2fb4 Citations

[The primary structure of crystallizable monoclonal immunoglobulin IgG1 Kol. II. Amino acid sequence of the L-chain, gamma-type, subgroup I].

Biol Chem Hoppe Seyler 370 263-72 (1989)
Cited: 38 times
EuropePMC logo PMID: 2713105

Abstract

The immunoglobulin Kol was the first intact antibody molecule which was characterized by high-resolution X-ray crystallography. Furthermore the complete amino-acid sequence of the heavy (H)-chain is known. Here we report the complete amino-acid sequence of the light (L)-chain of the monoclonal immunoglobulin Kol (IgG1). The polypeptide has an Mr of 22,781, consists of 216 amino acids and due to its structure is of the lambda-type. With the characteristic amino acids threonine, asparagine, threonine, glycine and lysine in positions 101, 114, 116, 154, and 165, respectively the Kol L-chain is of the Mcg isotype. With the proteins Mcg, Mot, Bur, Loc and Mem six myeloma-derived amino-acid sequences of the same isotype are known. The amino-acid sequence of the N-terminal variable part is characteristic of subgroup 1. This contribution completes the primary structure of IgG1 Kol.

Articles - 2fb4 mentioned but not cited (21)

  1. Structural analysis of the nurse shark (new) antigen receptor (NAR): molecular convergence of NAR and unusual mammalian immunoglobulins. Roux KH, Greenberg AS, Greene L, Strelets L, Avila D, McKinney EC, Flajnik MF. Proc. Natl. Acad. Sci. U.S.A. 95 11804-11809 (1998)
  2. CODA: a combined algorithm for predicting the structurally variable regions of protein models. Deane CM, Blundell TL. Protein Sci 10 599-612 (2001)
  3. Reshaping antibody diversity. Wang F, Ekiert DC, Ahmad I, Yu W, Zhang Y, Bazirgan O, Torkamani A, Raudsepp T, Mwangi W, Criscitiello MF, Wilson IA, Schultz PG, Smider VV. Cell 153 1379-1393 (2013)
  4. Characterization of a possible amyloidogenic precursor in glutamine-repeat neurodegenerative diseases. Armen RS, Bernard BM, Day R, Alonso DO, Daggett V. Proc. Natl. Acad. Sci. U.S.A. 102 13433-13438 (2005)
  5. Complex of a protective antibody with its Ebola virus GP peptide epitope: unusual features of a V lambda x light chain. Lee JE, Kuehne A, Abelson DM, Fusco ML, Hart MK, Saphire EO. J. Mol. Biol. 375 202-216 (2008)
  6. Influenza human monoclonal antibody 1F1 interacts with three major antigenic sites and residues mediating human receptor specificity in H1N1 viruses. Tsibane T, Ekiert DC, Krause JC, Martinez O, Crowe JE, Wilson IA, Basler CF. PLoS Pathog. 8 e1003067 (2012)
  7. Crystal structure of a human autoimmune complex between IgM rheumatoid factor RF61 and IgG1 Fc reveals a novel epitope and evidence for affinity maturation. Duquerroy S, Stura EA, Bressanelli S, Fabiane SM, Vaney MC, Beale D, Hamon M, Casali P, Rey FA, Sutton BJ, Taussig MJ. J. Mol. Biol. 368 1321-1331 (2007)
  8. Mechanism for antibody catalysis of the oxidation of water by singlet dioxygen. Datta D, Vaidehi N, Xu X, Goddard WA. Proc. Natl. Acad. Sci. U.S.A. 99 2636-2641 (2002)
  9. Accurate Structure Prediction of CDR H3 Loops Enabled by a Novel Structure-Based C-Terminal Constraint. Weitzner BD, Gray JJ. J Immunol 198 505-515 (2017)
  10. Prediction of protein loop structures using a local move Monte Carlo approach and a grid-based force field. Cui M, Mezei M, Osman R. Protein Eng Des Sel 21 729-735 (2008)
  11. Scoring predictive models using a reduced representation of proteins: model and energy definition. Fogolari F, Pieri L, Dovier A, Bortolussi L, Giugliarelli G, Corazza A, Esposito G, Viglino P. BMC Struct Biol 7 15 (2007)
  12. A mutation designed to alter crystal packing permits structural analysis of a tight-binding fluorescein-scFv complex. Honegger A, Spinelli S, Cambillau C, Plückthun A. Protein Sci. 14 2537-2549 (2005)
  13. Stability engineering of anti-EGFR scFv antibodies by rational design of a lambda-to-kappa swap of the VL framework using a structure-guided approach. Lehmann A, Wixted JH, Shapovalov MV, Roder H, Dunbrack RL, Robinson MK. MAbs 7 1058-1071 (2015)
  14. A relation between the principal axes of inertia and ligand binding. Foote J, Raman A. Proc. Natl. Acad. Sci. U.S.A. 97 978-983 (2000)
  15. A knowledge-based structure-discriminating function that requires only main-chain atom coordinates. Makino Y, Itoh N. BMC Struct. Biol. 8 46 (2008)
  16. Conservation and diversity in the ultralong third heavy-chain complementarity-determining region of bovine antibodies. Stanfield RL, Wilson IA, Smider VV. Sci Immunol 1 (2016)
  17. Channel catfish soluble FcmuR binds conserved linear epitopes present on Cmu3 and Cmu4. Nayak DK, Nayak DK, Tang A, Wilson M, Miller NW, Bengtén E. Mol. Immunol. 47 1306-1316 (2010)
  18. All-Atom Four-Body Knowledge-Based Statistical Potentials to Distinguish Native Protein Structures from Nonnative Folds. Masso M. Biomed Res Int 2017 5760612 (2017)
  19. A single residue switch reveals principles of antibody domain integrity. Weber B, Brandl MJ, Pulido Cendales MD, Berner C, Pradhan T, Feind GM, Zacharias M, Reif B, Buchner J. J. Biol. Chem. 293 17107-17118 (2018)
  20. Simultaneous prediction of antibody backbone and side-chain conformations with deep learning. Akpinaroglu D, Ruffolo JA, Mahajan SP, Gray JJ. PLoS One 17 e0258173 (2022)
  21. The electrostatic profile of consecutive Cβ atoms applied to protein structure quality assessment. Chakraborty S, Venkatramani R, Rao BJ, Asgeirsson B, Dandekar AM. F1000Res 2 243 (2013)


Reviews citing this publication (4)

  1. Molecular mechanisms governing reading frame choice of immunoglobulin diversity genes. Raaphorst FM, Raman CS, Nall BT, Teale JM. Immunol. Today 18 37-43 (1997)
  2. Crystal structures of human antibodies: a detailed and unfinished tapestry of immunoglobulin gene products. Ramsland PA, Farrugia W. J. Mol. Recognit. 15 248-259 (2002)
  3. Using X-Ray Crystallography to Simplify and Accelerate Biologics Drug Development. Brader ML, Baker EN, Dunn MF, Laue TM, Carpenter JF. J Pharm Sci 106 477-494 (2017)
  4. Computational identification of HCV neutralizing antibodies with a common HCDR3 disulfide bond motif in the antibody repertoires of infected individuals. Bozhanova NG, Flyak AI, Brown BP, Ruiz SE, Salas J, Rho S, Bombardi RG, Myers L, Soto C, Bailey JR, Crowe JE, Bjorkman PJ, Meiler J. Nat Commun 13 3178 (2022)

Articles citing this publication (13)

  1. Yet another numbering scheme for immunoglobulin variable domains: an automatic modeling and analysis tool. Honegger A, Plückthun A. J. Mol. Biol. 309 657-670 (2001)
  2. Three-dimensional structure of an Fv from a human IgM immunoglobulin. Fan ZC, Shan L, Guddat LW, He XM, Gray WR, Raison RL, Edmundson AB. J. Mol. Biol. 228 188-207 (1992)
  3. Three-dimensional structure of a human Fab with high affinity for tetanus toxoid. Faber C, Shan L, Fan Z, Guddat LW, Furebring C, Ohlin M, Borrebaeck CA, Edmundson AB. Immunotechnology 3 253-270 (1998)
  4. Variable domain-linked oligosaccharides of a human monoclonal IgG: structure and influence on antigen binding. Leibiger H, Wüstner D, Stigler RD, Marx U. Biochem. J. 338 ( Pt 2) 529-538 (1999)
  5. Characterization of a high-affinity human antibody with a disulfide bridge in the third complementarity-determining region of the heavy chain. Almagro JC, Raghunathan G, Beil E, Janecki DJ, Chen Q, Dinh T, LaCombe A, Connor J, Ware M, Kim PH, Swanson RV, Fransson J. J. Mol. Recognit. 25 125-135 (2012)
  6. Structure and specificity of an antibody targeting a proteolytically cleaved IgG hinge. Malia TJ, Teplyakov A, Brezski RJ, Luo J, Kinder M, Sweet RW, Almagro JC, Jordan RE, Gilliland GL. Proteins 82 1656-1667 (2014)
  7. The human pre-B cell receptor: structural constraints for a tentative model of the pseudo-light (psi L) chain. Guelpa-Fonlupt V, Bossy D, Alzari P, Fumoux F, Fougereau M, Schiff C. Mol. Immunol. 31 1099-1108 (1994)
  8. Biochemical implications from the variable gene sequences of an anti-cytochrome c antibody and crystallographic characterization of its antigen-binding fragment in free and antigen-complexed forms. Mylvaganam SE, Paterson Y, Kaiser K, Bowdish K, Getzoff ED. J. Mol. Biol. 221 455-462 (1991)
  9. Structural basis for enhanced HIV-1 neutralization by a dimeric immunoglobulin G form of the glycan-recognizing antibody 2G12. Wu Y, West AP, Kim HJ, Thornton ME, Ward AB, Bjorkman PJ. Cell Rep 5 1443-1455 (2013)
  10. Aggregation of Full-length Immunoglobulin Light Chains from Systemic Light Chain Amyloidosis (AL) Patients Is Remodeled by Epigallocatechin-3-gallate. Andrich K, Hegenbart U, Kimmich C, Kedia N, Bergen HR, Schönland S, Wanker E, Bieschke J. J. Biol. Chem. 292 2328-2344 (2017)
  11. Size and conformational features of ErbB2 and ErbB3 receptors: a TEM and DLS comparative study. Vicente-Alique E, Núñez-Ramírez R, Vega JF, Hu P, Martínez-Salazar J. Eur. Biophys. J. 40 835-842 (2011)
  12. Structural predictions of the binding site architecture for monoclonal antibody NC6.8 using computer-aided molecular modeling, ligand binding, and spectroscopy. Viswanathan M, Anchin JM, Droupadi PR, Mandal C, Linthicum DS, Subramaniam S. Biophys. J. 69 741-753 (1995)
  13. The primary structure and specificity determining residues displayed by recombinant salmon antibody domains. Solem ST, Brandsdal BO, Smalås A, Jørgensen TØ. Mol. Immunol. 40 1347-1360 (2004)


Related citations provided by authors (5)

  1. The Three-Dimensional Structure of Antibodies. Marquart M, Deisenhofer J Immunol. Today 3 160- (1982)
  2. Crystallographic Refinement and Atomic Models of the Intact Immunoglobulin Molecule Kol and its Antigen-Binding Fragment at 3.0 Angstroms and 1.9 Angstroms Resolution. Marquart M, Deisenhofer J, Huber R, Palm W J. Mol. Biol. 141 369- (1980)
  3. Crystal structure of the human Fab fragment Kol and its comparison with the intact Kol molecule.. Matsushima M, Marquart M, Jones TA, Colman PM, Bartels K, Huber R J Mol Biol 121 441-59 (1978)
  4. Crystallographic structure studies of an IgG molecule and an Fc fragment.. Huber R, Deisenhofer J, Colman PM, Matsushima M, Palm W Nature 264 415-20 (1976)
  5. Structure of the Human Antibody Molecule Kol (Immunoglobulin G1). An Electron Density Map at 5 Angstroms Resolution. Colman PM, Deisenhofer J, Huber R, Palm W J. Mol. Biol. 100 257- (1976)