2fsm Citations

Structures of p38alpha active mutants reveal conformational changes in L16 loop that induce autophosphorylation and activation.

J Mol Biol 365 66-76 (2007)
Related entries: 2fsl, 2fso, 2fst

Cited: 52 times
EuropePMC logo PMID: 17059827

Abstract

p38 mitogen-activated protein (MAP) kinases function in numerous signaling processes and are crucial for normal functions of cells and organisms. Abnormal p38 activity is associated with inflammatory diseases and cancers making the understanding of its activation mechanisms highly important. p38s are commonly activated by phosphorylation, catalyzed by MAP kinase kinases (MKKs). Moreover, it was recently revealed that the p38alpha is also activated via alternative pathways, which are MKK independent. The structural basis of p38 activation, especially in the alternative pathways, is mostly unknown. This lack of structural data hinders the study of p38's biology as well as the development of novel strategies for p38 inhibition. We have recently discovered and optimized a novel set of intrinsically active p38 mutants whose activities are independent of any upstream activation. The high-resolution crystal structures of the intrinsically active p38alpha mutants reveal that local alterations in the L16 loop region promote kinase activation. The L16 loop can be thus regarded as a molecular switch that upon conformational changes promotes activation. We suggest that similar conformational changes in L16 loop also occur in natural activation mechanisms of p38alpha in T-cells. Our biochemical studies reveal novel mechanistic insights into the activation process of p38. In this regard, the results indicate that the activation mechanism of the mutants involves dimerization and subsequent trans autophosphorylation on Thr180 (on the phosphorylation lip). Finally, we suggest a model of in vivo p38alpha activation induced by the L16 switch with auto regulatory characteristics.

Articles - 2fsm mentioned but not cited (3)

  1. p38α Mitogen-Activated Protein Kinase Is a Druggable Target in Pancreatic Adenocarcinoma. Yang L, Sun X, Ye Y, Lu Y, Zuo J, Liu W, Elcock A, Zhu S. Front Oncol 9 1294 (2019)
  2. A novel p38 MAPK docking-groove-targeted compound is a potent inhibitor of inflammatory hyperalgesia. Willemen HL, Campos PM, Lucas E, Morreale A, Gil-Redondo R, Agut J, González FV, Ramos P, Heijnen C, Mayor F, Kavelaars A, Murga C. Biochem J 459 427-439 (2014)
  3. Structural basis of a redox-dependent conformational switch that regulates the stress kinase p38α. Pous J, Baginski B, Martin-Malpartida P, González L, Scarpa M, Aragon E, Ruiz L, Mees RA, Iglesias-Fernández J, Orozco M, Nebreda AR, Macias MJ. Nat Commun 14 7920 (2023)


Reviews citing this publication (6)

  1. MAP kinase signalling cascades and transcriptional regulation. Yang SH, Sharrocks AD, Whitmarsh AJ. Gene 513 1-13 (2013)
  2. Regulation of the immune response by stress-activated protein kinases. Rincón M, Davis RJ. Immunol Rev 228 212-224 (2009)
  3. Potential of p38-MAPK inhibitors in the treatment of ischaemic heart disease. Clark JE, Sarafraz N, Marber MS. Pharmacol Ther 116 192-206 (2007)
  4. How Do Protein Kinases Take a Selfie (Autophosphorylate)? Beenstock J, Mooshayef N, Engelberg D. Trends Biochem Sci 41 938-953 (2016)
  5. Toxoplasma exports dense granule proteins beyond the vacuole to the host cell nucleus and rewires the host genome expression. Bougdour A, Tardieux I, Hakimi MA. Cell Microbiol 16 334-343 (2014)
  6. Atypical p38 Signaling, Activation, and Implications for Disease. Burton JC, Antoniades W, Okalova J, Roos MM, Grimsey NJ. Int J Mol Sci 22 (2021)

Articles citing this publication (43)

  1. A Toxoplasma dense granule protein, GRA24, modulates the early immune response to infection by promoting a direct and sustained host p38 MAPK activation. Braun L, Brenier-Pinchart MP, Yogavel M, Curt-Varesano A, Curt-Bertini RL, Hussain T, Kieffer-Jaquinod S, Coute Y, Pelloux H, Tardieux I, Sharma A, Belrhali H, Bougdour A, Hakimi MA. J Exp Med 210 2071-2086 (2013)
  2. Mechanism and consequence of the autoactivation of p38α mitogen-activated protein kinase promoted by TAB1. DeNicola GF, Martin ED, Chaikuad A, Bassi R, Clark J, Martino L, Verma S, Sicard P, Tata R, Atkinson RA, Knapp S, Conte MR, Marber MS. Nat Struct Mol Biol 20 1182-1190 (2013)
  3. Intrinsically active variants of all human p38 isoforms. Avitzour M, Diskin R, Raboy B, Askari N, Engelberg D, Livnah O. FEBS J 274 963-975 (2007)
  4. Characterization and inhibition of a p38-like mitogen-activated protein kinase (MAPK) from Echinococcus multilocularis: antiparasitic activities of p38 MAPK inhibitors. Gelmedin V, Caballero-Gamiz R, Brehm K. Biochem Pharmacol 76 1068-1081 (2008)
  5. Specific regulation of noncanonical p38alpha activation by Hsp90-Cdc37 chaperone complex in cardiomyocyte. Ota A, Zhang J, Ping P, Han J, Wang Y. Circ Res 106 1404-1412 (2010)
  6. T cell receptor-mediated activation of p38{alpha} by mono-phosphorylation of the activation loop results in altered substrate specificity. Mittelstadt PR, Yamaguchi H, Appella E, Ashwell JD. J Biol Chem 284 15469-15474 (2009)
  7. A novel lipid binding site formed by the MAP kinase insert in p38 alpha. Diskin R, Engelberg D, Livnah O. J Mol Biol 375 70-79 (2008)
  8. p38α Signaling Induces Anoikis and Lumen Formation During Mammary Morphogenesis. Wen HC, Avivar-Valderas A, Sosa MS, Girnius N, Farias EF, Davis RJ, Aguirre-Ghiso JA. Sci Signal 4 ra34 (2011)
  9. Hydrogen-exchange mass spectrometry reveals activation-induced changes in the conformational mobility of p38alpha MAP kinase. Sours KM, Kwok SC, Rachidi T, Lee T, Ring A, Hoofnagle AN, Resing KA, Ahn NG. J Mol Biol 379 1075-1093 (2008)
  10. Phosphatidylinositol ether lipid analogues that inhibit AKT also independently activate the stress kinase, p38alpha, through MKK3/6-independent and -dependent mechanisms. Gills JJ, Castillo SS, Zhang C, Petukhov PA, Memmott RM, Hollingshead M, Warfel N, Han J, Kozikowski AP, Dennis PA. J Biol Chem 282 27020-27029 (2007)
  11. A chemical genetic approach reveals that p38alpha MAPK activation by diphosphorylation aggravates myocardial infarction and is prevented by the direct binding of SB203580. Kumphune S, Bassi R, Jacquet S, Sicard P, Clark JE, Verma S, Avkiran M, O'Keefe SJ, Marber MS. J Biol Chem 285 2968-2975 (2010)
  12. The crystal structure of JNK2 reveals conformational flexibility in the MAP kinase insert and indicates its involvement in the regulation of catalytic activity. Shaw D, Wang SM, Villaseñor AG, Tsing S, Walter D, Browner MF, Barnett J, Kuglstatter A. J Mol Biol 383 885-893 (2008)
  13. Genetic disruption of p38alpha Tyr323 phosphorylation prevents T-cell receptor-mediated p38alpha activation and impairs interferon-gamma production. Jirmanova L, Sarma DN, Jankovic D, Mittelstadt PR, Ashwell JD. Blood 113 2229-2237 (2009)
  14. Docking of PRAK/MK5 to the atypical MAPKs ERK3 and ERK4 defines a novel MAPK interaction motif. Aberg E, Torgersen KM, Johansen B, Keyse SM, Perander M, Seternes OM. J Biol Chem 284 19392-19401 (2009)
  15. The p38β mitogen-activated protein kinase possesses an intrinsic autophosphorylation activity, generated by a short region composed of the α-G helix and MAPK insert. Beenstock J, Ben-Yehuda S, Melamed D, Admon A, Livnah O, Ahn NG, Engelberg D. J Biol Chem 289 23546-23556 (2014)
  16. Precisely ordered phosphorylation reactions in the p38 mitogen-activated protein (MAP) kinase cascade. Humphreys JM, Piala AT, Akella R, He H, Goldsmith EJ. J Biol Chem 288 23322-23330 (2013)
  17. Structural Basis for the Subversion of MAP Kinase Signaling by an Intrinsically Disordered Parasite Secreted Agonist. Pellegrini E, Palencia A, Braun L, Kapp U, Bougdour A, Belrhali H, Bowler MW, Hakimi MA. Structure 25 16-26 (2017)
  18. Cholesterol Perturbation in Mice Results in p53 Degradation and Axonal Pathology through p38 MAPK and Mdm2 Activation. Qin Q, Liao G, Baudry M, Bi X. PLoS One 5 e9999 (2010)
  19. Heat shock protein 27 mediated signaling in viral infection. Rajaiya J, Yousuf MA, Singh G, Stanish H, Chodosh J. Biochemistry 51 5695-5702 (2012)
  20. Lipid molecules induce p38α activation via a novel molecular switch. Tzarum N, Eisenberg-Domovich Y, Gills JJ, Dennis PA, Livnah O. J Mol Biol 424 339-353 (2012)
  21. Disruption of TAB1/p38α interaction using a cell-permeable peptide limits myocardial ischemia/reperfusion injury. Wang Q, Feng J, Wang J, Zhang X, Zhang D, Zhu T, Wang W, Wang X, Jin J, Cao J, Li X, Peng H, Li Y, Shen B, Zhang J. Mol Ther 21 1668-1677 (2013)
  22. DEF pocket in p38α facilitates substrate selectivity and mediates autophosphorylation. Tzarum N, Komornik N, Ben Chetrit D, Engelberg D, Livnah O. J Biol Chem 288 19537-19547 (2013)
  23. Osmostress induces autophosphorylation of Hog1 via a C-terminal regulatory region that is conserved in p38α. Maayan I, Beenstock J, Marbach I, Tabachnick S, Livnah O, Engelberg D. PLoS One 7 e44749 (2012)
  24. MKK3 was involved in larval settlement of the barnacle Amphibalanus amphitrite through activating the kinase activity of p38MAPK. Zhang G, He LS, Wong YH, Qian PY. PLoS One 8 e69510 (2013)
  25. Co-conserved MAPK features couple D-domain docking groove to distal allosteric sites via the C-terminal flanking tail. Nguyen T, Ruan Z, Oruganty K, Kannan N. PLoS One 10 e0119636 (2015)
  26. Distinct docking mechanisms mediate interactions between the Msg5 phosphatase and mating or cell integrity mitogen-activated protein kinases (MAPKs) in Saccharomyces cerevisiae. Palacios L, Dickinson RJ, Sacristán-Reviriego A, Didmon MP, Marín MJ, Martín H, Keyse SM, Molina M. J Biol Chem 286 42037-42050 (2011)
  27. Analysis of crystal structure of Arabidopsis MPK6 and generation of its mutants with higher activity. Wang B, Qin X, Wu J, Deng H, Li Y, Yang H, Chen Z, Liu G, Ren D. Sci Rep 6 25646 (2016)
  28. Tyr³²³-dependent p38 activation is associated with rheumatoid arthritis and correlates with disease activity. López-Santalla M, Salvador-Bernáldez M, González-Alvaro I, Castañeda S, Ortiz AM, García-García MI, Kremer L, Roncal F, Mulero J, Martínez-A C, Salvador JM. Arthritis Rheum 63 1833-1842 (2011)
  29. Comment Choreography of MAGUKs during T cell activation. Rincón M, Davis RJ. Nat Immunol 8 126-127 (2007)
  30. Tighter αC-helix-αL16-helix interactions seem to make p38α less prone to activation by autophosphorylation than Hog1. Tesker M, Selamat SE, Beenstock J, Hayouka R, Livnah O, Engelberg D. Biosci Rep 36 (2016)
  31. Heterotrimeric complex of p38 MAPK, PKCδ, and TIRAP is required for AP1 mediated inflammatory response. Baig MS, Liu D, Muthu K, Roy A, Saqib U, Naim A, Faisal SM, Srivastava M, Saluja R. Int Immunopharmacol 48 211-218 (2017)
  32. Osmostress enhances activating phosphorylation of Hog1 MAP kinase by mono-phosphorylated Pbs2 MAP2K. Tatebayashi K, Yamamoto K, Tomida T, Nishimura A, Takayama T, Oyama M, Kozuka-Hata H, Adachi-Akahane S, Tokunaga Y, Saito H. EMBO J 39 e103444 (2020)
  33. A Dynamic Switch in Inactive p38γ Leads to an Excited State on the Pathway to an Active Kinase. Aoto PC, Stanfield RL, Wilson IA, Dyson HJ, Wright PE. Biochemistry 58 5160-5172 (2019)
  34. Conformations of JNK3α splice variants analyzed by hydrogen/deuterium exchange mass spectrometry. Park JY, Yun Y, Chung KY. J Struct Biol 197 271-278 (2017)
  35. Emerging roles of the αC-β4 loop in protein kinase structure, function, evolution, and disease. Yeung W, Ruan Z, Kannan N. IUBMB Life 72 1189-1202 (2020)
  36. Kinase crystal identification and ATP-competitive inhibitor screening using the fluorescent ligand SKF86002. Parker LJ, Taruya S, Tsuganezawa K, Ogawa N, Mikuni J, Honda K, Tomabechi Y, Handa N, Shirouzu M, Yokoyama S, Tanaka A. Acta Crystallogr D Biol Crystallogr 70 392-404 (2014)
  37. Mitigation of liquid-liquid phase separation of a monoclonal antibody by mutations of negative charges on the Fab surface. Matsuoka T, Miyauchi R, Nagaoka N, Hasegawa J. PLoS One 15 e0240673 (2020)
  38. The bacterial metalloprotease NleD selectively cleaves mitogen-activated protein kinases that have high flexibility in their activation loop. Gur-Arie L, Eitan-Wexler M, Weinberger N, Rosenshine I, Livnah O. J Biol Chem 295 9409-9420 (2020)
  39. Kinase Activation by Small Conformational Changes. Lopez ED, Burastero O, Arcon JP, Defelipe LA, Ahn NG, Marti MA, Turjanski AG. J Chem Inf Model 60 821-832 (2020)
  40. A synthetic peptide from Sipunculus nudus promotes bone formation via Estrogen/MAPK signal pathway based on network pharmacology. Wang P, Feng Z, Chen S, Liang Y, Hou H, Ouyang Q, Yu H, Ye H, Cai L, Qi Y, Wu K, Luo H. Front Pharmacol 14 1173110 (2023)
  41. Active p38α causes macrovesicular fatty liver in mice. Darlyuk-Saadon I, Bai C, Heng CKM, Gilad N, Yu WP, Lim PY, Cazenave-Gassiot A, Zhang Y, Wong WSF, Engelberg D. Proc Natl Acad Sci U S A 118 (2021)
  42. Network pharmacology and experimental validation to reveal the target of matrine against PRRSV. Zhao Y, Ling X, Zhang H, Sun P, Sun Y, Yin W, Fan K, Yang H, Zhong J, Zhang Z, Wang J, Li H, Sun N. iScience 26 106371 (2023)
  43. Targeting the non-ATP-binding pocket of the MAP kinase p38γ mediates a novel mechanism of cytotoxicity in cutaneous T-cell lymphoma (CTCL). Zhang XH, Chen CH, Li H, Hsiang J, Wu X, Hu W, Horne D, Nam S, Shively J, Rosen ST. FEBS Lett 595 2570-2592 (2021)