2flm Citations

Synthesis and characterization of potent bivalent amyloidosis inhibitors that bind prior to transthyretin tetramerization.

J Am Chem Soc 125 13404-14 (2003)
Cited: 53 times
EuropePMC logo PMID: 14583036

Abstract

The misfolding of transthyretin (TTR), including rate-limiting tetramer dissociation and partial monomer denaturation, is sufficient for TTR misassembly into amyloid and other abnormal quaternary structures associated with senile systemic amyloidosis, familial amyloid polyneuropathy, and familial amyloid cardiomyopathy. Monovalent small molecules that bind to one or both of the unoccupied thyroid hormone binding sites at the TTR quaternary structure interface stabilize the native state, raising the kinetic barrier for tetramer dissociation sufficiently that the rate of dissociation, and therefore amyloidosis, becomes slow. Bivalent amyloid inhibitors that bind to both binding sites simultaneously are reported herein. The candidate bivalent inhibitors are generally unable to bind to the native TTR tetramer and typically do not engage in monovalent binding owing to a strong inhibitor orientation preference. However, the TTR quaternary structure can assemble around several of the bivalent inhibitors if the inhibitor intercepts the protein before assembly occurs. Some of the wild-type TTR.bivalent inhibitor complexes prepared in this fashion retain a tetrameric structure when subjected to substantial denaturation stresses (8 M urea, 120 h). The best bivalent inhibitor reduced acid-mediated TTR (3.6 microM) amyloid fibril formation to 6% of that exhibited by TTR in the absence of inhibitor, a significant improvement over the approximately 30% observed for the best monovalent inhibitors (3.6 microM, 72 h). The apparent dissociation rate of the best bivalent inhibitor is effectively zero, consistent with the idea that TTR tetramer dissociation and inhibitor dissociation are linked-as a result of the inhibitor-templating tetramer assembly. X-ray cocrystal structures of two of the complexes demonstrate that the bivalent inhibitors simultaneously occupy both sites in TTR, consistent with the 1:1 binding stoichiometry derived from HPLC analysis. The purpose of this study was to demonstrate that bivalent inhibitors could be useful; what resulted are the best inhibitors produced to date. In this context, molecules capable of intercepting TTR during folding and assembly in the lumen of the endoplasmic reticulum would be of obvious interest.

Reviews - 2flm mentioned but not cited (2)

  1. The transthyretin amyloidoses: from delineating the molecular mechanism of aggregation linked to pathology to a regulatory-agency-approved drug. Johnson SM, Connelly S, Fearns C, Powers ET, Kelly JW. J Mol Biol 421 185-203 (2012)
  2. Modulators of 14-3-3 Protein-Protein Interactions. Stevers LM, Sijbesma E, Botta M, MacKintosh C, Obsil T, Landrieu I, Cau Y, Wilson AJ, Karawajczyk A, Eickhoff J, Davis J, Hann M, O'Mahony G, Doveston RG, Brunsveld L, Ottmann C. J Med Chem 61 3755-3778 (2018)

Articles - 2flm mentioned but not cited (2)

  1. Inhibition of the mechano-enzymatic amyloidogenesis of transthyretin: role of ligand affinity, binding cooperativity and occupancy of the inner channel. Verona G, Mangione PP, Raimondi S, Giorgetti S, Faravelli G, Porcari R, Corazza A, Gillmore JD, Hawkins PN, Pepys MB, Taylor GW, Bellotti V, Bellotti V. Sci Rep 7 182 (2017)
  2. Predicting binding sites from unbound versus bound protein structures. Clark JJ, Orban ZJ, Carlson HA. Sci Rep 10 15856 (2020)


Reviews citing this publication (7)

  1. Target identification in chemical genetics: the (often) missing link. Burdine L, Kodadek T. Chem Biol 11 593-597 (2004)
  2. Chemical and biological approaches for adapting proteostasis to ameliorate protein misfolding and aggregation diseases: progress and prognosis. Lindquist SL, Kelly JW. Cold Spring Harb Perspect Biol 3 a004507 (2011)
  3. Stabilization of protein-protein interactions in drug discovery. Andrei SA, Sijbesma E, Hann M, Davis J, O'Mahony G, Perry MWD, Karawajczyk A, Eickhoff J, Brunsveld L, Doveston RG, Milroy LG, Ottmann C. Expert Opin Drug Discov 12 925-940 (2017)
  4. Gelsolin amyloidosis: genetics, biochemistry, pathology and possible strategies for therapeutic intervention. Solomon JP, Page LJ, Balch WE, Kelly JW. Crit Rev Biochem Mol Biol 47 282-296 (2012)
  5. Current and future treatment of amyloid diseases. Ankarcrona M, Winblad B, Monteiro C, Fearns C, Powers ET, Johansson J, Westermark GT, Presto J, Ericzon BG, Kelly JW. J Intern Med 280 177-202 (2016)
  6. Emerging therapeutic targets currently under investigation for the treatment of systemic amyloidosis. Nuvolone M, Merlini G. Expert Opin Ther Targets 21 1095-1110 (2017)
  7. Review on the Structures and Activities of Transthyretin Amyloidogenesis Inhibitors. Guo X, Liu Z, Zheng Y, Li Y, Li L, Liu H, Chen Z, Wu L. Drug Des Devel Ther 14 1057-1081 (2020)

Articles citing this publication (42)

  1. Tafamidis, a potent and selective transthyretin kinetic stabilizer that inhibits the amyloid cascade. Bulawa CE, Connelly S, Devit M, Wang L, Weigel C, Fleming JA, Packman J, Powers ET, Wiseman RL, Foss TR, Wilson IA, Kelly JW, Labaudinière R. Proc Natl Acad Sci U S A 109 9629-9634 (2012)
  2. The biological and chemical basis for tissue-selective amyloid disease. Sekijima Y, Wiseman RL, Matteson J, Hammarström P, Miller SR, Sawkar AR, Balch WE, Kelly JW. Cell 121 73-85 (2005)
  3. Orally administered diflunisal stabilizes transthyretin against dissociation required for amyloidogenesis. Sekijima Y, Dendle MA, Kelly JW. Amyloid 13 236-249 (2006)
  4. Diflunisal stabilizes familial amyloid polyneuropathy-associated transthyretin variant tetramers in serum against dissociation required for amyloidogenesis. Tojo K, Sekijima Y, Kelly JW, Ikeda S. Neurosci Res 56 441-449 (2006)
  5. Hydroxylated polychlorinated biphenyls selectively bind transthyretin in blood and inhibit amyloidogenesis: rationalizing rodent PCB toxicity. Purkey HE, Palaninathan SK, Kent KC, Smith C, Safe SH, Sacchettini JC, Kelly JW. Chem Biol 11 1719-1728 (2004)
  6. Aromatic sulfonyl fluorides covalently kinetically stabilize transthyretin to prevent amyloidogenesis while affording a fluorescent conjugate. Grimster NP, Connelly S, Baranczak A, Dong J, Krasnova LB, Sharpless KB, Powers ET, Wilson IA, Kelly JW. J Am Chem Soc 135 5656-5668 (2013)
  7. Investigating the effects of mutations on protein aggregation in the cell. Calloni G, Zoffoli S, Stefani M, Dobson CM, Chiti F. J Biol Chem 280 10607-10613 (2005)
  8. Kinetic stabilization of the native state by protein engineering: implications for inhibition of transthyretin amyloidogenesis. Foss TR, Kelker MS, Wiseman RL, Wilson IA, Kelly JW. J Mol Biol 347 841-854 (2005)
  9. Toward optimization of the linker substructure common to transthyretin amyloidogenesis inhibitors using biochemical and structural studies. Johnson SM, Connelly S, Wilson IA, Kelly JW. J Med Chem 51 6348-6358 (2008)
  10. Chemoselective small molecules that covalently modify one lysine in a non-enzyme protein in plasma. Choi S, Connelly S, Reixach N, Wilson IA, Kelly JW. Nat Chem Biol 6 133-139 (2010)
  11. Structural insight into pH-induced conformational changes within the native human transthyretin tetramer. Palaninathan SK, Mohamedmohaideen NN, Snee WC, Kelly JW, Sacchettini JC. J Mol Biol 382 1157-1167 (2008)
  12. A substructure combination strategy to create potent and selective transthyretin kinetic stabilizers that prevent amyloidogenesis and cytotoxicity. Choi S, Reixach N, Connelly S, Johnson SM, Wilson IA, Kelly JW. J Am Chem Soc 132 1359-1370 (2010)
  13. Partitioning conformational intermediates between competing refolding and aggregation pathways: insights into transthyretin amyloid disease. Wiseman RL, Powers ET, Kelly JW. Biochemistry 44 16612-16623 (2005)
  14. Toward optimization of the second aryl substructure common to transthyretin amyloidogenesis inhibitors using biochemical and structural studies. Johnson SM, Connelly S, Wilson IA, Kelly JW. J Med Chem 52 1115-1125 (2009)
  15. Trapping of palindromic ligands within native transthyretin prevents amyloid formation. Kolstoe SE, Mangione PP, Bellotti V, Taylor GW, Tennent GA, Deroo S, Morrison AJ, Cobb AJ, Coyne A, McCammon MG, Warner TD, Mitchell J, Gill R, Smith MD, Ley SV, Robinson CV, Wood SP, Pepys MB. Proc Natl Acad Sci U S A 107 20483-20488 (2010)
  16. Design, synthesis, and evaluation of oxazole transthyretin amyloidogenesis inhibitors. Razavi H, Powers ET, Purkey HE, Adamski-Werner SL, Chiang KP, Dendle MT, Kelly JW. Bioorg Med Chem Lett 15 1075-1078 (2005)
  17. A stilbene that binds selectively to transthyretin in cells and remains dark until it undergoes a chemoselective reaction to create a bright blue fluorescent conjugate. Choi S, Ong DS, Kelly JW. J Am Chem Soc 132 16043-16051 (2010)
  18. Iodine atoms: a new molecular feature for the design of potent transthyretin fibrillogenesis inhibitors. Mairal T, Nieto J, Pinto M, Almeida MR, Gales L, Ballesteros A, Barluenga J, Pérez JJ, Vázquez JT, Centeno NB, Saraiva MJ, Damas AM, Planas A, Arsequell G, Valencia G. PLoS One 4 e4124 (2009)
  19. Design, synthesis and spectroscopic studies of resveratrol aliphatic acid ligands of human serum albumin. Jiang YL. Bioorg Med Chem 16 6406-6414 (2008)
  20. Transthyretin complexes with curcumin and bromo-estradiol: evaluation of solubilizing multicomponent mixtures. Ciccone L, Tepshi L, Nencetti S, Stura EA. N Biotechnol 32 54-64 (2015)
  21. Comparative in vitro and ex vivo activities of selected inhibitors of transthyretin aggregation: relevance in drug design. Cardoso I, Almeida MR, Ferreira N, Arsequell G, Valencia G, Saraiva MJ. Biochem J 408 131-138 (2007)
  22. A competition assay to identify amyloidogenesis inhibitors by monitoring the fluorescence emitted by the covalent attachment of a stilbene derivative to transthyretin. Choi S, Kelly JW. Bioorg Med Chem 19 1505-1514 (2011)
  23. Regioselective copper-catalyzed amination of bromobenzoic acids using aliphatic and aromatic amines. Wolf C, Liu S, Mei X, August AT, Casimir MD. J Org Chem 71 3270-3273 (2006)
  24. Design and biological activity of beta-sheet breaker peptide conjugates. Rocha S, Cardoso I, Börner H, Pereira MC, Saraiva MJ, Coelho M. Biochem Biophys Res Commun 380 397-401 (2009)
  25. Development of dimeric modulators for anti-apoptotic Bcl-2 proteins. Wang L, Kong F, Kokoski CL, Andrews DW, Xing C. Bioorg Med Chem Lett 18 236-240 (2008)
  26. Regioselective copper-catalyzed amination of chlorobenzoic acids: synthesis and solid-state structures of N-aryl anthranilic acid derivatives. Mei X, August AT, Wolf C. J Org Chem 71 142-149 (2006)
  27. The flavonoid luteolin, but not luteolin-7-O-glucoside, prevents a transthyretin mediated toxic response. Iakovleva I, Begum A, Pokrzywa M, Walfridsson M, Sauer-Eriksson AE, Olofsson A. PLoS One 10 e0128222 (2015)
  28. CHF5074 (CSP-1103) stabilizes human transthyretin in mice humanized at the transthyretin and retinol-binding protein loci. Mu Y, Jin S, Shen J, Sugano A, Takaoka Y, Qiang L, Imbimbo BP, Yamamura K, Li Z. FEBS Lett 589 849-856 (2015)
  29. The putative role of some conserved water molecules in the structure and function of human transthyretin. Banerjee A, Dasgupta S, Mukhopadhyay BP, Sekar K. Acta Crystallogr D Biol Crystallogr 71 2248-2266 (2015)
  30. Multivalent helix mimetics for PPI-inhibition. Barnard A, Miles JA, Burslem GM, Barker AM, Wilson AJ. Org Biomol Chem 13 258-264 (2015)
  31. Semi-quantitative models for identifying potent and selective transthyretin amyloidogenesis inhibitors. Connelly S, Mortenson DE, Choi S, Wilson IA, Powers ET, Kelly JW, Johnson SM. Bioorg Med Chem Lett 27 3441-3449 (2017)
  32. Rational Design, Synthesis, Characterization and Evaluation of Iodinated 4,4'-Bipyridines as New Transthyretin Fibrillogenesis Inhibitors. Dessì A, Peluso P, Dallocchio R, Weiss R, Andreotti G, Allocca M, Aubert E, Pale P, Mamane V, Cossu S. Molecules 25 E2213 (2020)
  33. Regioselective Copper-catalyzed C-N and C-S Bond Formation using Amines, Thiols and Halobenzoic Acids. Liu S, Pestano JP, Wolf C. Synthesis (Stuttg) 3519-3527 (2007)
  34. Synthesis and biological evaluation of amide derivatives of diflunisal as potential anti-inflammatory agents. Zhong GX, Hu JQ, Zhao K, Chen LL, Hu WX, Qiu MY. Bioorg Med Chem Lett 19 516-519 (2009)
  35. Synthesis and biological evaluation of amide derivatives of diflunisal as potential anti-tumor agents. Zhong GX, Chen LL, Li HB, Liu FJ, Hu JQ, Hu WX. Bioorg Med Chem Lett 19 4399-4402 (2009)
  36. X-ray crystal structure and activity of fluorenyl-based compounds as transthyretin fibrillogenesis inhibitors. Ciccone L, Nencetti S, Rossello A, Tepshi L, Stura EA, Orlandini E. J Enzyme Inhib Med Chem 31 824-833 (2016)
  37. Chaperonin-Based Biolayer Interferometry To Assess the Kinetic Stability of Metastable, Aggregation-Prone Proteins. Lea WA, O'Neil PT, Machen AJ, Naik S, Chaudhri T, McGinn-Straub W, Tischer A, Auton MT, Burns JR, Baldwin MR, Khar KR, Karanicolas J, Fisher MT. Biochemistry 55 4885-4908 (2016)
  38. Systemic optimization and structural evaluation of quinoline derivatives as transthyretin amyloidogenesis inhibitors. Kim B, Park H, Lee SK, Park SJ, Koo TS, Kang NS, Hong KB, Choi S. Eur J Med Chem 123 777-787 (2016)
  39. CSP-1103 (CHF5074) stabilizes human transthyretin in healthy human subjects. Qiang L, Guan Y, Li X, Liu L, Mu Y, Sugano A, Takaoka Y, Sakaeda T, Imbimbo BP, Yamamura KI, Jin S, Li Z. Amyloid 24 42-51 (2017)
  40. Models for binding cooperativities of inhibitors with transthyretin. Wang H, Tang Y, Lei M. Arch Biochem Biophys 466 85-97 (2007)
  41. Diflunisal treatment is associated with improved survival for patients with early stage wild-type transthyretin (ATTR) amyloid cardiomyopathy: the Boston University Amyloidosis Center experience. Siddiqi OK, Mints YY, Berk JL, Connors L, Doros G, Gopal DM, Kataria S, Lohrmann G, Pipilas AR, Ruberg FL. Amyloid 29 71-78 (2022)
  42. Development of a Highly Potent Transthyretin Amyloidogenesis Inhibitor: Design, Synthesis, and Evaluation. Pinheiro F, Pallarès I, Peccati F, Sánchez-Morales A, Varejão N, Bezerra F, Ortega-Alarcon D, Gonzalez D, Osorio M, Navarro S, Velázquez-Campoy A, Almeida MR, Reverter D, Busqué F, Alibés R, Sodupe M, Ventura S. J Med Chem 65 14673-14691 (2022)