what is its biological function? Wang JY. Mol Cell Biol 34 1188-1197 (2014)
  6. Mechanisms of drug resistance in kinases. Barouch-Bentov R, Sauer K. Expert Opin Investig Drugs 20 153-208 (2011)
  7. Protein-protein interactions in the allosteric regulation of protein kinases. Pellicena P, Kuriyan J. Curr Opin Struct Biol 16 702-709 (2006)
  8. Cancer driver mutations in protein kinase genes. Torkamani A, Verkhivker G, Schork NJ. Cancer Lett 281 117-127 (2009)
  9. Structure and dynamic regulation of Abl kinases. Panjarian S, Iacob RE, Chen S, Engen JR, Smithgall TE. J Biol Chem 288 5443-5450 (2013)
  10. Catalytic mechanisms and regulation of protein kinases. Wang Z, Cole PA. Methods Enzymol 548 1-21 (2014)
  11. Bisubstrate inhibitors of protein kinases: from principle to practical applications. Lavogina D, Enkvist E, Uri A. ChemMedChem 5 23-34 (2010)
  12. Signaling, Regulation, and Specificity of the Type II p21-activated Kinases. Ha BH, Morse EM, Turk BE, Boggon TJ. J Biol Chem 290 12975-12983 (2015)
  13. The Src module: an ancient scaffold in the evolution of cytoplasmic tyrosine kinases. Shah NH, Amacher JF, Nocka LM, Kuriyan J. Crit Rev Biochem Mol Biol 53 535-563 (2018)
  14. Protein tyrosine kinase-substrate interactions. Bose R, Holbert MA, Pickin KA, Cole PA. Curr Opin Struct Biol 16 668-675 (2006)
  15. The ErbB kinase domain: structural perspectives into kinase activation and inhibition. Bose R, Zhang X. Exp Cell Res 315 649-658 (2009)
  16. Proteus in the world of proteins: conformational changes in protein kinases. Rabiller M, Getlik M, Klüter S, Richters A, Tückmantel S, Simard JR, Rauh D. Arch Pharm (Weinheim) 343 193-206 (2010)
  17. Understanding and exploiting substrate recognition by protein kinases. Turk BE. Curr Opin Chem Biol 12 4-10 (2008)
  18. Structural biology contributions to tyrosine kinase drug discovery. Cowan-Jacob SW, Möbitz H, Fabbro D. Curr Opin Cell Biol 21 280-287 (2009)
  19. Abl tyrosine kinase inhibitors for overriding Bcr-Abl/T315I: from the second to third generation. Tanaka R, Kimura S. Expert Rev Anticancer Ther 8 1387-1398 (2008)
  20. The use of structural biology in Janus kinase targeted drug discovery. Alicea-Velázquez NL, Boggon TJ. Curr Drug Targets 12 546-555 (2011)
  21. Design principles underpinning the regulatory diversity of protein kinases. Oruganty K, Kannan N. Philos Trans R Soc Lond B Biol Sci 367 2529-2539 (2012)
  22. The multifaceted allosteric regulation of Aurora kinase A. Levinson NM. Biochem J 475 2025-2042 (2018)
  23. Ghrelin O-acyltransferase assays and inhibition. Taylor MS, Taylor MS, Hwang Y, Hsiao PY, Boeke JD, Cole PA. Methods Enzymol 514 205-228 (2012)
  24. Guidelines for the successful generation of protein-ligand complex crystals. Müller I. Acta Crystallogr D Struct Biol 73 79-92 (2017)
  25. Molecular mechanisms of asymmetric RAF dimer activation. Jambrina PG, Bohuszewicz O, Buchete NV, Kolch W, Rosta E. Biochem Soc Trans 42 784-790 (2014)
  26. Allosteric Regulation at the Crossroads of New Technologies: Multiscale Modeling, Networks, and Machine Learning. Verkhivker GM, Agajanian S, Hu G, Tao P. Front Mol Biosci 7 136 (2020)
  27. Modeling conformational transitions in kinases by molecular dynamics simulations: achievements, difficulties, and open challenges. D'Abramo M, Besker N, Chillemi G, Grottesi A. Front Genet 5 128 (2014)
  28. Predictive in silico off-target profiling in drug discovery. Schmidt F, Matter H, Hessler G, Czich A. Future Med Chem 6 295-317 (2014)
  29. Bacterial type II toxin-antitoxin systems acting through post-translational modifications. Zhang SP, Feng HZ, Wang Q, Kempher ML, Quan SW, Tao X, Niu S, Wang Y, Feng HY, He YX. Comput Struct Biotechnol J 19 86-93 (2021)
  30. Molecular mechanisms of drug resistance in tyrosine kinases cAbl and cKit. DiNitto JP, Wu JC. Crit Rev Biochem Mol Biol 46 295-309 (2011)
  31. Looking lively: emerging principles of pseudokinase signaling. Sheetz JB, Lemmon MA. Trends Biochem Sci 47 875-891 (2022)
  32. Rho family GTPase signaling through type II p21-activated kinases. Chetty AK, Ha BH, Boggon TJ. Cell Mol Life Sci 79 598 (2022)

Articles citing this publication (130)

  1. An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Zhang X, Gureasko J, Shen K, Cole PA, Kuriyan J. Cell 125 1137-1149 (2006)
  2. Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia. Smith CC, Wang Q, Chin CS, Salerno S, Damon LE, Levis MJ, Perl AE, Travers KJ, Wang S, Hunt JP, Zarrinkar PP, Schadt EE, Kasarskis A, Kuriyan J, Shah NP. Nature 485 260-263 (2012)
  3. Surface comparison of active and inactive protein kinases identifies a conserved activation mechanism. Kornev AP, Haste NM, Taylor SS, Eyck LF. Proc Natl Acad Sci U S A 103 17783-17788 (2006)
  4. Structural analysis of the catalytically inactive kinase domain of the human EGF receptor 3. Jura N, Shan Y, Cao X, Shaw DE, Kuriyan J. Proc Natl Acad Sci U S A 106 21608-21613 (2009)
  5. Assessing the performance of MM/PBSA and MM/GBSA methods. 5. Improved docking performance using high solute dielectric constant MM/GBSA and MM/PBSA rescoring. Sun H, Li Y, Shen M, Tian S, Xu L, Pan P, Guan Y, Hou T. Phys Chem Chem Phys 16 22035-22045 (2014)
  6. Structural and functional diversity of the microbial kinome. Kannan N, Taylor SS, Zhai Y, Venter JC, Manning G. PLoS Biol 5 e17 (2007)
  7. Identification of driver and passenger mutations of FLT3 by high-throughput DNA sequence analysis and functional assessment of candidate alleles. Fröhling S, Scholl C, Levine RL, Loriaux M, Boggon TJ, Bernard OA, Berger R, Döhner H, Döhner K, Ebert BL, Teckie S, Golub TR, Jiang J, Schittenhelm MM, Lee BH, Griffin JD, Stone RM, Heinrich MC, Deininger MW, Druker BJ, Gilliland DG. Cancer Cell 12 501-513 (2007)
  8. c-Src binds to the cancer drug imatinib with an inactive Abl/c-Kit conformation and a distributed thermodynamic penalty. Seeliger MA, Nagar B, Frank F, Cao X, Henderson MN, Kuriyan J. Structure 15 299-311 (2007)
  9. Structural and energetic mechanisms of cooperative autoinhibition and activation of Vav1. Yu B, Martins IR, Li P, Amarasinghe GK, Umetani J, Fernandez-Zapico ME, Billadeau DD, Machius M, Tomchick DR, Rosen MK. Cell 140 246-256 (2010)
  10. Structural insights into RIP3-mediated necroptotic signaling. Xie T, Peng W, Yan C, Wu J, Gong X, Shi Y. Cell Rep 5 70-78 (2013)
  11. Transitions to catalytically inactive conformations in EGFR kinase. Shan Y, Arkhipov A, Kim ET, Pan AC, Shaw DE. Proc Natl Acad Sci U S A 110 7270-7275 (2013)
  12. Mechanism of activation and inhibition of the HER4/ErbB4 kinase. Qiu C, Tarrant MK, Choi SH, Sathyamurthy A, Bose R, Banjade S, Pal A, Bornmann WG, Lemmon MA, Cole PA, Leahy DJ. Structure 16 460-467 (2008)
  13. Deciphering the structural basis of eukaryotic protein kinase regulation. Meharena HS, Chang P, Keshwani MM, Oruganty K, Nene AK, Kannan N, Taylor SS, Kornev AP. PLoS Biol 11 e1001680 (2013)
  14. The precise sequence of FGF receptor autophosphorylation is kinetically driven and is disrupted by oncogenic mutations. Lew ED, Furdui CM, Anderson KS, Schlessinger J. Sci Signal 2 ra6 (2009)
  15. Equally potent inhibition of c-Src and Abl by compounds that recognize inactive kinase conformations. Seeliger MA, Ranjitkar P, Kasap C, Shan Y, Shaw DE, Shah NP, Kuriyan J, Maly DJ. Cancer Res 69 2384-2392 (2009)
  16. Defining a new nomenclature for the structures of active and inactive kinases. Modi V, Dunbrack RL. Proc Natl Acad Sci U S A 116 6818-6827 (2019)
  17. Structural basis for the recognition of c-Src by its inactivator Csk. Levinson NM, Seeliger MA, Cole PA, Kuriyan J. Cell 134 124-134 (2008)
  18. Explaining why Gleevec is a specific and potent inhibitor of Abl kinase. Lin YL, Meng Y, Jiang W, Roux B. Proc Natl Acad Sci U S A 110 1664-1669 (2013)
  19. Mapping the conformational transition in Src activation by cumulating the information from multiple molecular dynamics trajectories. Yang S, Banavali NK, Roux B. Proc Natl Acad Sci U S A 106 3776-3781 (2009)
  20. Attenuation of yeast UPR is essential for survival and is mediated by IRE1 kinase. Chawla A, Chakrabarti S, Ghosh G, Niwa M. J Cell Biol 193 41-50 (2011)
  21. Ligand-induced global transitions in the catalytic domain of protein kinase A. Hyeon C, Jennings PA, Adams JA, Onuchic JN. Proc Natl Acad Sci U S A 106 3023-3028 (2009)
  22. Structure guided design of potent and selective ponatinib-based hybrid inhibitors for RIPK1. Najjar M, Suebsuwong C, Ray SS, Thapa RJ, Maki JL, Nogusa S, Shah S, Saleh D, Gough PJ, Bertin J, Yuan J, Balachandran S, Cuny GD, Degterev A. Cell Rep 10 1850-1860 (2015)
  23. Conformational states dynamically populated by a kinase determine its function. Xie T, Saleh T, Rossi P, Kalodimos CG. Science 370 eabc2754 (2020)
  24. Energetic dissection of Gleevec's selectivity toward human tyrosine kinases. Agafonov RV, Wilson C, Otten R, Buosi V, Kern D. Nat Struct Mol Biol 21 848-853 (2014)
  25. Small molecule recognition of c-Src via the Imatinib-binding conformation. Dar AC, Lopez MS, Shokat KM. Chem Biol 15 1015-1022 (2008)
  26. Structural and spectroscopic analysis of the kinase inhibitor bosutinib and an isomer of bosutinib binding to the Abl tyrosine kinase domain. Levinson NM, Boxer SG. PLoS One 7 e29828 (2012)
  27. The gatekeeper residue controls autoactivation of ERK2 via a pathway of intramolecular connectivity. Emrick MA, Lee T, Starkey PJ, Mumby MC, Resing KA, Ahn NG. Proc Natl Acad Sci U S A 103 18101-18106 (2006)
  28. A new screening assay for allosteric inhibitors of cSrc. Simard JR, Klüter S, Grütter C, Getlik M, Rabiller M, Rode HB, Rauh D. Nat Chem Biol 5 394-396 (2009)
  29. Global consequences of activation loop phosphorylation on protein kinase A. Steichen JM, Iyer GH, Li S, Saldanha SA, Deal MS, Woods VL, Taylor SS. J Biol Chem 285 3825-3832 (2010)
  30. Mechanistic insights into the activation of oncogenic forms of EGF receptor. Wang Z, Longo PA, Tarrant MK, Kim K, Head S, Leahy DJ, Cole PA. Nat Struct Mol Biol 18 1388-1393 (2011)
  31. An electrostatic selection mechanism controls sequential kinase signaling downstream of the T cell receptor. Shah NH, Wang Q, Yan Q, Karandur D, Kadlecek TA, Fallahee IR, Russ WP, Ranganathan R, Weiss A, Kuriyan J. Elife 5 e20105 (2016)
  32. Structural insight into selectivity and resistance profiles of ROS1 tyrosine kinase inhibitors. Davare MA, Vellore NA, Wagner JP, Eide CA, Goodman JR, Drilon A, Deininger MW, O'Hare T, Druker BJ. Proc Natl Acad Sci U S A 112 E5381-90 (2015)
  33. Structure, regulation, signaling, and targeting of abl kinases in cancer. Hantschel O. Genes Cancer 3 436-446 (2012)
  34. The ins and outs of bcr-abl inhibition. Reddy EP, Aggarwal AK. Genes Cancer 3 447-454 (2012)
  35. Properties of protein drug target classes. Bull SC, Doig AJ. PLoS One 10 e0117955 (2015)
  36. An electrostatic network and long-range regulation of Src kinases. Ozkirimli E, Yadav SS, Miller WT, Post CB. Protein Sci 17 1871-1880 (2008)
  37. Insights into the conformational variability and regulation of human Nek2 kinase. Westwood I, Cheary DM, Baxter JE, Richards MW, van Montfort RL, Fry AM, Bayliss R. J Mol Biol 386 476-485 (2009)
  38. Classifying protein kinase structures guides use of ligand-selectivity profiles to predict inactive conformations: structure of lck/imatinib complex. Jacobs MD, Caron PR, Hare BJ. Proteins 70 1451-1460 (2008)
  39. In vitro enzymatic characterization of near full length EGFR in activated and inhibited states. Qiu C, Tarrant MK, Boronina T, Longo PA, Kavran JM, Cole RN, Cole PA, Leahy DJ. Biochemistry 48 6624-6632 (2009)
  40. Tyrosine Kinase Activation and Conformational Flexibility: Lessons from Src-Family Tyrosine Kinases. Meng Y, Pond MP, Roux B. Acc Chem Res 50 1193-1201 (2017)
  41. A water-mediated allosteric network governs activation of Aurora kinase A. Cyphers S, Ruff EF, Behr JM, Chodera JD, Levinson NM. Nat Chem Biol 13 402-408 (2017)
  42. Fragment-based discovery of JAK-2 inhibitors. Antonysamy S, Hirst G, Park F, Sprengeler P, Stappenbeck F, Steensma R, Wilson M, Wong M. Bioorg Med Chem Lett 19 279-282 (2009)
  43. Conformation-Selective Analogues of Dasatinib Reveal Insight into Kinase Inhibitor Binding and Selectivity. Kwarcinski FE, Brandvold KR, Phadke S, Beleh OM, Johnson TK, Meagher JL, Seeliger MA, Stuckey JA, Soellner MB. ACS Chem Biol 11 1296-1304 (2016)
  44. Small-molecule inhibitors binding to protein kinase. Part II: the novel pharmacophore approach of type II and type III inhibition. Backes A, Zech B, Felber B, Klebl B, Müller G. Expert Opin Drug Discov 3 1427-1449 (2008)
  45. Molecular basis explanation for imatinib resistance of BCR-ABL due to T315I and P-loop mutations from molecular dynamics simulations. Lee TS, Potts SJ, Kantarjian H, Cortes J, Giles F, Albitar M. Cancer 112 1744-1753 (2008)
  46. Redefining the Protein Kinase Conformational Space with Machine Learning. Ung PM, Rahman R, Schlessinger A. Cell Chem Biol 25 916-924.e2 (2018)
  47. Enhancement of ABL kinase catalytic efficiency by a direct binding regulator is independent of other regulatory mechanisms. Cao X, Tanis KQ, Koleske AJ, Colicelli J. J Biol Chem 283 31401-31407 (2008)
  48. Interplay between kinase domain autophosphorylation and F-actin binding domain in regulating imatinib sensitivity and nuclear import of BCR-ABL. Preyer M, Vigneri P, Wang JY. PLoS One 6 e17020 (2011)
  49. Mitotic spindle association of TACC3 requires Aurora-A-dependent stabilization of a cryptic α-helix. Burgess SG, Mukherjee M, Sabir S, Joseph N, Gutiérrez-Caballero C, Richards MW, Huguenin-Dezot N, Chin JW, Kennedy EJ, Pfuhl M, Royle SJ, Gergely F, Bayliss R. EMBO J 37 e97902 (2018)
  50. DFG-out mode of inhibition by an irreversible type-1 inhibitor capable of overcoming gate-keeper mutations in FGF receptors. Huang Z, Tan L, Wang H, Liu Y, Blais S, Deng J, Neubert TA, Gray NS, Li X, Mohammadi M. ACS Chem Biol 10 299-309 (2015)
  51. Divergent kinase regulates membrane ultrastructure of the Toxoplasma parasitophorous vacuole. Beraki T, Hu X, Broncel M, Young JC, O'Shaughnessy WJ, Borek D, Treeck M, Reese ML. Proc Natl Acad Sci U S A 116 6361-6370 (2019)
  52. EGF-receptor specificity for phosphotyrosine-primed substrates provides signal integration with Src. Begley MJ, Yun CH, Gewinner CA, Asara JM, Johnson JL, Coyle AJ, Eck MJ, Apostolou I, Cantley LC. Nat Struct Mol Biol 22 983-990 (2015)
  53. Millisecond dynamics of BTK reveal kinome-wide conformational plasticity within the apo kinase domain. Sultan MM, Denny RA, Unwalla R, Lovering F, Pande VS. Sci Rep 7 15604 (2017)
  54. Towards simple kinetic models of functional dynamics for a kinase subfamily. Sultan MM, Kiss G, Pande VS. Nat Chem 10 903-909 (2018)
  55. Identification of a hidden strain switch provides clues to an ancient structural mechanism in protein kinases. Oruganty K, Talathi NS, Wood ZA, Kannan N. Proc Natl Acad Sci U S A 110 924-929 (2013)
  56. Molecular mechanism of ATP versus GTP selectivity of adenylate kinase. Rogne P, Rosselin M, Grundström C, Hedberg C, Sauer UH, Wolf-Watz M. Proc Natl Acad Sci U S A 115 3012-3017 (2018)
  57. The apo-structure of the low molecular weight protein-tyrosine phosphatase A (MptpA) from Mycobacterium tuberculosis allows for better target-specific drug development. Stehle T, Sreeramulu S, Löhr F, Richter C, Saxena K, Jonker HR, Schwalbe H. J Biol Chem 287 34569-34582 (2012)
  58. BCR-ABL residues interacting with ponatinib are critical to preserve the tumorigenic potential of the oncoprotein. Buffa P, Romano C, Pandini A, Massimino M, Tirrò E, Di Raimondo F, Manzella L, Fraternali F, Vigneri PG. FASEB J 28 1221-1236 (2014)
  59. Conformation-selective inhibitors reveal differences in the activation and phosphate-binding loops of the tyrosine kinases Abl and Src. Hari SB, Perera BG, Ranjitkar P, Seeliger MA, Maly DJ. ACS Chem Biol 8 2734-2743 (2013)
  60. Molecular Determinants Underlying Binding Specificities of the ABL Kinase Inhibitors: Combining Alanine Scanning of Binding Hot Spots with Network Analysis of Residue Interactions and Coevolution. Tse A, Verkhivker GM. PLoS One 10 e0130203 (2015)
  61. Predicting inactive conformations of protein kinases using active structures: conformational selection of type-II inhibitors. Xu M, Yu L, Wan B, Yu L, Huang Q. PLoS One 6 e22644 (2011)
  62. A Comparison of Three Perturbation Molecular Dynamics Methods for Modeling Conformational Transitions. Huang H, Ozkirimli E, Post CB. J Chem Theory Comput 5 1301-1314 (2009)
  63. An Open Library of Human Kinase Domain Constructs for Automated Bacterial Expression. Albanese SK, Parton DL, Işık M, Rodríguez-Laureano L, Hanson SM, Behr JM, Gradia S, Jeans C, Levinson NM, Seeliger MA, Chodera JD. Biochemistry 57 4675-4689 (2018)
  64. Dynamics of human protein kinase Aurora A linked to drug selectivity. Pitsawong W, Buosi V, Otten R, Agafonov RV, Zorba A, Kern N, Kutter S, Kern G, Pádua RA, Meniche X, Kern D. Elife 7 e36656 (2018)
  65. In silico profiling of tyrosine kinases binding specificity and drug resistance using Monte Carlo simulations with the ensembles of protein kinase crystal structures. Verkhivker GM. Biopolymers 85 333-348 (2007)
  66. SRC points the way to biomarkers and chemotherapeutic targets. Krishnan H, Miller WT, Goldberg GS. Genes Cancer 3 426-435 (2012)
  67. A rapid identification of hit molecules for target proteins via physico-chemical descriptors. Mukherjee G, Jayaram B. Phys Chem Chem Phys 15 9107-9116 (2013)
  68. All-atomic molecular dynamic studies of human CDK8: insight into the A-loop, point mutations and binding with its partner CycC. Xu W, Amire-Brahimi B, Xie XJ, Huang L, Ji JY. Comput Biol Chem 51 1-11 (2014)
  69. How Electrostatic Coupling Enables Conformational Plasticity in a Tyrosine Kinase. Tsai CC, Yue Z, Shen J. J Am Chem Soc 141 15092-15101 (2019)
  70. Scaffold mining of kinase hinge binders in crystal structure database. Xing L, Rai B, Lunney EA. J Comput Aided Mol Des 28 13-23 (2014)
  71. Substrate and inhibitor specificity of the type II p21-activated kinase, PAK6. Gao J, Ha BH, Lou HJ, Morse EM, Zhang R, Calderwood DA, Turk BE, Boggon TJ. PLoS One 8 e77818 (2013)
  72. Conformational dynamics of the EGFR kinase domain reveals structural features involved in activation. Papakyriakou A, Vourloumis D, Tzortzatou-Stathopoulou F, Karpusas M. Proteins 76 375-386 (2009)
  73. Molecular Dynamics Simulations and Classical Multidimensional Scaling Unveil New Metastable States in the Conformational Landscape of CDK2. Pisani P, Caporuscio F, Carlino L, Rastelli G. PLoS One 11 e0154066 (2016)
  74. Quantifying signal changes in nano-wire based biosensors. De Vico L, Sørensen MH, Iversen L, Rogers DM, Sørensen BS, Brandbyge M, Nygård J, Martinez KL, Jensen JH. Nanoscale 3 706-717 (2011)
  75. The G2019S pathogenic mutation disrupts sensitivity of leucine-rich repeat kinase 2 to manganese kinase inhibition. Covy JP, Giasson BI. J Neurochem 115 36-46 (2010)
  76. Investigating Phosphorylation-Induced Conformational Changes in WNK1 Kinase by Molecular Dynamics Simulations. Jonniya NA, Sk MF, Kar P. ACS Omega 4 17404-17416 (2019)
  77. Kincore: a web resource for structural classification of protein kinases and their inhibitors. Modi V, Dunbrack RL. Nucleic Acids Res 50 D654-D664 (2022)
  78. Targeting the unactivated conformations of protein kinases for small molecule drug discovery. Alton GR, Lunney EA. Expert Opin Drug Discov 3 595-605 (2008)
  79. A molecular mechanics model for imatinib and imatinib:kinase binding. Aleksandrov A, Simonson T. J Comput Chem 31 1550-1560 (2010)
  80. The architecture of EssB, an integral membrane component of the type VII secretion system. Zoltner M, Norman DG, Fyfe PK, El Mkami H, Palmer T, Hunter WN. Structure 21 595-603 (2013)
  81. The transition between active and inactive conformations of Abl kinase studied by rock climbing and Milestoning. Narayan B, Fathizadeh A, Templeton C, He P, Arasteh S, Elber R, Buchete NV, Levy RM. Biochim Biophys Acta Gen Subj 1864 129508 (2020)
  82. Computational proteomics of biomolecular interactions in the sequence and structure space of the tyrosine kinome: deciphering the molecular basis of the kinase inhibitors selectivity. Verkhivker GM. Proteins 66 912-929 (2007)
  83. Imatinib mesylate (STI571)-induced cell edge translocation of kinase-active and kinase-defective Abelson kinase: requirements of myristoylation and src homology 3 domain. Fujita A, Shishido T, Yuan Y, Inamoto E, Narumiya S, Watanabe N. Mol Pharmacol 75 75-84 (2009)
  84. New insights into the structural dynamics of the kinase JNK3. Mishra P, Günther S. Sci Rep 8 9435 (2018)
  85. The SH2 domain regulates c-Abl kinase activation by a cyclin-like mechanism and remodulation of the hinge motion. Dölker N, Górna MW, Sutto L, Torralba AS, Superti-Furga G, Gervasio FL. PLoS Comput Biol 10 e1003863 (2014)
  86. Tyrosine kinase inhibition: Ligand binding and conformational change in c-Kit and c-Abl. Healy EF, Johnson S, Hauser CR, King PJ. FEBS Lett 583 2899-2906 (2009)
  87. Allostery governs Cdk2 activation and differential recognition of CDK inhibitors. Majumdar A, Burban DJ, Muretta JM, Thompson AR, Engel TA, Rasmussen DM, Subrahmanian MV, Veglia G, Thomas DD, Levinson NM. Nat Chem Biol 17 456-464 (2021)
  88. Cumulative mechanism of several major imatinib-resistant mutations in Abl kinase. Hoemberger M, Pitsawong W, Kern D. Proc Natl Acad Sci U S A 117 19221-19227 (2020)
  89. Functional Role of Histidine in the Conserved His-x-Asp Motif in the Catalytic Core of Protein Kinases. Zhang L, Wang JC, Hou L, Cao PR, Wu L, Zhang QS, Yang HY, Zang Y, Ding JP, Li J. Sci Rep 5 10115 (2015)
  90. The feasibility of parameterizing four-state equilibria using relaxation dispersion measurements. Li P, Martins IR, Rosen MK. J Biomol NMR 51 57-70 (2011)
  91. Natural-Based Indirubins Display Potent Cytotoxicity toward Wild-Type and T315I-Resistant Leukemia Cell Lines. Gaboriaud-Kolar N, Myrianthopoulos V, Vougogiannopoulou K, Gerolymatos P, Horne DA, Jove R, Mikros E, Nam S, Skaltsounis AL. J Nat Prod 79 2464-2471 (2016)
  92. Reduction of apoptosis in Rb-deficient embryos via Abl knockout. Borges HL, Hunton IC, Wang JY. Oncogene 26 3868-3877 (2007)
  93. Structural evaluation of BTK and PKCδ mediated phosphorylation of MAL at positions Tyr86 and Tyr106. Paracha RZ, Ali A, Ahmad J, Hussain R, Niazi U, Muhammad SA. Comput Biol Chem 51 22-35 (2014)
  94. Modeling loop backbone flexibility in receptor-ligand docking simulations. Flick J, Tristram F, Wenzel W. J Comput Chem 33 2504-2515 (2012)
  95. Staurosporine-based binding assay for testing the affinity of compounds to protein kinases. Iyer GH, Taslimi P, Pazhanisamy S. Anal Biochem 373 197-206 (2008)
  96. Activation of Abl1 Kinase Explored Using Well-Tempered Metadynamics Simulations on an Essential Dynamics Sampled Path. Oruganti B, Friedman R. J Chem Theory Comput 17 7260-7270 (2021)
  97. Conformational flexibility and inhibitor binding to unphosphorylated interleukin-1 receptor-associated kinase 4 (IRAK4). Wang L, Ferrao R, Li Q, Hatcher JM, Choi HG, Buhrlage SJ, Gray NS, Wu H. J Biol Chem 294 4511-4519 (2019)
  98. Ensembler: Enabling High-Throughput Molecular Simulations at the Superfamily Scale. Parton DL, Grinaway PB, Hanson SM, Beauchamp KA, Chodera JD. PLoS Comput Biol 12 e1004728 (2016)
  99. Evolution and intelligent design in drug development. Agafonov RV, Wilson C, Kern D. Front Mol Biosci 2 27 (2015)
  100. Mapping RNAPII CTD Phosphorylation Reveals That the Identity and Modification of Seventh Heptad Residues Direct Tyr1 Phosphorylation. Burkholder NT, Sipe SN, Escobar EE, Venkatramani M, Irani S, Yang W, Wu H, Matthews WM, Brodbelt JS, Zhang Y. ACS Chem Biol 14 2264-2275 (2019)
  101. Modeling conformational flexibility of kinases in inactive states. Schwarz D, Merget B, Deane C, Fulle S. Proteins 87 943-951 (2019)
  102. Structural Characterization of Maize SIRK1 Kinase Domain Reveals an Unusual Architecture of the Activation Segment. Aquino B, Couñago RM, Verza N, Ferreira LM, Massirer KB, Gileadi O, Arruda P. Front Plant Sci 8 852 (2017)
  103. Substrate binding to Src: A new perspective on tyrosine kinase substrate recognition from NMR and molecular dynamics. Joshi MK, Burton RA, Wu H, Lipchik AM, Craddock BP, Mo H, Parker LL, Miller WT, Post CB. Protein Sci 29 350-359 (2020)
  104. A Dynamic Switch in Inactive p38γ Leads to an Excited State on the Pathway to an Active Kinase. Aoto PC, Stanfield RL, Wilson IA, Dyson HJ, Wright PE. Biochemistry 58 5160-5172 (2019)
  105. A peptide photoaffinity probe specific for the active conformation of the Abl tyrosine kinase. Deng Y, Couch BA, Koleske AJ, Turk BE. Chembiochem 13 2510-2512 (2012)
  106. Biological evaluation, docking and molecular dynamic simulation of some novel diaryl urea derivatives bearing quinoxalindione moiety. Sadeghian-Rizi S, Khodarahmi GA, Sakhteman A, Jahanian-Najafabadi A, Rostami M, Mirzaei M, Hassanzadeh F. Res Pharm Sci 12 500-509 (2017)
  107. Dynamical insights of Mnk2 kinase activation by phosphorylation to facilitate inhibitor discovery. Kumarasiri M, Teo T, Wang S. Future Med Chem 7 91-102 (2015)
  108. Evolution of Functional Diversity in the Holozoan Tyrosine Kinome. Yeung W, Kwon A, Taujale R, Bunn C, Venkat A, Kannan N. Mol Biol Evol 38 5625-5639 (2021)
  109. Network-based modelling and percolation analysis of conformational dynamics and activation in the CDK2 and CDK4 proteins: dynamic and energetic polarization of the kinase lobes may determine divergence of the regulatory mechanisms. Verkhivker GM. Mol Biosyst 13 2235-2253 (2017)
  110. Protein Flexibility and Dissociation Pathway Differentiation Can Explain Onset of Resistance Mutations in Kinases. Shekhar M, Smith Z, Seeliger MA, Tiwary P. Angew Chem Int Ed Engl 61 e202200983 (2022)
  111. 3D QSAR models built on structure-based alignments of Abl tyrosine kinase inhibitors. Falchi F, Manetti F, Carraro F, Naldini A, Maga G, Crespan E, Schenone S, Bruno O, Brullo C, Botta M. ChemMedChem 4 976-987 (2009)
  112. In silico 3D structure modeling and inhibitor binding studies of human male germ cell-associated kinase. Tanneeru K, Balla AR, Guruprasad L. J Biomol Struct Dyn 33 1710-1719 (2015)
  113. Mapping the conformational energy landscape of Abl kinase using ClyA nanopore tweezers. Li F, Fahie MA, Gilliam KM, Pham R, Chen M. Nat Commun 13 3541 (2022)
  114. Nuclear magnetic resonance analysis of the conformational state of cancer mutant of fibroblast growth factor receptor 1 tyrosine kinase domain. Kobashigawa Y, Amano S, Yoza K, Himeno R, Amemiya S, Morioka H, Yokogawa M, Kumeta H, Schlessinger J, Inagaki F. Genes Cells 21 350-357 (2016)
  115. Small-world networks of residue interactions in the Abl kinase complexes with cancer drugs: topology of allosteric communication pathways can determine drug resistance effects. Tse A, Verkhivker GM. Mol Biosyst 11 2082-2095 (2015)
  116. Structural Characterization of the Aurora Kinase B "DFG-flip" Using Metadynamics. Lakkaniga NR, Balasubramaniam M, Zhang S, Frett B, Li HY. AAPS J 22 14 (2019)
  117. Structural analysis of receptor-like kinase SOBIR1 reveals mechanisms that regulate its phosphorylation-dependent activation. Wei X, Wang Y, Zhang S, Gu T, Steinmetz G, Yu H, Guo G, Liu X, Fan S, Wang F, Gu Y, Xin F. Plant Commun 3 100301 (2022)
  118. A combined computational and experimental strategy identifies mutations conferring resistance to drugs targeting the BCR-ABL fusion protein. Liu J, Pei J, Lai L. Commun Biol 3 18 (2020)
  119. Druggable exosites of the human kino-pocketome. Nicola G, Kufareva I, Ilatovskiy AV, Abagyan R. J Comput Aided Mol Des 34 219-230 (2020)
  120. Effect of the SH3-SH2 domain linker sequence on the structure of Hck kinase. Meiselbach H, Sticht H. J Mol Model 17 1927-1934 (2011)
  121. Myristoyl's dual role in allosterically regulating and localizing Abl kinase. de Buhr S, Gräter F. Elife 12 e85216 (2023)
  122. News A monkey wrench in the kinase machine. Leahy DJ. Nat Struct Mol Biol 14 1120-1121 (2007)
  123. Allosteric enhancement of the BCR-Abl1 kinase inhibition activity of nilotinib by cobinding of asciminib. Oruganti B, Lindahl E, Yang J, Amiri W, Rahimullah R, Friedman R. J Biol Chem 298 102238 (2022)
  124. Assessing the Activation of Tyrosine Kinase KIT through Free Energy Calculations. Sandoval-Pérez A, Winger BA, Jacobson MP. J Chem Theory Comput 18 6251-6258 (2022)
  125. Autophagy and Apoptosis Specific Knowledgebases-guided Systems Pharmacology Drug Research. Fan P, Wang N, Wang L, Xie X-Q. Curr Cancer Drug Targets 19 716-728 (2019)
  126. Hypervariability of accessible and inaccessible conformational space of proteins. Ravikumar A, Srinivasan N. Curr Res Struct Biol 3 229-238 (2021)
  127. Molecular Dynamics and Machine Learning Give Insights on the Flexibility-Activity Relationships in Tyrosine Kinome. Majumdar S, Di Palma F, Spyrakis F, Decherchi S, Cavalli A. J Chem Inf Model 63 4814-4826 (2023)
  128. Molecular Simulations of Conformational Transitions within the Insulin Receptor Kinase Reveal Consensus Features in a Multistep Activation Pathway. Nam K, Tao Y, Ovchinnikov V. J Phys Chem B 127 5789-5798 (2023)
  129. Molecular modeling study of the induced-fit effect on kinase inhibition: the case of fibroblast growth factor receptor 3 (FGFR3). Li Y, Delamar M, Busca P, Prestat G, Le Corre L, Legeai-Mallet L, Hu R, Zhang R, Barbault F. J Comput Aided Mol Des 29 619-641 (2015)
  130. TYROSINE KINASES: COMPLEX MOLECULAR SYSTEMS CHALLENGING COMPUTATIONAL METHODOLOGIES. Thomas T, Roux B. Eur Phys J B 94 203 (2021)