2fo0 Citations

Organization of the SH3-SH2 unit in active and inactive forms of the c-Abl tyrosine kinase.


The tyrosine kinase c-Abl is inactivated by interactions made by its SH3 and SH2 domains with the distal surface of the kinase domain. We present a crystal structure of a fragment of c-Abl which reveals that a critical N-terminal cap segment, not visualized in previous structures, buttresses the SH3-SH2 substructure in the autoinhibited state and locks it onto the distal surface of the kinase domain. Surprisingly, the N-terminal cap is phosphorylated on a serine residue that interacts with the connector between the SH3 and SH2 domains. Small-angle X-ray scattering (SAXS) analysis shows that a mutated form of c-Abl, in which the N-terminal cap and two other key contacts in the autoinhibited state are deleted, exists in an extended array of the SH3, SH2, and kinase domains. This alternative conformation of Abl is likely to prolong the active state of the kinase by preventing it from returning to the autoinhibited state.

Articles - 2fo0 mentioned but not cited (9)

  1. Src activation by β-adrenoreceptors is a key switch for tumour metastasis. Armaiz-Pena GN, Allen JK, Cruz A, Stone RL, Nick AM, Lin YG, Han LY, Mangala LS, Villares GJ, Vivas-Mejia P, Rodriguez-Aguayo C, Nagaraja AS, Gharpure KM, Wu Z, English RD, Soman KV, Shahzad MM, Zigler M, Deavers MT, Zien A, Soldatos TG, Jackson DB, Wiktorowicz JE, Torres-Lugo M, Young T, De Geest K, Gallick GE, Bar-Eli M, Lopez-Berestein G, Cole SW, Lopez GE, Lutgendorf SK, Sood AK. Nat Commun 4 1403 (2013)
  2. Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing. Patil R, Das S, Stanley A, Yadav L, Sudhakar A, Varma AK. PLoS ONE 5 e12029 (2010)
  3. The Arabidopsis ZED1 pseudokinase is required for ZAR1-mediated immunity induced by the Pseudomonas syringae type III effector HopZ1a. Lewis JD, Lee AH, Hassan JA, Wan J, Hurley B, Jhingree JR, Wang PW, Lo T, Youn JY, Guttman DS, Desveaux D. Proc. Natl. Acad. Sci. U.S.A. 110 18722-18727 (2013)
  4. Role of interfacial water molecules in proline-rich ligand recognition by the Src homology 3 domain of Abl. Palencia A, Camara-Artigas A, Pisabarro MT, Martinez JC, Luque I. J. Biol. Chem. 285 2823-2833 (2010)
  5. A small molecule bidentate-binding dual inhibitor probe of the LRRK2 and JNK kinases. Feng Y, Chambers JW, Iqbal S, Koenig M, Park H, Cherry L, Hernandez P, Figuera-Losada M, LoGrasso PV. ACS Chem. Biol. 8 1747-1754 (2013)
  6. Visualisation of variable binding pockets on protein surfaces by probabilistic analysis of related structure sets. Ashford P, Moss DS, Alex A, Yeap SK, Povia A, Nobeli I, Williams MA. BMC Bioinformatics 13 39 (2012)
  7. Improving protein structure similarity searches using domain boundaries based on conserved sequence information. Thompson KE, Wang Y, Madej T, Bryant SH. BMC Struct. Biol. 9 33 (2009)
  8. Allosteric Inhibition of Bcr-Abl Kinase by High Affinity Monobody Inhibitors Directed to the Src Homology 2 (SH2)-Kinase Interface. Wojcik J, Lamontanara AJ, Grabe G, Koide A, Akin L, Gerig B, Hantschel O, Koide S. J. Biol. Chem. 291 8836-8847 (2016)
  9. Conversion of a Single Polypharmacological Agent into Selective Bivalent Inhibitors of Intracellular Kinase Activity. Gower CM, Thomas JR, Harrington E, Murphy J, Chang ME, Cornella-Taracido I, Jain RK, Schirle M, Maly DJ. ACS Chem. Biol. 11 121-131 (2016)

Reviews citing this publication (19)

  1. Mechanisms of pre-B-cell receptor checkpoint control and its oncogenic subversion in acute lymphoblastic leukemia. Buchner M, Swaminathan S, Chen Z, Müschen M. Immunol. Rev. 263 192-209 (2015)
  2. αC helix displacement as a general approach for allosteric modulation of protein kinases. Palmieri L, Rastelli G. Drug Discov. Today 18 407-414 (2013)
  3. Molecular mechanisms of SH2- and PTB-domain-containing proteins in receptor tyrosine kinase signaling. Wagner MJ, Stacey MM, Liu BA, Pawson T. Cold Spring Harb Perspect Biol 5 a008987 (2013)
  4. Oncogenic chromosomal translocations and human cancer (review). Zheng J. Oncol. Rep. 30 2011-2019 (2013)
  5. Structure and dynamic regulation of Abl kinases. Panjarian S, Iacob RE, Chen S, Engen JR, Smithgall TE. J. Biol. Chem. 288 5443-5450 (2013)
  6. Molecular biology of chronic myeloid leukemia. Maru Y. Cancer Sci. 103 1601-1610 (2012)
  7. The growing arsenal of ATP-competitive and allosteric inhibitors of BCR-ABL. Hantschel O, Grebien F, Superti-Furga G. Cancer Res. 72 4890-4895 (2012)
  8. Modular evolution of phosphorylation-based signalling systems. Jin J, Pawson T. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 367 2540-2555 (2012)
  9. Validation of macromolecular flexibility in solution by small-angle X-ray scattering (SAXS). Hammel M. Eur. Biophys. J. 41 789-799 (2012)
  10. Mechanisms of drug resistance in kinases. Barouch-Bentov R, Sauer K. Expert Opin Investig Drugs 20 153-208 (2011)
  11. Catalytic control in the EGF receptor and its connection to general kinase regulatory mechanisms. Jura N, Zhang X, Endres NF, Seeliger MA, Schindler T, Kuriyan J. Mol. Cell 42 9-22 (2011)
  12. Proteus in the world of proteins: conformational changes in protein kinases. Rabiller M, Getlik M, Klüter S, Richters A, Tückmantel S, Simard JR, Rauh D. Arch. Pharm. (Weinheim) 343 193-206 (2010)
  13. Chemical kinomics: a powerful strategy for target deconvolution. Kim DH, Sim T. BMB Rep 43 711-719 (2010)
  14. ABL tyrosine kinases: evolution of function, regulation, and specificity. Colicelli J. Sci Signal 3 re6 (2010)
  15. Kinome signaling through regulated protein-protein interactions in normal and cancer cells. Pawson T, Kofler M. Curr. Opin. Cell Biol. 21 147-153 (2009)
  16. SH2 domains: modulators of nonreceptor tyrosine kinase activity. Filippakopoulos P, Müller S, Knapp S. Curr. Opin. Struct. Biol. 19 643-649 (2009)
  17. Cytoplasmic signalling by the c-Abl tyrosine kinase in normal and cancer cells. Sirvent A, Benistant C, Roche S. Biol. Cell 100 617-631 (2008)
  18. Treatment for chronic myelogenous leukemia: the long road to imatinib. Hunter T. J. Clin. Invest. 117 2036-2043 (2007)
  19. X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Putnam CD, Hammel M, Hura GL, Tainer JA. Q. Rev. Biophys. 40 191-285 (2007)

Articles citing this publication (70)

  1. Structure and flexibility within proteins as identified through small angle X-ray scattering. Pelikan M, Hura GL, Hammel M. Gen. Physiol. Biophys. 28 174-189 (2009)
  2. E2 interaction and dimerization in the crystal structure of TRAF6. Yin Q, Lin SC, Lamothe B, Lu M, Lo YC, Hura G, Zheng L, Rich RL, Campos AD, Myszka DG, Lenardo MJ, Darnay BG, Wu H. Nat. Struct. Mol. Biol. 16 658-666 (2009)
  3. Structural coupling of SH2-kinase domains links Fes and Abl substrate recognition and kinase activation. Filippakopoulos P, Kofler M, Hantschel O, Gish GD, Grebien F, Salah E, Neudecker P, Kay LE, Turk BE, Superti-Furga G, Pawson T, Knapp S. Cell 134 793-803 (2008)
  4. The lattice as allosteric effector: structural studies of alphabeta- and gamma-tubulin clarify the role of GTP in microtubule assembly. Rice LM, Montabana EA, Agard DA. Proc. Natl. Acad. Sci. U.S.A. 105 5378-5383 (2008)
  5. A potent and highly specific FN3 monobody inhibitor of the Abl SH2 domain. Wojcik J, Hantschel O, Grebien F, Kaupe I, Bennett KL, Barkinge J, Jones RB, Koide A, Superti-Furga G, Koide S. Nat. Struct. Mol. Biol. 17 519-527 (2010)
  6. Effect of interdomain dynamics on the structure determination of modular proteins by small-angle scattering. Bernadó P. Eur. Biophys. J. 39 769-780 (2010)
  7. Targeting the SH2-kinase interface in Bcr-Abl inhibits leukemogenesis. Grebien F, Hantschel O, Wojcik J, Kaupe I, Kovacic B, Wyrzucki AM, Gish GD, Cerny-Reiterer S, Koide A, Beug H, Pawson T, Valent P, Koide S, Superti-Furga G. Cell 147 306-319 (2011)
  8. Conformational disturbance in Abl kinase upon mutation and deregulation. Iacob RE, Pene-Dumitrescu T, Zhang J, Gray NS, Smithgall TE, Engen JR. Proc. Natl. Acad. Sci. U.S.A. 106 1386-1391 (2009)
  9. Sequence-similar, structure-dissimilar protein pairs in the PDB. Kosloff M, Kolodny R. Proteins 71 891-902 (2008)
  10. BCR-ABL SH3-SH2 domain mutations in chronic myeloid leukemia patients on imatinib. Sherbenou DW, Hantschel O, Kaupe I, Willis S, Bumm T, Turaga LP, Lange T, Dao KH, Press RD, Druker BJ, Superti-Furga G, Deininger MW. Blood 116 3278-3285 (2010)
  11. Computational modeling of allosteric communication reveals organizing principles of mutation-induced signaling in ABL and EGFR kinases. Dixit A, Verkhivker GM. PLoS Comput. Biol. 7 e1002179 (2011)
  12. Tyrosine phosphorylation of the nuclear receptor coactivator AIB1/SRC-3 is enhanced by Abl kinase and is required for its activity in cancer cells. Oh AS, Lahusen JT, Chien CD, Fereshteh MP, Zhang X, Dakshanamurthy S, Xu J, Kagan BL, Wellstein A, Riegel AT. Mol. Cell. Biol. 28 6580-6593 (2008)
  13. Hierarchical modeling of activation mechanisms in the ABL and EGFR kinase domains: thermodynamic and mechanistic catalysts of kinase activation by cancer mutations. Dixit A, Verkhivker GM. PLoS Comput. Biol. 5 e1000487 (2009)
  14. Expression of a Src family kinase in chronic myelogenous leukemia cells induces resistance to imatinib in a kinase-dependent manner. Pene-Dumitrescu T, Smithgall TE. J. Biol. Chem. 285 21446-21457 (2010)
  15. The MutSalpha-proliferating cell nuclear antigen interaction in human DNA mismatch repair. Iyer RR, Pohlhaus TJ, Chen S, Hura GL, Dzantiev L, Beese LS, Modrich P. J. Biol. Chem. 283 13310-13319 (2008)
  16. On the importance of a funneled energy landscape for the assembly and regulation of multidomain Src tyrosine kinases. Faraldo-Gómez JD, Roux B. Proc. Natl. Acad. Sci. U.S.A. 104 13643-13648 (2007)
  17. Allosteric interactions between the myristate- and ATP-site of the Abl kinase. Iacob RE, Zhang J, Gray NS, Engen JR. PLoS ONE 6 e15929 (2011)
  18. NMR reveals the allosteric opening and closing of Abelson tyrosine kinase by ATP-site and myristoyl pocket inhibitors. Skora L, Mestan J, Fabbro D, Jahnke W, Grzesiek S. Proc. Natl. Acad. Sci. U.S.A. 110 E4437-45 (2013)
  19. Enhancement of ABL kinase catalytic efficiency by a direct binding regulator is independent of other regulatory mechanisms. Cao X, Tanis KQ, Koleske AJ, Colicelli J. J. Biol. Chem. 283 31401-31407 (2008)
  20. Discovery and characterization of a cell-permeable, small-molecule c-Abl kinase activator that binds to the myristoyl binding site. Yang J, Campobasso N, Biju MP, Fisher K, Pan XQ, Cottom J, Galbraith S, Ho T, Zhang H, Hong X, Ward P, Hofmann G, Siegfried B, Zappacosta F, Washio Y, Cao P, Qu J, Bertrand S, Wang DY, Head MS, Li H, Moores S, Lai Z, Johanson K, Burton G, Erickson-Miller C, Simpson G, Tummino P, Copeland RA, Oliff A. Chem. Biol. 18 177-186 (2011)
  21. Tyrosine phosphorylation in the SH3 domain disrupts negative regulatory interactions within the c-Abl kinase core. Chen S, O'Reilly LP, Smithgall TE, Engen JR. J. Mol. Biol. 383 414-423 (2008)
  22. Structural characterization of the active and inactive states of Src kinase in solution by small-angle X-ray scattering. Bernadó P, Pérez Y, Svergun DI, Pons M. J. Mol. Biol. 376 492-505 (2008)
  23. The Abl SH2-kinase linker naturally adopts a conformation competent for SH3 domain binding. Chen S, Brier S, Smithgall TE, Engen JR. Protein Sci. 16 572-581 (2007)
  24. N-myristoylated c-Abl tyrosine kinase localizes to the endoplasmic reticulum upon binding to an allosteric inhibitor. Choi Y, Seeliger MA, Panjarian SB, Kim H, Deng X, Sim T, Couch B, Koleske AJ, Smithgall TE, Gray NS. J. Biol. Chem. 284 29005-29014 (2009)
  25. Chaperone over-expression in Escherichia coli: apparent increased yields of soluble recombinant protein kinases are due mainly to soluble aggregates. Haacke A, Fendrich G, Ramage P, Geiser M. Protein Expr. Purif. 64 185-193 (2009)
  26. The BCR-ABL35INS insertion/truncation mutant is kinase-inactive and does not contribute to tyrosine kinase inhibitor resistance in chronic myeloid leukemia. O'Hare T, Zabriskie MS, Eide CA, Agarwal A, Adrian LT, You H, Corbin AS, Yang F, Press RD, Rivera VM, Toplin J, Wong S, Deininger MW, Druker BJ. Blood 118 5250-5254 (2011)
  27. Identification of an allosteric signaling network within Tec family kinases. Joseph RE, Xie Q, Andreotti AH. J. Mol. Biol. 403 231-242 (2010)
  28. Allosteric inhibition of the nonMyristoylated c-Abl tyrosine kinase by phosphopeptides derived from Abi1/Hssh3bp1. Xiong X, Cui P, Hossain S, Xu R, Warner B, Guo X, An X, Debnath AK, Cowburn D, Kotula L. Biochim. Biophys. Acta 1783 737-747 (2008)
  29. Crystal structure of the Src family kinase Hck SH3-SH2 linker regulatory region supports an SH3-dominant activation mechanism. Alvarado JJ, Betts L, Moroco JA, Smithgall TE, Yeh JI. J. Biol. Chem. 285 35455-35461 (2010)
  30. Mechanism and functional significance of Itk autophosphorylation. Joseph RE, Fulton DB, Andreotti AH. J. Mol. Biol. 373 1281-1292 (2007)
  31. In silico profiling of tyrosine kinases binding specificity and drug resistance using Monte Carlo simulations with the ensembles of protein kinase crystal structures. Verkhivker GM. Biopolymers 85 333-348 (2007)
  32. Partial cooperative unfolding in proteins as observed by hydrogen exchange mass spectrometry. Engen JR, Wales TE, Chen S, Marzluff EM, Hassell KM, Weis DD, Smithgall TE. Int Rev Phys Chem 32 96-127 (2013)
  33. Enhanced SH3/linker interaction overcomes Abl kinase activation by gatekeeper and myristic acid binding pocket mutations and increases sensitivity to small molecule inhibitors. Panjarian S, Iacob RE, Chen S, Wales TE, Engen JR, Smithgall TE. J. Biol. Chem. 288 6116-6129 (2013)
  34. Abl-1-bridged tyrosine phosphorylation of VASP by Abelson kinase impairs association of VASP to focal adhesions and regulates leukaemic cell adhesion. Maruoka M, Sato M, Yuan Y, Ichiba M, Fujii R, Ogawa T, Ishida-Kitagawa N, Takeya T, Watanabe N. Biochem. J. 441 889-899 (2012)
  35. Conformational snapshots of Tec kinases during signaling. Joseph RE, Andreotti AH. Immunol. Rev. 228 74-92 (2009)
  36. Abl N-terminal cap stabilization of SH3 domain dynamics. Chen S, Dumitrescu TP, Smithgall TE, Engen JR. Biochemistry 47 5795-5803 (2008)
  37. Direct interactions with the integrin β1 cytoplasmic tail activate the Abl2/Arg kinase. Simpson MA, Bradley WD, Harburger D, Parsons M, Calderwood DA, Koleske AJ. J. Biol. Chem. 290 8360-8372 (2015)
  38. Evidence for a direct involvement of hMSH5 in promoting ionizing radiation induced apoptosis. Tompkins JD, Wu X, Chu YL, Her C. Exp. Cell Res. 315 2420-2432 (2009)
  39. The energy landscape analysis of cancer mutations in protein kinases. Dixit A, Verkhivker GM. PLoS ONE 6 e26071 (2011)
  40. Computational proteomics of biomolecular interactions in the sequence and structure space of the tyrosine kinome: deciphering the molecular basis of the kinase inhibitors selectivity. Verkhivker GM. Proteins 66 912-929 (2007)
  41. ABL fusion oncogene transformation and inhibitor sensitivity are mediated by the cellular regulator RIN1. Thai M, Ting PY, McLaughlin J, Cheng D, Müschen M, Witte ON, Colicelli J. Leukemia 25 290-300 (2011)
  42. Two-state dynamics of the SH3-SH2 tandem of Abl kinase and the allosteric role of the N-cap. Corbi-Verge C, Marinelli F, Zafra-Ruano A, Ruiz-Sanz J, Luque I, Faraldo-Gómez JD. Proc. Natl. Acad. Sci. U.S.A. 110 E3372-80 (2013)
  43. Roles of the SH2 and SH3 domains in the regulation of neuronal Src kinase functions. Groveman BR, Xue S, Marin V, Xu J, Ali MK, Bienkiewicz EA, Yu XM. FEBS J. 278 643-653 (2011)
  44. Scaffold mining of kinase hinge binders in crystal structure database. Xing L, Rai B, Lunney EA. J. Comput. Aided Mol. Des. 28 13-23 (2014)
  45. Intramolecular dynamics within the N-Cap-SH3-SH2 regulatory unit of the c-Abl tyrosine kinase reveal targeting to the cellular membrane. de Oliveira GA, Pereira EG, Ferretti GD, Valente AP, Cordeiro Y, Silva JL. J. Biol. Chem. 288 28331-28345 (2013)
  46. An intracellular conformational sensor assay for Abl T315I. Zhou V, Gao X, Han S, Brinker A, Caldwell JS, Gu XJ. Anal. Biochem. 385 300-308 (2009)
  47. Computational study of the "DFG-flip" conformational transition in c-Abl and c-Src tyrosine kinases. Meng Y, Lin YL, Roux B. J Phys Chem B 119 1443-1456 (2015)
  48. The SH2 domain regulates c-Abl kinase activation by a cyclin-like mechanism and remodulation of the hinge motion. Dölker N, Górna MW, Sutto L, Torralba AS, Superti-Furga G, Gervasio FL. PLoS Comput. Biol. 10 e1003863 (2014)
  49. Comment Allosteric BCR-ABL inhibitors in Philadelphia chromosome-positive acute lymphoblastic leukemia: novel opportunities for drug combinations to overcome resistance. Hantschel O. Haematologica 97 157-159 (2012)
  50. SPE-8, a protein-tyrosine kinase, localizes to the spermatid cell membrane through interaction with other members of the SPE-8 group spermatid activation signaling pathway in C. elegans. Muhlrad PJ, Clark JN, Nasri U, Sullivan NG, LaMunyon CW. BMC Genet. 15 83 (2014)
  51. Two amino acid residues confer different binding affinities of Abelson family kinase SRC homology 2 domains for phosphorylated cortactin. Gifford SM, Liu W, Mader CC, Halo TL, Machida K, Boggon TJ, Koleske AJ. J. Biol. Chem. 289 19704-19713 (2014)
  52. Structure-functional prediction and analysis of cancer mutation effects in protein kinases. Dixit A, Verkhivker GM. Comput Math Methods Med 2014 653487 (2014)
  53. An Allosteric Cross-Talk Between the Activation Loop and the ATP Binding Site Regulates the Activation of Src Kinase. Pucheta-Martínez E, Saladino G, Morando MA, Martinez-Torrecuadrada J, Lelli M, Sutto L, D'Amelio N, Gervasio FL. Sci Rep 6 24235 (2016)
  54. Constitutive Activity in an Ancestral Form of Abl Tyrosine Kinase. Aleem SU, Craddock BP, Miller WT. PLoS ONE 10 e0131062 (2015)
  55. Dynamics of protein kinases: insights from nuclear magnetic resonance. Xiao Y, Liddle JC, Pardi A, Ahn NG. Acc. Chem. Res. 48 1106-1114 (2015)
  56. Systematic characterization of the specificity of the SH2 domains of cytoplasmic tyrosine kinases. Zhao B, Tan PH, Li SS, Pei D. J Proteomics 81 56-69 (2013)
  57. Functional mechanisms and roles of adaptor proteins in abl-regulated cytoskeletal actin dynamics. Sato M, Maruoka M, Takeya T. J Signal Transduct 2012 414913 (2012)
  58. Assay development and high-throughput screening of small molecular c-Abl kinase activators. Cottom J, Hofmann G, Siegfried B, Yang J, Zhang H, Yi T, Ho TF, Quinn C, Wang DY, Johanson K, Ames RS, Li H. J Biomol Screen 16 53-64 (2011)
  59. Kinase domain mutants of Bcr enhance Bcr-Abl oncogenic effects. Perazzona B, Lin H, Sun T, Wang Y, Arlinghaus R. Oncogene 27 2208-2214 (2008)
  60. c-Abl Tyrosine Kinase Adopts Multiple Active Conformational States in Solution. Badger J, Grover P, Shi H, Panjarian SB, Engen JR, Smithgall TE, Makowski L. Biochemistry 55 3251-3260 (2016)
  61. Crystal structure of an SH2-kinase construct of c-Abl and effect of the SH2 domain on kinase activity. Lorenz S, Deng P, Hantschel O, Superti-Furga G, Kuriyan J. Biochem. J. 468 283-291 (2015)
  62. Autoinhibition of Bruton's tyrosine kinase (Btk) and activation by soluble inositol hexakisphosphate. Wang Q, Vogan EM, Nocka LM, Rosen CE, Zorn JA, Harrison SC, Kuriyan J. Elife 4 (2015)
  63. The SH2 domain of Abl kinases regulates kinase autophosphorylation by controlling activation loop accessibility. Lamontanara AJ, Georgeon S, Tria G, Svergun DI, Hantschel O. Nat Commun 5 5470 (2014)
  64. Probing SH2-domains using Inhibitor Affinity Purification (IAP). Höfener M, Heinzlmeir S, Kuster B, Sewald N. Proteome Sci 12 41 (2014)
  65. Bimolecular fluorescence complementation demonstrates that the c-Fes protein-tyrosine kinase forms constitutive oligomers in living cells. Shaffer JM, Hellwig S, Smithgall TE. Biochemistry 48 4780-4788 (2009)
  66. Structure-guided optimization of small molecule c-Abl activators. Hong X, Cao P, Washio Y, Simpson G, Campobasso N, Yang J, Borthwick J, Burton G, Chabanet J, Bertrand S, Evans H, Young RJ, Qu J, Li H, Cottom J, Ward P, Zhang H, Ho T, Qin D, Christensen S, Head MS. J. Comput. Aided Mol. Des. 28 75-87 (2014)
  67. Parallel Chemical Protein Synthesis on a Surface Enables the Rapid Analysis of the Phosphoregulation of SH3 Domains. Zitterbart R, Seitz O. Angew. Chem. Int. Ed. Engl. 55 7252-7256 (2016)
  68. ABL SH3 mutant inhibits BCR-ABL activity and increases imatinib sensitivity by targeting RIN1 protein in CML cell. Liu X, Li Y, Wen L, Tao K, Xiao Q, Cao W, Huang Z, Gao M, Li H, Wang F, Feng W. Cancer Lett. 369 222-228 (2015)
  69. Fluorescence Polarization Screening Assays for Small Molecule Allosteric Modulators of ABL Kinase Function. Grover P, Shi H, Baumgartner M, Camacho CJ, Smithgall TE. PLoS ONE 10 e0133590 (2015)
  70. Dynamically Coupled Residues within the SH2 Domain of FYN Are Key to Unlocking Its Activity. Huculeci R, Cilia E, Lyczek A, Buts L, Houben K, Seeliger MA, van Nuland N, Lenaerts T. Structure 24 1947-1959 (2016)