2e7a Citations

Creation and X-ray structure analysis of the tumor necrosis factor receptor-1-selective mutant of a tumor necrosis factor-alpha antagonist.


Tumor necrosis factor-alpha (TNF) induces inflammatory response predominantly through the TNF receptor-1 (TNFR1). Thus, blocking the binding of TNF to TNFR1 is an important strategy for the treatment of many inflammatory diseases, such as hepatitis and rheumatoid arthritis. In this study, we identified a TNFR1-selective antagonistic mutant TNF from a phage library displaying structural human TNF variants in which each one of the six amino acid residues at the receptor-binding site (amino acids at positions 84-89) was replaced with other amino acids. Consequently, a TNFR1-selective antagonistic mutant TNF (R1antTNF), containing mutations A84S, V85T, S86T, Y87H, Q88N, and T89Q, was isolated from the library. The R1antTNF did not activate TNFR1-mediated responses, although its affinity for the TNFR1 was almost similar to that of the human wild-type TNF (wtTNF). Additionally, the R1antTNF neutralized the TNFR1-mediated bioactivity of wtTNF without influencing its TNFR2-mediated bioactivity and inhibited hepatic injury in an experimental hepatitis model. To understand the mechanism underlying the antagonistic activity of R1antTNF, we analyzed this mutant using the surface plasmon resonance spectroscopy and x-ray crystallography. Kinetic association/dissociation parameters of the R1antTNF were higher than those of the wtTNF, indicating very fast bond dissociation. Furthermore, x-ray crystallographic analysis of R1antTNF suggested that the mutation Y87H changed the binding mode from the hydrophobic to the electrostatic interaction, which may be one of the reasons why R1antTNF behaved as an antagonist. Our studies demonstrate the feasibility of generating TNF receptor subtype-specific antagonist by extensive substitution of amino acids of the wild-type ligand protein.

Articles - 2e7a mentioned but not cited (1)

  1. Structural basis and targeting of the interaction between fibroblast growth factor-inducible 14 and tumor necrosis factor-like weak inducer of apoptosis. Dhruv H, Loftus JC, Narang P, Petit JL, Fameree M, Burton J, Tchegho G, Chow D, Yin H, Al-Abed Y, Berens ME, Tran NL, Meurice N. J. Biol. Chem. 288 32261-32276 (2013)

Reviews citing this publication (11)

  1. Role of TNF-TNF Receptor 2 Signal in Regulatory T Cells and Its Therapeutic Implications. Yang S, Wang J, Brand DD, Zheng SG. Front Immunol 9 784 (2018)
  2. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Kalliolias GD, Ivashkiv LB. Nat Rev Rheumatol 12 49-62 (2016)
  3. Development of novel drug delivery systems using phage display technology for clinical application of protein drugs. Nagano K, Tsutsumi Y. Proc Jpn Acad Ser B Phys Biol Sci 92 156-166 (2016)
  4. Regulation and dysregulation of tumor necrosis factor receptor-1. Puimège L, Libert C, Van Hauwermeiren F. Cytokine Growth Factor Rev 25 285-300 (2014)
  5. Engineering death receptor ligands for cancer therapy. Wajant H, Gerspach J, Pfizenmaier K. Cancer Lett 332 163-174 (2013)
  6. Subversion of cytokine networks by virally encoded decoy receptors. Epperson ML, Lee CA, Fremont DH. Immunol Rev 250 199-215 (2012)
  7. Thermodynamics-based drug design: strategies for inhibiting protein-protein interactions. Schön A, Lam SY, Freire E. Future Med Chem 3 1129-1137 (2011)
  8. Grading the commercial optical biosensor literature-Class of 2008: 'The Mighty Binders'. Rich RL, Myszka DG. J Mol Recognit 23 1-64 (2010)
  9. [From disease proteomics to biomarker development-establishment of antibody proteomics technology and exploration of cancer-related biomarkers]. Nagano K, Imai S, Nakagawa S, Tsunoda S, Tsutsumi Y. Yakugaku Zasshi 130 487-492 (2010)
  10. [Creation of TNFR1-selective antagonist and its therapeutic effects]. Nomura T, Abe Y, Yoshioka Y, Nakagawa S, Tsunoda S, Tsutsumi Y. Yakugaku Zasshi 130 63-68 (2010)
  11. [Development of novel DDS technologies for optimized protein therapy by creating functional mutant proteins with antagonistic activity]. Abe Y. Yakugaku Zasshi 129 933-939 (2009)

Articles citing this publication (37)

  1. Carbon nanotubes elicit DNA damage and inflammatory response relative to their size and shape. Yamashita K, Yoshioka Y, Higashisaka K, Morishita Y, Yoshida T, Fujimura M, Kayamuro H, Nabeshi H, Yamashita T, Nagano K, Abe Y, Kamada H, Kawai Y, Mayumi T, Yoshikawa T, Itoh N, Tsunoda S, Tsutsumi Y. Inflammation 33 276-280 (2010)
  2. Structure-function relationship of tumor necrosis factor (TNF) and its receptor interaction based on 3D structural analysis of a fully active TNFR1-selective TNF mutant. Mukai Y, Shibata H, Nakamura T, Yoshioka Y, Abe Y, Nomura T, Taniai M, Ohta T, Ikemizu S, Nakagawa S, Tsunoda S, Kamada H, Yamagata Y, Tsutsumi Y. J Mol Biol 385 1221-1229 (2009)
  3. The therapeutic effect of TNFR1-selective antagonistic mutant TNF-alpha in murine hepatitis models. Shibata H, Yoshioka Y, Ohkawa A, Abe Y, Nomura T, Mukai Y, Nakagawa S, Taniai M, Ohta T, Mayumi T, Kamada H, Tsunoda S, Tsutsumi Y. Cytokine 44 229-233 (2008)
  4. The treatment of established murine collagen-induced arthritis with a TNFR1-selective antagonistic mutant TNF. Shibata H, Yoshioka Y, Abe Y, Ohkawa A, Nomura T, Minowa K, Mukai Y, Nakagawa S, Taniai M, Ohta T, Kamada H, Tsunoda S, Tsutsumi Y. Biomaterials 30 6638-6647 (2009)
  5. Therapeutic effect of PEGylated TNFR1-selective antagonistic mutant TNF in experimental autoimmune encephalomyelitis mice. Nomura T, Abe Y, Kamada H, Shibata H, Kayamuro H, Inoue M, Kawara T, Arita S, Furuya T, Yamashita T, Nagano K, Yoshikawa T, Yoshioka Y, Mukai Y, Nakagawa S, Taniai M, Ohta T, Serada S, Naka T, Tsunoda S, Tsutsumi Y. J Control Release 149 8-14 (2011)
  6. ATROSAB, a humanized antagonistic anti-tumor necrosis factor receptor one-specific antibody. Zettlitz KA, Lorenz V, Landauer K, Münkel S, Herrmann A, Scheurich P, Pfizenmaier K, Kontermann R. MAbs 2 639-647 (2010)
  7. The use of a mutant TNF-alpha as a vaccine adjuvant for the induction of mucosal immune responses. Kayamuro H, Abe Y, Yoshioka Y, Katayama K, Nomura T, Yoshida T, Yamashita K, Yoshikawa T, Kawai Y, Mayumi T, Hiroi T, Itoh N, Nagano K, Kamada H, Tsunoda S, Tsutsumi Y. Biomaterials 30 5869-5876 (2009)
  8. Antibody-mediated inhibition of TNFR1 attenuates disease in a mouse model of multiple sclerosis. Williams SK, Maier O, Fischer R, Fairless R, Hochmeister S, Stojic A, Pick L, Haar D, Musiol S, Storch MK, Pfizenmaier K, Diem R. PLoS One 9 e90117 (2014)
  9. A novel small-molecule tumor necrosis factor α inhibitor attenuates inflammation in a hepatitis mouse model. Ma L, Gong H, Zhu H, Ji Q, Su P, Liu P, Cao S, Yao J, Jiang L, Han M, Ma X, Xiong D, Luo HR, Wang F, Zhou J, Xu Y. J Biol Chem 289 12457-12466 (2014)
  10. Japonicone A antagonizes the activity of TNF-α by directly targeting this cytokine and selectively disrupting its interaction with TNF receptor-1. Hu Z, Qin J, Zhang H, Wang D, Hua Y, Ding J, Shan L, Jin H, Zhang J, Zhang W. Biochem Pharmacol 84 1482-1491 (2012)
  11. Creation of a LIGHT mutant with the capacity to evade the decoy receptor for cancer therapy. Morishige T, Yoshioka Y, Inakura H, Tanabe A, Yao X, Tsunoda S, Tsutsumi Y, Mukai Y, Okada N, Nakagawa S. Biomaterials 31 3357-3363 (2010)
  12. TNF superfamily member, TL1A, is a potential mucosal vaccine adjuvant. Kayamuro H, Yoshioka Y, Abe Y, Katayama K, Yoshida T, Yamashita K, Yoshikawa T, Hiroi T, Itoh N, Kawai Y, Mayumi T, Kamada H, Tsunoda S, Tsutsumi Y. Biochem Biophys Res Commun 384 296-300 (2009)
  13. Simple and highly sensitive assay system for TNFR2-mediated soluble- and transmembrane-TNF activity. Abe Y, Yoshikawa T, Kamada H, Shibata H, Nomura T, Minowa K, Kayamuro H, Katayama K, Miyoshi H, Mukai Y, Yoshioka Y, Nakagawa S, Tsunoda S, Tsutsumi Y. J Immunol Methods 335 71-78 (2008)
  14. Structural pathways of cytokines may illuminate their roles in regulation of cancer development and immunotherapy. Guven-Maiorov E, Acuner-Ozbabacan SE, Keskin O, Gursoy A, Nussinov R. Cancers (Basel) 6 663-683 (2014)
  15. Antagonists of TNF action: clinical experience and new developments. Kontermann RE, Scheurich P, Pfizenmaier K. Expert Opin Drug Discov 4 279-292 (2009)
  16. TNFR1-mediated signaling is important to induce the improvement of liver fibrosis by bone marrow cell infusion. Hisanaga T, Terai S, Iwamoto T, Takami T, Yamamoto N, Murata T, Matsuyama T, Nishina H, Sakaida I. Cell Tissue Res 346 79-88 (2011)
  17. Unraveling the binding mechanism of trivalent tumor necrosis factor ligands and their receptors. Reis CR, van Assen AH, Quax WJ, Cool RH. Mol Cell Proteomics 10 M110.002808 (2011)
  18. Creation of lysine-deficient mutant lymphotoxin-alpha with receptor selectivity by using a phage display system. Yoshioka Y, Watanabe H, Morishige T, Yao X, Ikemizu S, Nagao C, Ahmad S, Mizuguchi K, Tsunoda S, Tsutsumi Y, Mukai Y, Okada N, Nakagawa S. Biomaterials 31 1935-1943 (2010)
  19. In vivo maturation of allo-specific CD8 CTL and prevention of lupus-like graft-versus-host disease is critically dependent on T cell signaling through the TNF p75 receptor but not the TNF p55 receptor. Soloviova K, Puliaiev M, Haas M, Via CS. J Immunol 190 4562-4572 (2013)
  20. Crystallization and preliminary X-ray analysis of the tumour necrosis factor alpha-tumour necrosis factor receptor type 2 complex. Mukai Y, Nakamura T, Yoshioka Y, Tsunoda S, Kamada H, Nakagawa S, Yamagata Y, Tsutsumi Y. Acta Crystallogr Sect F Struct Biol Cryst Commun 65 295-298 (2009)
  21. The design and characterization of receptor-selective APRIL variants. Kimberley FC, van der Sloot AM, Guadagnoli M, Cameron K, Schneider P, Marquart JA, Versloot M, Serrano L, Medema JP. J Biol Chem 287 37434-37446 (2012)
  22. The protective antibodies induced by a novel epitope of human TNF-alpha could suppress the development of collagen-induced arthritis. Dong J, Gao Y, Liu Y, Shi J, Feng J, Li Z, Pan H, Xue Y, Liu C, Shen B, Shao N, Yang G. PLoS One 5 e8920 (2010)
  23. Fast binding kinetics and conserved 3D structure underlie the antagonistic activity of mutant TNF: useful information for designing artificial proteo-antagonists. Mukai Y, Nakamura T, Yoshioka Y, Shibata H, Abe Y, Nomura T, Taniai M, Ohta T, Nakagawa S, Tsunoda S, Kamada H, Yamagata Y, Tsutsumi Y. J Biochem 146 167-172 (2009)
  24. Pharmacokinetic and Pharmacodynamic Characterisation of an Anti-Mouse TNF Receptor 1 Domain Antibody Formatted for In Vivo Half-Life Extension. Goodall LJ, Ovecka M, Rycroft D, Friel SL, Sanderson A, Mistry P, Davies ML, Stoop AA. PLoS One 10 e0137065 (2015)
  25. Novel protein engineering strategy for creating highly receptor-selective mutant TNFs. Nomura T, Abe Y, Kamada H, Inoue M, Kawara T, Arita S, Furuya T, Yoshioka Y, Shibata H, Kayamuro H, Yamashita T, Nagano K, Yoshikawa T, Mukai Y, Nakagawa S, Taniai M, Ohta T, Tsunoda S, Tsutsumi Y. Biochem Biophys Res Commun 388 667-671 (2009)
  26. Expression and purification of a natural N-terminal pre-ligand assembly domain of tumor necrosis factor receptor 1 (TNFR1 PLAD) and preliminary activity determination. Cao J, Meng F, Gao X, Dong H, Yao W. Protein J 30 281-289 (2011)
  27. Generation of mouse macrophages expressing membrane-bound TNF variants with selectivity for TNFR1 or TNFR2. Shibata H, Abe Y, Yoshioka Y, Nomura T, Sato M, Kayamuro H, Kawara T, Arita S, Furuya T, Nagano K, Yoshikawa T, Kamada H, Tsunoda S, Tsutsumi Y. Cytokine 50 75-83 (2010)
  28. LIGHT protein suppresses tumor growth by augmentation of immune response. Morishige T, Yoshioka Y, Inakura H, Tanabe A, Watanabe H, Yao X, Tsunoda S, Tsutsumi Y, Mukai Y, Okada N, Nakagawa S. Immunol Lett 127 33-38 (2009)
  29. A monoclonal antibody ameliorates local inflammation and osteoporosis by targeting TNF-α and RANKL. Qian H, Yuan H, Wang J, Du Y, Zhang X, Sun Y, Li Z, Zhao W. Int Immunopharmacol 20 370-376 (2014)
  30. Novel mutants of human tumor necrosis factor with dominant-negative properties. Shingarova LN, Boldyreva EF, Yakimov SA, Guryanova SV, Dolgikh DA, Nedospasov SA, Kirpichnikov MP. Biochemistry (Mosc) 75 1458-1463 (2010)
  31. [Production and properties of human tumor necrosis factor peptide fragments] Shingarova LN, Petrovskaia LE, Nekrasov AN, Kriukova EA, Boldyreva EF, Iakimov SA, Gur'ianova SV, Dolgikh DA, Kirpichnikov MP. Bioorg Khim 36 327-336 (2010)
  32. Structural modeling of tumor necrosis factor: A protein of immunological importance. Roy U. Biotechnol Appl Biochem 64 454-463 (2017)
  33. A trimeric structural fusion of an antagonistic tumor necrosis factor-α mutant enhances molecular stability and enables facile modification. Inoue M, Ando D, Kamada H, Taki S, Niiyama M, Mukai Y, Tadokoro T, Maenaka K, Nakayama T, Kado Y, Inoue T, Tsutsumi Y, Tsunoda SI. J Biol Chem 292 6438-6451 (2017)
  34. NF-κB signaling and cell-fate decision induced by a fast-dissociating tumor necrosis factor mutant. Zhang X, Yin N, Guo A, Zhang Q, Zhang Y, Xu Y, Liu H, Tang B, Lai L. Biochem Biophys Res Commun 489 287-292 (2017)
  35. Novel RANKL DE-loop mutants antagonize RANK-mediated osteoclastogenesis. Wang Y, van Assen AHG, Reis CR, Setroikromo R, van Merkerk R, Boersma YL, Cool RH, Quax WJ. FEBS J 284 2501-2512 (2017)
  36. Creation of mouse TNFR2-selective agonistic TNF mutants using a phage display technique. Ando D, Inoue M, Kamada H, Taki S, Furuya T, Abe Y, Nagano K, Tsutsumi Y, Tsunoda SI. Biochem Biophys Rep 7 309-315 (2016)
  37. Selective Activation of Tumor Necrosis Factor Receptor II Induces Antiinflammatory Responses and Alleviates Experimental Arthritis. Fischer R, Proske M, Duffey M, Stangl H, Martinez GF, Peters N, Kraske A, Straub RH, Bethea JR, Kontermann RE, Pfizenmaier K. Arthritis Rheumatol 70 722-735 (2018)