2ehb Citations

The structure of the C-terminal domain of the protein kinase AtSOS2 bound to the calcium sensor AtSOS3.

Abstract

The plant SOS2 family of protein kinases and their interacting activators, the SOS3 family of calcium-binding proteins, function together in decoding calcium signals elicited by different environmental stimuli. SOS2 is activated by Ca-SOS3 and subsequently phosphorylates the ion transporter SOS1 to bring about cellular ion homeostasis under salt stress. In addition to possessing the kinase activity, members of the SOS2 family of protein kinases can bind to protein phosphatase 2Cs. The crystal structure of the binary complex of Ca-SOS3 with the C-terminal regulatory moiety of SOS2 resolves central questions regarding the dual function of SOS2 as a kinase and a phosphatase-binding protein. A comparison with the structure of unbound SOS3 reveals the basis of the molecular function of this family of kinases and their interacting calcium sensors. Furthermore, our study suggests that the structure of the phosphatase-interaction domain of SOS2 defines a scaffold module conserved from yeast to human.

Articles - 2ehb mentioned but not cited (6)

  1. The structure of the C-terminal domain of the protein kinase AtSOS2 bound to the calcium sensor AtSOS3. Sánchez-Barrena MJ, Fujii H, Angulo I, Martínez-Ripoll M, Zhu JK, Albert A. Mol Cell 26 427-435 (2007)
  2. Assessment of helical interfaces in protein-protein interactions. Jochim AL, Arora PS. Mol Biosyst 5 924-926 (2009)
  3. Structural basis of the regulatory mechanism of the plant CIPK family of protein kinases controlling ion homeostasis and abiotic stress. Chaves-Sanjuan A, Sanchez-Barrena MJ, Gonzalez-Rubio JM, Moreno M, Ragel P, Jimenez M, Pardo JM, Martinez-Ripoll M, Quintero FJ, Albert A. Proc Natl Acad Sci U S A 111 E4532-41 (2014)
  4. A SOS3 homologue maps to HvNax4, a barley locus controlling an environmentally sensitive Na+ exclusion trait. Rivandi J, Miyazaki J, Hrmova M, Pallotta M, Tester M, Collins NC. J Exp Bot 62 1201-1216 (2011)
  5. Intramolecular autoinhibition of checkpoint kinase 1 is mediated by conserved basic motifs of the C-terminal kinase-associated 1 domain. Emptage RP, Schoenberger MJ, Ferguson KM, Marmorstein R. J Biol Chem 292 19024-19033 (2017)
  6. The influence of flanking secondary structures on amino Acid content and typical lengths of 3/10 helices. Khrustalev VV, Barkovsky EV, Khrustaleva TA. Int J Proteomics 2014 360230 (2014)


Reviews citing this publication (24)

  1. Calcium signals: the lead currency of plant information processing. Kudla J, Batistic O, Hashimoto K. Plant Cell 22 541-563 (2010)
  2. Signal transduction during cold, salt, and drought stresses in plants. Huang GT, Ma SL, Bai LP, Zhang L, Ma H, Jia P, Liu J, Zhong M, Guo ZF. Mol Biol Rep 39 969-987 (2012)
  3. The CBL-CIPK network in plant calcium signaling. Luan S. Trends Plant Sci 14 37-42 (2009)
  4. An update on abscisic acid signaling in plants and more... Wasilewska A, Vlad F, Sirichandra C, Redko Y, Jammes F, Valon C, Frei dit Frey N, Leung J. Mol Plant 1 198-217 (2008)
  5. The CBL-CIPK Ca(2+)-decoding signaling network: function and perspectives. Weinl S, Kudla J. New Phytol 184 517-528 (2009)
  6. Advances and current challenges in calcium signaling. Kudla J, Becker D, Grill E, Hedrich R, Hippler M, Kummer U, Parniske M, Romeis T, Schumacher K. New Phytol 218 414-431 (2018)
  7. Plant calcineurin B-like proteins and their interacting protein kinases. Batistic O, Kudla J. Biochim Biophys Acta 1793 985-992 (2009)
  8. The sucrose non-fermenting-1-related (SnRK) family of protein kinases: potential for manipulation to improve stress tolerance and increase yield. Coello P, Hey SJ, Halford NG. J Exp Bot 62 883-893 (2011)
  9. The CBL-CIPK network mediates different signaling pathways in plants. Yu Q, An L, Li W. Plant Cell Rep 33 203-214 (2014)
  10. DNA damage control: regulation and functions of checkpoint kinase 1. Smits VA, Gillespie DA. FEBS J 282 3681-3692 (2015)
  11. Molecular Insights into the Enigmatic Metabolic Regulator, SnRK1. Emanuelle S, Doblin MS, Stapleton DI, Bacic A, Gooley PR. Trends Plant Sci 21 341-353 (2016)
  12. Increasing complexity and versatility: how the calcium signaling toolkit was shaped during plant land colonization. Edel KH, Kudla J. Cell Calcium 57 231-246 (2015)
  13. The CBL-CIPK Pathway in Plant Response to Stress Signals. Ma X, Li QH, Yu YN, Qiao YM, Haq SU, Gong ZH. Int J Mol Sci 21 E5668 (2020)
  14. Mechanisms and Physiological Roles of the CBL-CIPK Networking System in Arabidopsis thaliana. Mao J, Manik SM, Shi S, Chao J, Jin Y, Wang Q, Liu H. Genes (Basel) 7 E62 (2016)
  15. SIK1/SOS2 networks: decoding sodium signals via calcium-responsive protein kinase pathways. Bertorello AM, Zhu JK. Pflugers Arch 458 613-619 (2009)
  16. Revisiting paradigms of Ca2+ signaling protein kinase regulation in plants. Bender KW, Zielinski RE, Huber SC. Biochem J 475 207-223 (2018)
  17. Ca(2+) signals: the versatile decoders of environmental cues. Sarwat M, Ahmad P, Nabi G, Hu X. Crit Rev Biotechnol 33 97-109 (2013)
  18. Plant Calcium Signaling in Response to Potassium Deficiency. Wang X, Hao L, Zhu B, Jiang Z. Int J Mol Sci 19 E3456 (2018)
  19. A Salt Overly Sensitive Pathway Member from Brassica juncea BjSOS3 Can Functionally Complement ΔAtsos3 in Arabidopsis. Nutan KK, Kumar G, Singla-Pareek SL, Pareek A. Curr Genomics 19 60-69 (2018)
  20. Molecular Evolution of Calcium Signaling and Transport in Plant Adaptation to Abiotic Stress. Tong T, Li Q, Jiang W, Chen G, Xue D, Deng F, Zeng F, Chen ZH. Int J Mol Sci 22 12308 (2021)
  21. Plant Proteoforms Under Environmental Stress: Functional Proteins Arising From a Single Gene. Kosová K, Vítámvás P, Prášil IT, Klíma M, Renaut J. Front Plant Sci 12 793113 (2021)
  22. Constant change: dynamic regulation of membrane transport by calcium signalling networks keeps plants in tune with their environment. Kleist TJ, Luan S. Plant Cell Environ 39 467-481 (2016)
  23. The captivating role of calcium in plant-microbe interaction. Bhar A, Chakraborty A, Roy A. Front Plant Sci 14 1138252 (2023)
  24. Diverse roles of the CIPK gene family in transcription regulation and various biotic and abiotic stresses: A literature review and bibliometric study. Yang C, Yi-Feng J, Yushu W, Yansong G, Qi W, Xue Y. Front Genet 13 1041078 (2022)

Articles citing this publication (50)

  1. Dual fatty acyl modification determines the localization and plasma membrane targeting of CBL/CIPK Ca2+ signaling complexes in Arabidopsis. Batistic O, Sorek N, Schültke S, Yalovsky S, Kudla J. Plant Cell 20 1346-1362 (2008)
  2. Phosphorylation of SOS3-LIKE CALCIUM BINDING PROTEIN8 by SOS2 protein kinase stabilizes their protein complex and regulates salt tolerance in Arabidopsis. Lin H, Yang Y, Quan R, Mendoza I, Wu Y, Du W, Zhao S, Schumaker KS, Pardo JM, Guo Y. Plant Cell 21 1607-1619 (2009)
  3. ABI1 and PP2CA phosphatases are negative regulators of Snf1-related protein kinase1 signaling in Arabidopsis. Rodrigues A, Adamo M, Crozet P, Margalha L, Confraria A, Martinho C, Elias A, Rabissi A, Lumbreras V, González-Guzmán M, Antoni R, Rodriguez PL, Baena-González E. Plant Cell 25 3871-3884 (2013)
  4. Kinase associated-1 domains drive MARK/PAR1 kinases to membrane targets by binding acidic phospholipids. Moravcevic K, Mendrola JM, Schmitz KR, Wang YH, Slochower D, Janmey PA, Lemmon MA. Cell 143 966-977 (2010)
  5. CIPK6, a CBL-interacting protein kinase is required for development and salt tolerance in plants. Tripathi V, Parasuraman B, Laxmi A, Chattopadhyay D. Plant J 58 778-790 (2009)
  6. Phosphorylation of calcineurin B-like (CBL) calcium sensor proteins by their CBL-interacting protein kinases (CIPKs) is required for full activity of CBL-CIPK complexes toward their target proteins. Hashimoto K, Eckert C, Anschütz U, Scholz M, Held K, Waadt R, Reyer A, Hippler M, Becker D, Kudla J. J Biol Chem 287 7956-7968 (2012)
  7. Mechanistic analysis of AKT1 regulation by the CBL-CIPK-PP2CA interactions. Lan WZ, Lee SC, Che YF, Jiang YQ, Luan S. Mol Plant 4 527-536 (2011)
  8. Identification and characterization of CBL and CIPK gene families in canola (Brassica napus L.). Zhang H, Yang B, Liu WZ, Li H, Wang L, Wang B, Deng M, Liang W, Deyholos MK, Jiang YQ. BMC Plant Biol 14 8 (2014)
  9. Phosphorylation of SOS3-like calcium-binding proteins by their interacting SOS2-like protein kinases is a common regulatory mechanism in Arabidopsis. Du W, Lin H, Chen S, Wu Y, Zhang J, Fuglsang AT, Palmgren MG, Wu W, Guo Y. Plant Physiol 156 2235-2243 (2011)
  10. The tomato calcium sensor Cbl10 and its interacting protein kinase Cipk6 define a signaling pathway in plant immunity. de la Torre F, Gutiérrez-Beltrán E, Pareja-Jaime Y, Chakravarthy S, Martin GB, del Pozo O. Plant Cell 25 2748-2764 (2013)
  11. Biotechnology of water and salinity stress tolerance. Pardo JM. Curr Opin Biotechnol 21 185-196 (2010)
  12. Overexpression of SlSOS2 (SlCIPK24) confers salt tolerance to transgenic tomato. Huertas R, Olías R, Eljakaoui Z, Gálvez FJ, Li J, De Morales PA, Belver A, Rodríguez-Rosales MP. Plant Cell Environ 35 1467-1482 (2012)
  13. Comprehensive structural, interaction and expression analysis of CBL and CIPK complement during abiotic stresses and development in rice. Kanwar P, Sanyal SK, Tokas I, Yadav AK, Pandey A, Kapoor S, Pandey GK. Cell Calcium 56 81-95 (2014)
  14. Wheat CBL-interacting protein kinase 23 positively regulates drought stress and ABA responses. Cui XY, Du YT, Fu JD, Yu TF, Wang CT, Chen M, Chen J, Ma YZ, Xu ZS. BMC Plant Biol 18 93 (2018)
  15. TaCIPK29, a CBL-interacting protein kinase gene from wheat, confers salt stress tolerance in transgenic tobacco. Deng X, Hu W, Wei S, Zhou S, Zhang F, Han J, Chen L, Li Y, Feng J, Fang B, Luo Q, Li S, Liu Y, Yang G, He G. PLoS One 8 e69881 (2013)
  16. The crystal structure of plant-specific calcium-binding protein AtCBL2 in complex with the regulatory domain of AtCIPK14. Akaboshi M, Hashimoto H, Ishida H, Saijo S, Koizumi N, Sato M, Shimizu T. J Mol Biol 377 246-257 (2008)
  17. The fungal pathogen Magnaporthe oryzae suppresses innate immunity by modulating a host potassium channel. Shi X, Long Y, He F, Zhang C, Wang R, Zhang T, Wu W, Hao Z, Wang Y, Wang GL, Ning Y. PLoS Pathog 14 e1006878 (2018)
  18. Molecular cloning and functional characterization of a novel apple MdCIPK6L gene reveals its involvement in multiple abiotic stress tolerance in transgenic plants. Wang RK, Li LL, Cao ZH, Zhao Q, Li M, Zhang LY, Hao YJ. Plant Mol Biol 79 123-135 (2012)
  19. NMR solution structure of human vaccinia-related kinase 1 (VRK1) reveals the C-terminal tail essential for its structural stability and autocatalytic activity. Shin J, Chakraborty G, Bharatham N, Kang C, Tochio N, Koshiba S, Kigawa T, Kim W, Kim KT, Yoon HS. J Biol Chem 286 22131-22138 (2011)
  20. Structural Biology of a Major Signaling Network that Regulates Plant Abiotic Stress: The CBL-CIPK Mediated Pathway. Sánchez-Barrena MJ, Martínez-Ripoll M, Albert A. Int J Mol Sci 14 5734-5749 (2013)
  21. Increased tolerance to salt stress in the phosphate-accumulating Arabidopsis mutants siz1 and pho2. Miura K, Sato A, Ohta M, Furukawa J. Planta 234 1191-1199 (2011)
  22. Arabidopsis ABA receptor RCAR1/PYL9 interacts with an R2R3-type MYB transcription factor, AtMYB44. Li D, Li Y, Zhang L, Wang X, Zhao Z, Tao Z, Wang J, Wang J, Lin M, Li X, Yang Y. Int J Mol Sci 15 8473-8490 (2014)
  23. The Arabidopsis thaliana mutant air1 implicates SOS3 in the regulation of anthocyanins under salt stress. Van Oosten MJ, Sharkhuu A, Batelli G, Bressan RA, Maggio A. Plant Mol Biol 83 405-415 (2013)
  24. Recognition and Activation of the Plant AKT1 Potassium Channel by the Kinase CIPK23. Sánchez-Barrena MJ, Chaves-Sanjuan A, Raddatz N, Mendoza I, Cortés Á, Gago F, González-Rubio JM, Benavente JL, Quintero FJ, Pardo JM, Albert A. Plant Physiol 182 2143-2153 (2020)
  25. A calcium-independent activation of the Arabidopsis SOS2-like protein kinase24 by its interacting SOS3-like calcium binding protein1. Lin H, Du W, Yang Y, Schumaker KS, Guo Y. Plant Physiol 164 2197-2206 (2014)
  26. Alternative Splicing of CIPK3 Results in Distinct Target Selection to Propagate ABA Signaling in Arabidopsis. Sanyal SK, Kanwar P, Samtani H, Kaur K, Jha SK, Pandey GK. Front Plant Sci 8 1924 (2017)
  27. A calcium sensor - protein kinase signaling module diversified in plants and is retained in all lineages of Bikonta species. Beckmann L, Edel KH, Batistič O, Kudla J. Sci Rep 6 31645 (2016)
  28. Genome-Wide Identification, Characterization and Expression Analysis of the CIPK Gene Family in Potato (Solanum tuberosum L.) and the Role of StCIPK10 in Response to Drought and Osmotic Stress. Ma R, Liu W, Li S, Zhu X, Yang J, Zhang N, Si H. Int J Mol Sci 22 13535 (2021)
  29. Functional analysis of MeCIPK23 and MeCBL1/9 in cassava defense response against Xanthomonas axonopodis pv. manihotis. Yan Y, He X, Hu W, Liu G, Wang P, He C, Shi H. Plant Cell Rep 37 887-900 (2018)
  30. Arabidopsis calcineurin B-like proteins differentially regulate phosphorylation activity of CBL-interacting protein kinase 9. Yadav AK, Jha SK, Sanyal SK, Luan S, Pandey GK. Biochem J 475 2621-2636 (2018)
  31. New insights into the evolution and functional divergence of the CIPK gene family in Saccharum. Su W, Ren Y, Wang D, Huang L, Fu X, Ling H, Su Y, Huang N, Tang H, Xu L, Que Y. BMC Genomics 21 868 (2020)
  32. Analysis of a salinity induced BjSOS3 protein from Brassica indicate it to be structurally and functionally related to its ortholog from Arabidopsis. Kushwaha HR, Kumar G, Verma PK, Singla-Pareek SL, Pareek A. Plant Physiol Biochem 49 996-1004 (2011)
  33. Nicotiana sylvestris calcineurin B-like protein NsylCBL10 enhances salt tolerance in transgenic Arabidopsis. Dong L, Wang Q, Manik SM, Song Y, Shi S, Su Y, Liu G, Liu H. Plant Cell Rep 34 2053-2063 (2015)
  34. Calcineurin B-like Protein CBL10 Directly Interacts with TOC34 (Translocon of the Outer Membrane of the Chloroplasts) and Decreases Its GTPase Activity in Arabidopsis. Cho JH, Lee JH, Park YK, Choi MN, Kim KN. Front Plant Sci 7 1911 (2016)
  35. Comparative Transcriptomics and Co-Expression Networks Reveal Tissue- and Genotype-Specific Responses of qDTYs to Reproductive-Stage Drought Stress in Rice (Oryza sativa L.). Tarun JA, Mauleon R, Arbelaez JD, Catausan S, Dixit S, Kumar A, Brown P, Kohli A, Kretzschmar T. Genes (Basel) 11 E1124 (2020)
  36. KA1-targeted regulatory domain mutations activate Chk1 in the absence of DNA damage. Gong EY, Smits VAJ, Fumagallo F, Piscitello D, Morrice N, Freire R, Gillespie DA. Sci Rep 5 10856 (2015)
  37. Characterization of Salinity Tolerance of Transgenic Rice Lines Harboring HsCBL8 of Wild Barley (Hordeum spontanum) Line from Qinghai-Tibet Plateau. Guo W, Chen T, Hussain N, Zhang G, Jiang L. Front Plant Sci 7 1678 (2016)
  38. The evolutionary origin of CIPK16: A gene involved in enhanced salt tolerance. Amarasinghe S, Watson-Haigh NS, Gilliham M, Roy S, Baumann U. Mol Phylogenet Evol 100 135-147 (2016)
  39. Calcineurin B-like domains in the large regulatory alpha/beta subunits of phosphorylase kinase. Carrière C, Mornon JP, Venien-Bryan C, Boisset N, Callebaut I. Proteins 71 1597-1606 (2008)
  40. Expression profiling and functional characterization of a CBL-interacting protein kinase gene from Populus euphratica. Lv F, Zhang H, Xia X, Yin W. Plant Cell Rep 33 807-818 (2014)
  41. Crystal structure of a Ca2+-dependent regulator of flagellar motility reveals the open-closed structural transition. Shojima T, Hou F, Takahashi Y, Matsumura Y, Okai M, Nakamura A, Mizuno K, Inaba K, Kojima M, Miyakawa T, Tanokura M. Sci Rep 8 2014 (2018)
  42. Chk1 KA1 domain auto-phosphorylation stimulates biological activity and is linked to rapid proteasomal degradation. Gong EY, Hernández B, Nielsen JH, Smits VAJ, Freire R, Gillespie DA. Sci Rep 8 17536 (2018)
  43. Cold-induced calreticulin OsCRT3 conformational changes promote OsCIPK7 binding and temperature sensing in rice. Guo X, Zhang D, Wang Z, Xu S, Batistič O, Steinhorst L, Li H, Weng Y, Ren D, Kudla J, Xu Y, Chong K. EMBO J 42 e110518 (2023)
  44. Genome-wide identification of calcineurin B-like protein-interacting protein kinase gene family reveals members participating in abiotic stress in the ornamental woody plant Lagerstroemia indica. Yu C, Ke Y, Qin J, Huang Y, Zhao Y, Liu Y, Wei H, Liu G, Lian B, Chen Y, Zhong F, Zhang J. Front Plant Sci 13 942217 (2022)
  45. Lb1G04202, an Uncharacterized Protein from Recretohalophyte Limonium bicolor, Is Important in Salt Tolerance. Wang X, Wang B, Yuan F. Int J Mol Sci 23 5401 (2022)
  46. The Phosphoproteomic Response of Okra (Abelmoschus esculentus L.) Seedlings to Salt Stress. Yu C, Wu Q, Sun C, Tang M, Sun J, Zhan Y. Int J Mol Sci 20 E1262 (2019)
  47. Roles of SCaBP8 in salt stress response. Xie CG, Lin H, Deng XW, Guo Y. Plant Signal Behav 4 956-958 (2009)
  48. Structural basis for the activity regulation of Salt Overly Sensitive 1 in Arabidopsis salt tolerance. Zhang Y, Zhou J, Ni X, Wang Q, Jia Y, Xu X, Wu H, Fu P, Wen H, Guo Y, Yang G. Nat Plants 9 1915-1923 (2023)
  49. The complex between SOS3 and SOS2 regulatory domain from Arabidopsis thaliana: cloning, expression, purification, crystallization and preliminary X-ray analysis. Sánchez-Barrena MJ, Moreno-Pérez S, Angulo I, Martínez-Ripoll M, Albert A. Acta Crystallogr Sect F Struct Biol Cryst Commun 63 568-570 (2007)
  50. Genome-Wide Identification and Functional Analysis of the Calcineurin B-like Protein and Calcineurin B-like Protein-Interacting Protein Kinase Gene Families in Chinese Cabbage (Brassica rapa ssp. pekinensis). Wang Q, Zhao K, Gong Y, Yang Y, Yue Y. Genes (Basel) 13 795 (2022)