2fl8 Citations

Evolution of bacteriophage tails: Structure of T4 gene product 10.

J. Mol. Biol. 358 912-21 (2006)
Related entries: 2fl9, 2fkk

Cited: 18 times
EuropePMC logo PMID: 16554069

Abstract

The success of tailed bacteriophages to infect cells far exceeds that of most other viruses on account of their specialized tail and associated baseplate structures. The baseplate protein gene product (gp) 10 of bacteriophage T4, whose structure was determined to 1.2 A resolution, was fitted into the cryo-electron microscopy structures of the pre and post-infection conformations of the virus. gp10 functions as a molecular lever that rotates and extends the hinged short tail fibers to facilitate cell attachment. The central folding motif of the gp10 trimer is similar to that of the baseplate protein gp11 and to the receptor-binding domain of the short tail fiber, gp12. The three proteins comprise the periphery of the baseplate and interact with each other. The structural and functional similarities of gp10, gp11, and gp12 and their sequential order in the T4 genome suggest that they evolved separately, subsequent to gene triplication from a common ancestor. Such events are usual in the evolution of complex organelles from a common primordial molecule.

Reviews citing this publication (6)

  1. Molecular architecture of tailed double-stranded DNA phages. Fokine A, Rossmann MG. Bacteriophage 4 e28281 (2014)
  2. Structure and function of bacteriophage T4. Yap ML, Rossmann MG. Future Microbiol 9 1319-1327 (2014)
  3. On the nature of mycobacteriophage diversity and host preference. Jacobs-Sera D, Marinelli LJ, Bowman C, Broussard GW, Guerrero Bustamante C, Boyle MM, Petrova ZO, Dedrick RM, Pope WH, Science Education Alliance Phage Hunters Advancing Genomics And Evolutionary Science Sea-Phages Program, Modlin RL, Hendrix RW, Hatfull GF. Virology 434 187-201 (2012)
  4. Structural aspects of the interaction of dairy phages with their host bacteria. Mahony J, van Sinderen D. Viruses 4 1410-1424 (2012)
  5. Morphogenesis of the T4 tail and tail fibers. Leiman PG, Arisaka F, van Raaij MJ, Kostyuchenko VA, Aksyuk AA, Kanamaru S, Rossmann MG. Virol. J. 7 355 (2010)
  6. DNA packaging and delivery machines in tailed bacteriophages. Johnson JE, Chiu W. Curr. Opin. Struct. Biol. 17 237-243 (2007)

Articles citing this publication (12)

  1. Inference of macromolecular assemblies from crystalline state. Krissinel E, Henrick K. J. Mol. Biol. 372 774-797 (2007)
  2. Structure of the bacteriophage T4 long tail fiber receptor-binding tip. Bartual SG, Otero JM, Garcia-Doval C, Llamas-Saiz AL, Kahn R, Fox GC, van Raaij MJ. Proc. Natl. Acad. Sci. U.S.A. 107 20287-20292 (2010)
  3. Comparative genomic analysis of mycobacteriophage Tweety: evolutionary insights and construction of compatible site-specific integration vectors for mycobacteria. Pham TT, Jacobs-Sera D, Pedulla ML, Hendrix RW, Hatfull GF. Microbiology (Reading, Engl.) 153 2711-2723 (2007)
  4. Artificial neural networks trained to detect viral and phage structural proteins. Seguritan V, Alves N, Arnoult M, Raymond A, Lorimer D, Burgin AB, Salamon P, Segall AM. PLoS Comput. Biol. 8 e1002657 (2012)
  5. The baseplate wedges of bacteriophage T4 spontaneously assemble into hubless baseplate-like structure in vitro. Yap ML, Mio K, Leiman PG, Kanamaru S, Arisaka F. J. Mol. Biol. 395 349-360 (2010)
  6. Target highlights in CASP9: Experimental target structures for the critical assessment of techniques for protein structure prediction. Kryshtafovych A, Moult J, Bartual SG, Bazan JF, Berman H, Casteel DE, Christodoulou E, Everett JK, Hausmann J, Heidebrecht T, Hills T, Hui R, Hunt JF, Seetharaman J, Joachimiak A, Kennedy MA, Kim C, Lingel A, Michalska K, Montelione GT, Otero JM, Perrakis A, Pizarro JC, van Raaij MJ, Ramelot TA, Rousseau F, Tong L, Wernimont AK, Young J, Schwede T. Proteins 79 Suppl 10 6-20 (2011)
  7. Role of bacteriophage T4 baseplate in regulating assembly and infection. Yap ML, Klose T, Arisaka F, Speir JA, Veesler D, Fokine A, Rossmann MG. Proc. Natl. Acad. Sci. U.S.A. 113 2654-2659 (2016)
  8. Tail tip proteins related to bacteriophage λ gpL coordinate an iron-sulfur cluster. Tam W, Pell LG, Bona D, Tsai A, Dai XX, Edwards AM, Hendrix RW, Maxwell KL, Davidson AR. J. Mol. Biol. 425 2450-2462 (2013)
  9. The structure of Sinorhizobium meliloti phage ΦM12, which has a novel T=19l triangulation number and is the founder of a new group of T4-superfamily phages. Stroupe ME, Brewer TE, Sousa DR, Jones KM. Virology 450-451 205-212 (2014)
  10. Sequential assembly of the wedge of the baseplate of phage T4 in the presence and absence of gp11 as monitored by analytical ultracentrifugation. Yap ML, Mio K, Ali S, Minton A, Kanamaru S, Arisaka F. Macromol Biosci 10 808-813 (2010)
  11. T4 Phage Tail Adhesin Gp12 Counteracts LPS-Induced Inflammation In Vivo. Miernikiewicz P, Kłopot A, Soluch R, Szkuta P, Kęska W, Hodyra-Stefaniak K, Konopka A, Nowak M, Lecion D, Kaźmierczak Z, Majewska J, Harhala M, Górski A, Dąbrowska K. Front Microbiol 7 1112 (2016)
  12. Structure of the 3.3MDa, in vitro assembled, hubless bacteriophage T4 baseplate. Yap ML, Klose T, Plevka P, Aksyuk A, Zhang X, Arisaka F, Rossmann MG. J. Struct. Biol. 187 95-102 (2014)