2ewa Citations

NMR characterization of kinase p38 dynamics in free and ligand-bound forms.

Articles - 2ewa mentioned but not cited (8)

  1. Dynamics of protein kinases: insights from nuclear magnetic resonance. Xiao Y, Liddle JC, Pardi A, Ahn NG. Acc Chem Res 48 1106-1114 (2015)
  2. Fluorophore labeled kinase detects ligands that bind within the MAPK insert of p38α kinase. Getlik M, Simard JR, Termathe M, Grütter C, Rabiller M, van Otterlo WA, Rauh D. PLoS One 7 e39713 (2012)
  3. Accurate calculation of mutational effects on the thermodynamics of inhibitor binding to p38α MAP kinase: a combined computational and experimental study. Zhu S, Travis SM, Elcock AH. J Chem Theory Comput 9 3151-3164 (2013)
  4. Kinase Inhibitory Activities and Molecular Docking of a Novel Series of Anticancer Pyrazole Derivatives. Nossier ES, Abd El-Karim SS, Khalifa NM, El-Sayed AS, Hassan ESI, El-Hallouty SM. Molecules 23 E3074 (2018)
  5. p38α Mitogen-Activated Protein Kinase Is a Druggable Target in Pancreatic Adenocarcinoma. Yang L, Sun X, Ye Y, Lu Y, Zuo J, Liu W, Elcock A, Zhu S. Front Oncol 9 1294 (2019)
  6. Virtual screening using a conformationally flexible target protein: models for ligand binding to p38α MAPK. Vinh NB, Simpson JS, Scammells PJ, Chalmers DK. J Comput Aided Mol Des 26 409-423 (2012)
  7. Design, Synthesis, and Biological Evaluation of Tetra-Substituted Thiophenes as Inhibitors of p38α MAPK. Vinh NB, Devine SM, Munoz L, Ryan RM, Wang BH, Krum H, Chalmers DK, Simpson JS, Scammells PJ. ChemistryOpen 4 56-64 (2015)
  8. Structural basis of a redox-dependent conformational switch that regulates the stress kinase p38α. Pous J, Baginski B, Martin-Malpartida P, González L, Scarpa M, Aragon E, Ruiz L, Mees RA, Iglesias-Fernández J, Orozco M, Nebreda AR, Macias MJ. Nat Commun 14 7920 (2023)


Reviews citing this publication (10)

  1. Molecular basis of MAP kinase regulation. Peti W, Page R. Protein Sci 22 1698-1710 (2013)
  2. New therapeutic targets in cardiology: p38 alpha mitogen-activated protein kinase for ischemic heart disease. Denise Martin E, De Nicola GF, Marber MS. Circulation 126 357-368 (2012)
  3. Proteus in the world of proteins: conformational changes in protein kinases. Rabiller M, Getlik M, Klüter S, Richters A, Tückmantel S, Simard JR, Rauh D. Arch Pharm (Weinheim) 343 193-206 (2010)
  4. Investigating metabolite-protein interactions: an overview of available techniques. Yang GX, Li X, Snyder M. Methods 57 459-466 (2012)
  5. Design principles underpinning the regulatory diversity of protein kinases. Oruganty K, Kannan N. Philos Trans R Soc Lond B Biol Sci 367 2529-2539 (2012)
  6. Single versus dual-binding conformations in cellulosomal cohesin-dockerin complexes. Nash MA, Smith SP, Fontes CM, Bayer EA. Curr Opin Struct Biol 40 89-96 (2016)
  7. Biomolecular NMR: a chaperone to drug discovery. Betz M, Saxena K, Schwalbe H. Curr Opin Chem Biol 10 219-225 (2006)
  8. Studies of metabolite-protein interactions: a review. Matsuda R, Bi C, Anguizola J, Sobansky M, Rodriguez E, Vargas Badilla J, Zheng X, Hage B, Hage DS. J Chromatogr B Analyt Technol Biomed Life Sci 966 48-58 (2014)
  9. Computational insights for the discovery of non-ATP competitive inhibitors of MAP kinases. Schnieders MJ, Kaoud TS, Yan C, Dalby KN, Ren P. Curr Pharm Des 18 1173-1185 (2012)
  10. Probing Protein-Protein Interactions Using Asymmetric Labeling and Carbonyl-Carbon Selective Heteronuclear NMR Spectroscopy. Larsen EK, Olivieri C, Walker C, V S M, Gao J, Bernlohr DA, Tonelli M, Markley JL, Veglia G. Molecules 23 E1937 (2018)

Articles citing this publication (57)

  1. Surface comparison of active and inactive protein kinases identifies a conserved activation mechanism. Kornev AP, Haste NM, Taylor SS, Eyck LF. Proc Natl Acad Sci U S A 103 17783-17788 (2006)
  2. Structural and energetic mechanisms of cooperative autoinhibition and activation of Vav1. Yu B, Martins IR, Li P, Amarasinghe GK, Umetani J, Fernandez-Zapico ME, Billadeau DD, Machius M, Tomchick DR, Rosen MK. Cell 140 246-256 (2010)
  3. Crystal Structures of the p21-activated kinases PAK4, PAK5, and PAK6 reveal catalytic domain plasticity of active group II PAKs. Eswaran J, Lee WH, Debreczeni JE, Filippakopoulos P, Turnbull A, Fedorov O, Deacon SW, Peterson JR, Knapp S. Structure 15 201-213 (2007)
  4. Energetic dissection of Gleevec's selectivity toward human tyrosine kinases. Agafonov RV, Wilson C, Otten R, Buosi V, Kern D. Nat Struct Mol Biol 21 848-853 (2014)
  5. Activation state-dependent binding of small molecule kinase inhibitors: structural insights from biochemistry. Wodicka LM, Ciceri P, Davis MI, Hunt JP, Floyd M, Salerno S, Hua XH, Ford JM, Armstrong RC, Zarrinkar PP, Treiber DK. Chem Biol 17 1241-1249 (2010)
  6. NMR reveals the allosteric opening and closing of Abelson tyrosine kinase by ATP-site and myristoyl pocket inhibitors. Skora L, Mestan J, Fabbro D, Jahnke W, Grzesiek S. Proc Natl Acad Sci U S A 110 E4437-45 (2013)
  7. Global consequences of activation loop phosphorylation on protein kinase A. Steichen JM, Iyer GH, Li S, Saldanha SA, Deal MS, Woods VL, Taylor SS. J Biol Chem 285 3825-3832 (2010)
  8. Structural basis of p38α regulation by hematopoietic tyrosine phosphatase. Francis DM, Różycki B, Koveal D, Hummer G, Page R, Peti W. Nat Chem Biol 7 916-924 (2011)
  9. A potent and selective p38 inhibitor protects against bone damage in murine collagen-induced arthritis: a comparison with neutralization of mouse TNFalpha. Mihara K, Almansa C, Smeets RL, Loomans EE, Dulos J, Vink PM, Rooseboom M, Kreutzer H, Cavalcanti F, Boots AM, Nelissen RL. Br J Pharmacol 154 153-164 (2008)
  10. Dynamic activation and regulation of the mitogen-activated protein kinase p38. Kumar GS, Clarkson MW, Kunze MBA, Granata D, Wand AJ, Lindorff-Larsen K, Page R, Peti W. Proc Natl Acad Sci U S A 115 4655-4660 (2018)
  11. Small-molecule inhibitors binding to protein kinase. Part II: the novel pharmacophore approach of type II and type III inhibition. Backes A, Zech B, Felber B, Klebl B, Müller G. Expert Opin Drug Discov 3 1427-1449 (2008)
  12. Potential Mean Force from Umbrella Sampling Simulations: What Can We Learn and What Is Missed? You W, Tang Z, Chang CA. J Chem Theory Comput 15 2433-2443 (2019)
  13. An Evaluation of Explicit Receptor Flexibility in Molecular Docking Using Molecular Dynamics and Torsion Angle Molecular Dynamics. Armen RS, Chen J, Brooks CL. J Chem Theory Comput 5 2909-2923 (2009)
  14. Solution NMR insights into docking interactions involving inactive ERK2. Piserchio A, Warthaka M, Devkota AK, Kaoud TS, Lee S, Abramczyk O, Ren P, Dalby KN, Ghose R. Biochemistry 50 3660-3672 (2011)
  15. The third conformation of p38α MAP kinase observed in phosphorylated p38α and in solution. Akella R, Min X, Wu Q, Gardner KH, Goldsmith EJ. Structure 18 1571-1578 (2010)
  16. Small-molecule inhibitors binding to protein kinases. Part I: exceptions from the traditional pharmacophore approach of type I inhibition. Backes A, Zech B, Felber B, Klebl B, Müller G. Expert Opin Drug Discov 3 1409-1425 (2008)
  17. The apo-structure of the low molecular weight protein-tyrosine phosphatase A (MptpA) from Mycobacterium tuberculosis allows for better target-specific drug development. Stehle T, Sreeramulu S, Löhr F, Richter C, Saxena K, Jonker HR, Schwalbe H. J Biol Chem 287 34569-34582 (2012)
  18. Contributions of water transfer energy to protein-ligand association and dissociation barriers: Watermap analysis of a series of p38α MAP kinase inhibitors. Pearlstein RA, Sherman W, Abel R. Proteins 81 1509-1526 (2013)
  19. Elucidation of a four-site allosteric network in fibroblast growth factor receptor tyrosine kinases. Chen H, Marsiglia WM, Cho MK, Huang Z, Deng J, Blais SP, Gai W, Bhattacharya S, Neubert TA, Traaseth NJ, Mohammadi M. Elife 6 e21137 (2017)
  20. Insights from free-energy calculations: protein conformational equilibrium, driving forces, and ligand-binding modes. Huang YM, Chen W, Potter MJ, Chang CE. Biophys J 103 342-351 (2012)
  21. Predicting the Conformational Variability of Abl Tyrosine Kinase using Molecular Dynamics Simulations and Markov State Models. Meng Y, Gao C, Clawson DK, Atwell S, Russell M, Vieth M, Roux B. J Chem Theory Comput 14 2721-2732 (2018)
  22. Dynamics of human protein kinase Aurora A linked to drug selectivity. Pitsawong W, Buosi V, Otten R, Agafonov RV, Zorba A, Kern N, Kutter S, Kern G, Pádua RA, Meniche X, Kern D. Elife 7 e36656 (2018)
  23. Developing small molecules to inhibit kinases unkind to the heart: p38 MAPK as a case in point. Marber MS, Molkentin JD, Force T. Drug Discov Today Dis Mech 7 e123-e127 (2010)
  24. How Electrostatic Coupling Enables Conformational Plasticity in a Tyrosine Kinase. Tsai CC, Yue Z, Shen J. J Am Chem Soc 141 15092-15101 (2019)
  25. X-ray structure of p38α bound to TAK-715: comparison with three classic inhibitors. Azevedo R, van Zeeland M, Raaijmakers H, Kazemier B, de Vlieg J, Oubrie A. Acta Crystallogr D Biol Crystallogr 68 1041-1050 (2012)
  26. Dual binding mode of "bitter sugars" to their human bitter taste receptor target. Fierro F, Giorgetti A, Carloni P, Meyerhof W, Alfonso-Prieto M. Sci Rep 9 8437 (2019)
  27. Kinetic Cooperativity in Human Pancreatic Glucokinase Originates from Millisecond Dynamics of the Small Domain. Larion M, Hansen AL, Zhang F, Bruschweiler-Li L, Tugarinov V, Miller BG, Brüschweiler R. Angew Chem Int Ed Engl 54 8129-8132 (2015)
  28. The transition between active and inactive conformations of Abl kinase studied by rock climbing and Milestoning. Narayan B, Fathizadeh A, Templeton C, He P, Arasteh S, Elber R, Buchete NV, Levy RM. Biochim Biophys Acta Gen Subj 1864 129508 (2020)
  29. NMR Characterization of Information Flow and Allosteric Communities in the MAP Kinase p38γ. Aoto PC, Martin BT, Wright PE. Sci Rep 6 28655 (2016)
  30. Carbonyl carbon label selective (CCLS) 1H-15N HSQC experiment for improved detection of backbone 13C-15N cross peaks in larger proteins. Tonelli M, Masterson LR, Hallenga K, Veglia G, Markley JL. J Biomol NMR 39 177-185 (2007)
  31. Dynamics in the p38alpha MAP kinase-SB203580 complex observed by liquid-state NMR spectroscopy. Honndorf VS, Coudevylle N, Laufer S, Becker S, Griesinger C. Angew Chem Int Ed Engl 47 3548-3551 (2008)
  32. NVP-BHG712: Effects of Regioisomers on the Affinity and Selectivity toward the EPHrin Family. Tröster A, Heinzlmeir S, Berger BT, Gande SL, Saxena K, Sreeramulu S, Linhard V, Nasiri AH, Bolte M, Müller S, Kuster B, Médard G, Kudlinzki D, Schwalbe H. ChemMedChem 13 1629-1633 (2018)
  33. The feasibility of parameterizing four-state equilibria using relaxation dispersion measurements. Li P, Martins IR, Rosen MK. J Biomol NMR 51 57-70 (2011)
  34. Computer Simulations of the Dissociation Mechanism of Gleevec from Abl Kinase with Milestoning. Narayan B, Buchete NV, Elber R. J Phys Chem B 125 5706-5715 (2021)
  35. Identification of a Highly Conserved Allosteric Binding Site on Mnk1 and Mnk2. Basnet SK, Diab S, Schmid R, Yu M, Yang Y, Gillam TA, Teo T, Li P, Peat T, Albrecht H, Wang S. Mol Pharmacol 88 935-948 (2015)
  36. NMR spectroscopic investigations of the activated p38α mitogen-activated protein kinase. Nielsen G, Schwalbe H. Chembiochem 12 2599-2607 (2011)
  37. Optimized Target Residence Time: Type I1/2 Inhibitors for p38α MAP Kinase with Improved Binding Kinetics through Direct Interaction with the R-Spine. Wentsch HK, Walter NM, Bührmann M, Mayer-Wrangowski S, Rauh D, Zaman GJR, Willemsen-Seegers N, Buijsman RC, Henning M, Dauch D, Zender L, Laufer S. Angew Chem Int Ed Engl 56 5363-5367 (2017)
  38. Structural basis for the regulation of the mitogen-activated protein (MAP) kinase p38α by the dual specificity phosphatase 16 MAP kinase binding domain in solution. Kumar GS, Zettl H, Page R, Peti W. J Biol Chem 288 28347-28356 (2013)
  39. Kinase in motion: insights into the dynamic nature of p38α by high-pressure NMR spectroscopic studies. Nielsen G, Jonker HR, Vajpai N, Grzesiek S, Schwalbe H. Chembiochem 14 1799-1806 (2013)
  40. Protein Flexibility and Dissociation Pathway Differentiation Can Explain Onset of Resistance Mutations in Kinases. Shekhar M, Smith Z, Seeliger MA, Tiwary P. Angew Chem Int Ed Engl 61 e202200983 (2022)
  41. p38α MAPK and Type I Inhibitors: Binding Site Analysis and Use of Target Ensembles in Virtual Screening. Astolfi A, Iraci N, Sabatini S, Barreca ML, Cecchetti V. Molecules 20 15842-15861 (2015)
  42. Allosteric inhibition of c-Met kinase in sub-microsecond molecular dynamics simulations induced by its inhibitor, tivantinib. Yan M, Wang H, Wang Q, Zhang Z, Zhang C. Phys Chem Chem Phys 18 10367-10374 (2016)
  43. Application of a Substrate-Mediated Selection with c-Src Tyrosine Kinase to a DNA-Encoded Chemical Library. Kim D, Sun Y, Xie D, Denton KE, Chen H, Lin H, Wendt MK, Post CB, Krusemark CJ. Molecules 24 E2764 (2019)
  44. Direct monitoring of the conformational equilibria of the activation loop in the mitogen-activated protein kinase p38α. Roser P, Weisner J, Simard JR, Rauh D, Drescher M. Chem Commun (Camb) 54 12057-12060 (2018)
  45. Evolution and intelligent design in drug development. Agafonov RV, Wilson C, Kern D. Front Mol Biosci 2 27 (2015)
  46. Multiscale computational study of ligand binding pathways: Case of p38 MAP kinase and its inhibitors. Huang YM. Biophys J 120 3881-3892 (2021)
  47. Automated affinity selection for rapid discovery of peptide binders. Zhang G, Li C, Quartararo AJ, Loas A, Pentelute BL. Chem Sci 12 10817-10824 (2021)
  48. Exploring c-Met kinase flexibility by sampling and clustering its conformational space. Asses Y, Venkatraman V, Leroux V, Ritchie DW, Maigret B. Proteins 80 1227-1238 (2012)
  49. Inferential NMR/X-ray-based structure determination of a dibenzo[a,d]cycloheptenone inhibitor-p38α MAP kinase complex in solution. Honndorf VS, Coudevylle N, Laufer S, Becker S, Griesinger C, Habeck M. Angew Chem Int Ed Engl 51 2359-2362 (2012)
  50. Expression and Purification of EPHA2 Tyrosine Kinase Domain for Crystallographic and NMR Studies. Gande SL, Saxena K, Sreeramulu S, Linhard V, Kudlinzki D, Heinzlmeir S, Reichert AJ, Skerra A, Kuster B, Schwalbe H. Chembiochem 17 2257-2263 (2016)
  51. Phosphorylation- and nucleotide-binding-induced changes to the stability and hydrogen exchange patterns of JNK1β1 provide insight into its mechanisms of activation. Owen GR, Stoychev S, Achilonu I, Dirr HW. J Mol Biol 426 3569-3589 (2014)
  52. Backbone resonance assignments of the catalytic and regulatory domains of Ca2+/calmodulin-dependent protein kinase 1D. Tong MHG, Jeeves M, Rajesh S, Ludwig C, Lenoir M, Kumar J, McClelland DM, Berditchevski F, Hubbard JA, Kenyon C, Butterworth S, Knapp S, Overduin M. Biomol NMR Assign 14 221-225 (2020)
  53. MOTOR: model assisted software for NMR structure determination. Schieborr U, Sreeramulu S, Elshorst B, Maurer M, Saxena K, Stehle T, Kudlinzki D, Gande SL, Schwalbe H. Proteins 81 2007-2022 (2013)
  54. Molecular Dynamics and Machine Learning Give Insights on the Flexibility-Activity Relationships in Tyrosine Kinome. Majumdar S, Di Palma F, Spyrakis F, Decherchi S, Cavalli A. J Chem Inf Model 63 4814-4826 (2023)
  55. Molecular modeling study of the induced-fit effect on kinase inhibition: the case of fibroblast growth factor receptor 3 (FGFR3). Li Y, Delamar M, Busca P, Prestat G, Le Corre L, Legeai-Mallet L, Hu R, Zhang R, Barbault F. J Comput Aided Mol Des 29 619-641 (2015)
  56. Styrylquinazoline derivatives as ABL inhibitors selective for different DFG orientations. Malarz K, Mularski J, Pacholczyk M, Musiol R. J Enzyme Inhib Med Chem 38 2201410 (2023)
  57. Tackling Hysteresis in Conformational Sampling: How to Be Forgetful with MEMENTO. Lichtinger SM, Biggin PC. J Chem Theory Comput 19 3705-3720 (2023)