2fah Citations

Structural insights into the mechanism of PEPCK catalysis.

Biochemistry 45 8254-63 (2006)
Related entries: 2faf, 2qzy

Cited: 36 times
EuropePMC logo PMID: 16819824

Abstract

Phosphoenolpyruvate carboxykinase catalyzes the reversible decarboxylation of oxaloacetic acid with the concomitant transfer of the gamma-phosphate of GTP to form PEP and GDP as the first committed step of gluconeogenesis and glyceroneogenesis. The three structures of the mitochondrial isoform of PEPCK reported are complexed with Mn2+, Mn2+-PEP, or Mn2+-malonate-Mn2+ GDP and provide the first observations of the structure of the mitochondrial isoform and insight into the mechanism of catalysis mediated by this enzyme. The structures show the involvement of the hyper-reactive cysteine (C307) in the coordination of the active site Mn2+. Upon formation of the PEPCK-Mn2+-PEP or PEPCK-Mn2+-malonate-Mn2+ GDP complexes, C307 coordination is lost as the P-loop in which it resides adopts a different conformation. The structures suggest that stabilization of the cysteine-coordinated metal geometry holds the enzyme as a catalytically incompetent metal complex and may represent a previously unappreciated mechanism of regulation. A third conformation of the mobile P-loop in the PEPCK-Mn2+-malonate-Mn2+ GDP complex demonstrates the participation of a previously unrecognized, conserved serine residue (S305) in mediating phosphoryl transfer. The ordering of the mobile active site lid in the PEPCK-Mn2+-malonate-Mn2+ GDP complex yields the first observation of this structural feature and provides additional insight into the mechanism of phosphoryl transfer.

Articles - 2fah mentioned but not cited (1)

  1. Computational evaluation of natural compounds as potential inhibitors of human PEPCK-M: an alternative for lung cancer therapy. Baptista LPR, Sinatti VV, Da Silva JH, Dardenne LE, Guimarães AC. Adv Appl Bioinform Chem 12 15-32 (2019)


Reviews citing this publication (6)

Articles citing this publication (29)

  1. Phosphoenolpyruvate cycling via mitochondrial phosphoenolpyruvate carboxykinase links anaplerosis and mitochondrial GTP with insulin secretion. Stark R, Pasquel F, Turcu A, Pongratz RL, Roden M, Cline GW, Shulman GI, Kibbey RG. J Biol Chem 284 26578-26590 (2009)
  2. Enzymes with lid-gated active sites must operate by an induced fit mechanism instead of conformational selection. Sullivan SM, Holyoak T. Proc Natl Acad Sci U S A 105 13829-13834 (2008)
  3. research-article Thematic minireview series: a perspective on the biology of phosphoenolpyruvate carboxykinase 55 years after its discovery. Hanson RW. J Biol Chem 284 27021-27023 (2009)
  4. Transcriptomics, metabolomics and histology indicate that high-carbohydrate diet negatively affects the liver health of blunt snout bream (Megalobrama amblycephala). Prisingkorn W, Prathomya P, Jakovlić I, Liu H, Zhao YH, Wang WM. BMC Genomics 18 856 (2017)
  5. pH-dependent structures of the manganese binding sites in oxalate decarboxylase as revealed by high-field electron paramagnetic resonance. Tabares LC, Gätjens J, Hureau C, Burrell MR, Bowater L, Pecoraro VL, Bornemann S, Un S. J Phys Chem B 113 9016-9025 (2009)
  6. Effect of dietary fat modification on subcutaneous white adipose tissue insulin sensitivity in patients with metabolic syndrome. Jimenez-Gomez Y, Cruz-Teno C, Rangel-Zuñiga OA, Peinado JR, Perez-Martinez P, Delgado-Lista J, Garcia-Rios A, Camargo A, Vazquez-Martinez R, Ortega-Bellido M, Perez-Jimenez F, Perez-Jimenez F, Roche HM, Malagon MM, Lopez-Miranda J. Mol Nutr Food Res 58 2177-2188 (2014)
  7. Animal Model of Gestational Diabetes Mellitus with Pathophysiological Resemblance to the Human Condition Induced by Multiple Factors (Nutritional, Pharmacological, and Stress) in Rats. Abdul Aziz SH, John CM, Mohamed Yusof NI, Nordin M, Ramasamy R, Adam A, Mohd Fauzi F, Mohd Fauzi F. Biomed Res Int 2016 9704607 (2016)
  8. Mycobacterium tuberculosis phosphoenolpyruvate carboxykinase is regulated by redox mechanisms and interaction with thioredoxin. Machová I, Snašel J, Zimmermann M, Laubitz D, Plocinski P, Oehlmann W, Singh M, Dostál J, Sauer U, Pichová I. J Biol Chem 289 13066-13078 (2014)
  9. The Ω-loop lid domain of phosphoenolpyruvate carboxykinase is essential for catalytic function. Johnson TA, Holyoak T. Biochemistry 51 9547-9559 (2012)
  10. Tyr235 of human cytosolic phosphoenolpyruvate carboxykinase influences catalysis through an anion-quadrupole interaction with phosphoenolpyruvate carboxylate. Dharmarajan L, Case CL, Dunten P, Mukhopadhyay B. FEBS J 275 5810-5819 (2008)
  11. Mitochondrial PCK2 Missense Variant in Shetland Sheepdogs with Paroxysmal Exercise-Induced Dyskinesia (PED). Nessler J, Hug P, Mandigers PJJ, Leegwater PAJ, Jagannathan V, Das AM, Rosati M, Matiasek K, Sewell AC, Kornberg M, Hoffmann M, Wolf P, Fischer A, Tipold A, Leeb T. Genes (Basel) 11 E774 (2020)
  12. Phylogenetic study of the evolution of PEP-carboxykinase. Aich S, Delbaere LT. Evol Bioinform Online 3 333-340 (2007)
  13. Strategies for folding of affinity tagged proteins using GroEL and osmolytes. Katayama H, McGill M, McGill M, Kearns A, Brzozowski M, Degner N, Harnett B, Kornilayev B, Matković-Calogović D, Holyoak T, Calvet JP, Gogol EP, Seed J, Fisher MT. J Struct Funct Genomics 10 57-66 (2009)
  14. Biocomputational analysis of phosphoenolpyruvate carboxykinase from Raillietina echinobothrida, a cestode parasite, and its interaction with possible modulators. Dutta AK, Ramnath, Tandon V, DAS B. Parasitology 143 300-313 (2016)
  15. Electrostatic interactions play a significant role in the affinity of Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase for Mn2+. Sepúlveda C, Poch A, Espinoza R, Cardemil E. Biochimie 92 814-819 (2010)
  16. Arsenite-induced changes in hepatic protein abundance in cynomolgus monkeys (Macaca fascicularis). Kim S, Lee SH, Lee S, Park JD, Ryu DY. Proteomics 14 1833-1843 (2014)
  17. Millisecond mix-and-quench crystallography (MMQX) enables time-resolved studies of PEPCK with remote data collection. Clinger JA, Moreau DW, McLeod MJ, Holyoak T, Thorne RE. IUCrJ 8 784-792 (2021)
  18. Novel insights into molecular mechanisms of Pseudourostyla cristata encystment using comparative transcriptomics. Pan N, Niu T, Bhatti MZ, Zhang H, Fan X, Ni B, Chen J. Sci Rep 9 19109 (2019)
  19. Self-acetylation at the active site of phosphoenolpyruvate carboxykinase (PCK1) controls enzyme activity. Latorre-Muro P, Baeza J, Hurtado-Guerrero R, Hicks T, Delso I, Hernández-Ruiz C, Velázquez-Campoy A, Lawton AJ, Angulo J, Denu JM, Carrodeguas JA. J Biol Chem 296 100205 (2021)
  20. Dynamic behavior of rat phosphoenolpyruvate carboxykinase inhibitors: new mechanism for enzyme inhibition. Dayer MR, Dayer MS, Ghayour O. Protein J 32 253-258 (2013)
  21. Functional evaluation of serine 252 of Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase. Castillo D, Sepúlveda C, Cardemil E, Jabalquinto AM. Biochimie 91 295-299 (2009)
  22. Relevance of Arg457 for the nucleotide affinity of Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase. Tobar I, González-Nilo FD, Jabalquinto AM, Cardemil E. Int J Biochem Cell Biol 40 1883-1889 (2008)
  23. Relevance of phenylalanine 216 in the affinity of Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase for Mn(II). Yévenes A, González-Nilo FD, Cardemil E. Protein J 26 135-141 (2007)
  24. Structural and functional studies of phosphoenolpyruvate carboxykinase from Mycobacterium tuberculosis. Machová I, Snášel J, Dostál J, Brynda J, Fanfrlík J, Singh M, Tarábek J, Vaněk O, Bednárová L, Pichová I. PLoS One 10 e0120682 (2015)
  25. Stereochemistry of the carboxylation reaction catalyzed by the ATP-dependent phosphoenolpyruvate carboxykinases from Saccharomyces cerevisiae and Anaerobiospirillum succiniciproducens. Pérez E, Espinoza R, Laiveniekcs M, Cardemil E. Biochimie 90 1685-1692 (2008)
  26. Structural comparisons of phosphoenolpyruvate carboxykinases reveal the evolutionary trajectories of these phosphodiester energy conversion enzymes. Chiba Y, Miyakawa T, Shimane Y, Takai K, Tanokura M, Nozaki T. J Biol Chem 294 19269-19278 (2019)
  27. A genetic polymorphism evolving in parallel in two cell compartments and in two clades. Watt WB, Hudson RR, Wang B, Wang E. BMC Evol Biol 13 9 (2013)
  28. Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase: the relevance of Glu299 and Leu460 for nucleotide binding. Pérez E, Cardemil E. Protein J 29 299-305 (2010)
  29. The Role of Cysteine Residues in Catalysis of Phosphoenolpyruvate Carboxykinase from Mycobacterium tuberculosis. Machová I, Hubálek M, Lepšík M, Bednárová L, Pazderková M, Kopecký V, Snášel J, Dostál J, Pichová I. PLoS One 12 e0170373 (2017)