2e4w Citations

Structures of the extracellular regions of the group II/III metabotropic glutamate receptors.

Proc Natl Acad Sci U S A 104 3759-64 (2007)
Related entries: 2e4u, 2e4v, 2e4x, 2e4y, 2e4z

Cited: 199 times
EuropePMC logo PMID: 17360426

Abstract

Metabotropic glutamate receptors play major roles in the activation of excitatory synapses in the central nerve system. We determined the crystal structure of the entire extracellular region of the group II receptor and that of the ligand-binding region of the group III receptor. A comparison among groups I, II, and III provides the structural basis that could account for the discrimination of group-specific agonists. Furthermore, the structure of group II includes the cysteine-rich domain, which is tightly linked to the ligand-binding domain by a disulfide bridge, suggesting a potential role in transmitting a ligand-induced conformational change into the downstream transmembrane region. The structure also reveals the lateral interaction between the two cysteine-rich domains, which could stimulate clustering of the dimeric receptors on the cell surface. We propose a general activation mechanism of the dimeric receptor coupled with both ligand-binding and interprotomer rearrangements.

Reviews - 2e4w mentioned but not cited (4)

  1. Metabotropic glutamate receptors: from the workbench to the bedside. Nicoletti F, Nicoletti F, Bockaert J, Collingridge GL, Conn PJ, Ferraguti F, Schoepp DD, Wroblewski JT, Pin JP. Neuropharmacology 60 1017-1041 (2011)
  2. Structure and ligand recognition of class C GPCRs. Chun L, Zhang WH, Liu JF. Acta Pharmacol Sin 33 312-323 (2012)
  3. Recent Advances and Applications of Molecular Docking to G Protein-Coupled Receptors. Bartuzi D, Kaczor AA, Targowska-Duda KM, Matosiuk D. Molecules 22 E340 (2017)
  4. Class A and C GPCR Dimers in Neurodegenerative Diseases. Caniceiro AB, Bueschbell B, Schiedel AC, Moreira IS. Curr Neuropharmacol 20 2081-2141 (2022)

Articles - 2e4w mentioned but not cited (5)

  1. Structures of the extracellular regions of the group II/III metabotropic glutamate receptors. Muto T, Tsuchiya D, Morikawa K, Jingami H. Proc Natl Acad Sci U S A 104 3759-3764 (2007)
  2. Molecular mechanism of the sweet taste enhancers. Zhang F, Klebansky B, Fine RM, Liu H, Xu H, Servant G, Zoller M, Tachdjian C, Li X. Proc Natl Acad Sci U S A 107 4752-4757 (2010)
  3. Structural architecture of a dimeric class C GPCR based on co-trafficking of sweet taste receptor subunits. Park J, Selvam B, Sanematsu K, Shigemura N, Shukla D, Procko E. J Biol Chem 294 4759-4774 (2019)
  4. Evolution of spatially coexpressed families of type-2 vomeronasal receptors in rodents. Francia S, Silvotti L, Ghirardi F, Catzeflis F, Percudani R, Tirindelli R. Genome Biol Evol 7 272-285 (2014)
  5. In Silico Studies Targeting G-protein Coupled Receptors for Drug Research Against Parkinson's Disease. Lemos A, Melo R, Preto AJ, Almeida JG, Moreira IS, Dias Soeiro Cordeiro MN. Curr Neuropharmacol 16 786-848 (2018)


Reviews citing this publication (69)

  1. Metabotropic glutamate receptors: physiology, pharmacology, and disease. Niswender CM, Conn PJ. Annu Rev Pharmacol Toxicol 50 295-322 (2010)
  2. Structural diversity of G protein-coupled receptors and significance for drug discovery. Lagerström MC, Schiöth HB. Nat Rev Drug Discov 7 339-357 (2008)
  3. A structural classification of substrate-binding proteins. Berntsson RP, Smits SH, Schmitt L, Slotboom DJ, Poolman B. FEBS Lett 584 2606-2617 (2010)
  4. Emerging paradigms in GPCR allostery: implications for drug discovery. Wootten D, Christopoulos A, Sexton PM. Nat Rev Drug Discov 12 630-644 (2013)
  5. Action of molecular switches in GPCRs--theoretical and experimental studies. Trzaskowski B, Latek D, Yuan S, Ghoshdastider U, Debinski A, Filipek S. Curr Med Chem 19 1090-1109 (2012)
  6. Allostery at G protein-coupled receptor homo- and heteromers: uncharted pharmacological landscapes. Smith NJ, Milligan G. Pharmacol Rev 62 701-725 (2010)
  7. Optochemical genetics. Fehrentz T, Schönberger M, Trauner D. Angew Chem Int Ed Engl 50 12156-12182 (2011)
  8. Glutamate, glutamate receptors, and downstream signaling pathways. Willard SS, Koochekpour S. Int J Biol Sci 9 948-959 (2013)
  9. Allosteric modulation of family C G-protein-coupled receptors: from molecular insights to therapeutic perspectives. Urwyler S. Pharmacol Rev 63 59-126 (2011)
  10. Progress in structure based drug design for G protein-coupled receptors. Congreve M, Langmead CJ, Mason JS, Marshall FH. J Med Chem 54 4283-4311 (2011)
  11. The significance of G protein-coupled receptor crystallography for drug discovery. Salon JA, Lodowski DT, Palczewski K. Pharmacol Rev 63 901-937 (2011)
  12. Calcium-sensing receptor (CaSR): pharmacological properties and signaling pathways. Conigrave AD, Ward DT. Best Pract Res Clin Endocrinol Metab 27 315-331 (2013)
  13. Organization and functions of mGlu and GABAB receptor complexes. Pin JP, Bettler B. Nature 540 60-68 (2016)
  14. Molecular pharmacology of promiscuous seven transmembrane receptors sensing organic nutrients. Wellendorph P, Johansen LD, Bräuner-Osborne H. Mol Pharmacol 76 453-465 (2009)
  15. Activation of G protein-coupled receptors: beyond two-state models and tertiary conformational changes. Park PS, Lodowski DT, Palczewski K. Annu Rev Pharmacol Toxicol 48 107-141 (2008)
  16. Molecular basis for amino acid sensing by family C G-protein-coupled receptors. Wellendorph P, Bräuner-Osborne H. Br J Pharmacol 156 869-884 (2009)
  17. A day in the life of a G protein-coupled receptor: the contribution to function of G protein-coupled receptor dimerization. Milligan G. Br J Pharmacol 153 Suppl 1 S216-29 (2008)
  18. Structure and function of the human calcium-sensing receptor: insights from natural and engineered mutations and allosteric modulators. Hu J, Spiegel AM. J Cell Mol Med 11 908-922 (2007)
  19. Functional organization of postsynaptic glutamate receptors. Scheefhals N, MacGillavry HD. Mol Cell Neurosci 91 82-94 (2018)
  20. The GPCR, class C, group 6, subtype A (GPRC6A) receptor: from cloning to physiological function. Clemmensen C, Smajilovic S, Wellendorph P, Bräuner-Osborne H. Br J Pharmacol 171 1129-1141 (2014)
  21. Glutamate signaling in benign and malignant disorders: current status, future perspectives, and therapeutic implications. Willard SS, Koochekpour S. Int J Biol Sci 9 728-742 (2013)
  22. The complexity of their activation mechanism opens new possibilities for the modulation of mGlu and GABAB class C G protein-coupled receptors. Rondard P, Goudet C, Kniazeff J, Pin JP, Prézeau L. Neuropharmacology 60 82-92 (2011)
  23. G Protein-Coupled Receptors in Taste Physiology and Pharmacology. Ahmad R, Dalziel JE. Front Pharmacol 11 587664 (2020)
  24. Umami the Fifth Basic Taste: History of Studies on Receptor Mechanisms and Role as a Food Flavor. Kurihara K. Biomed Res Int 2015 189402 (2015)
  25. Group III and subtype 4 metabotropic glutamate receptor agonists: discovery and pathophysiological applications in Parkinson's disease. Amalric M, Lopez S, Goudet C, Fisone G, Battaglia G, Nicoletti F, Nicoletti F, Pin JP, Acher FC. Neuropharmacology 66 53-64 (2013)
  26. GPCR crystal structures: Medicinal chemistry in the pocket. Shonberg J, Kling RC, Gmeiner P, Löber S. Bioorg Med Chem 23 3880-3906 (2015)
  27. Allosteric modulation of metabotropic glutamate receptors. Sheffler DJ, Gregory KJ, Rook JM, Conn PJ. Adv Pharmacol 62 37-77 (2011)
  28. The Calcium-Sensing Receptor and the Parathyroid: Past, Present, Future. Conigrave AD. Front Physiol 7 563 (2016)
  29. Novel Umami Ingredients: Umami Peptides and Their Taste. Zhang Y, Venkitasamy C, Pan Z, Liu W, Zhao L. J Food Sci 82 16-23 (2017)
  30. Structural biology of GABAB receptor. Frangaj A, Fan QR. Neuropharmacology 136 68-79 (2018)
  31. G-protein-coupled receptor oligomers: two or more for what? Lessons from mGlu and GABAB receptors. Pin JP, Comps-Agrar L, Maurel D, Monnier C, Rives ML, Trinquet E, Kniazeff J, Rondard P, Prézeau L. J Physiol 587 5337-5344 (2009)
  32. Metabotropic glutamate receptors as therapeutic targets in Parkinson's disease: An update from the last 5 years of research. Litim N, Morissette M, Di Paolo T. Neuropharmacology 115 166-179 (2017)
  33. Dynamics and modulation of metabotropic glutamate receptors. Rondard P, Pin JP. Curr Opin Pharmacol 20 95-101 (2015)
  34. Extracellular calcium-sensing receptors in fishes. Loretz CA. Comp Biochem Physiol A Mol Integr Physiol 149 225-245 (2008)
  35. International Union of Basic and Clinical Pharmacology. CVIII. Calcium-Sensing Receptor Nomenclature, Pharmacology, and Function. Leach K, Hannan FM, Josephs TM, Keller AN, Møller TC, Ward DT, Kallay E, Mason RS, Thakker RV, Riccardi D, Conigrave AD, Bräuner-Osborne H. Pharmacol Rev 72 558-604 (2020)
  36. Molecular Basis of the Extracellular Ligands Mediated Signaling by the Calcium Sensing Receptor. Zhang C, Miller CL, Gorkhali R, Zou J, Huang K, Brown EM, Yang JJ. Front Physiol 7 441 (2016)
  37. Structural and Biophysical Mechanisms of Class C G Protein-Coupled Receptor Function. Ellaithy A, Gonzalez-Maeso J, Logothetis DA, Levitz J. Trends Biochem Sci 45 1049-1064 (2020)
  38. Metabotropic Glutamate Receptor 7: A New Therapeutic Target in Neurodevelopmental Disorders. Fisher NM, Seto M, Lindsley CW, Niswender CM. Front Mol Neurosci 11 387 (2018)
  39. Metabotropic glutamate receptor subtype 5: molecular pharmacology, allosteric modulation and stimulus bias. Sengmany K, Gregory KJ. Br J Pharmacol 173 3001-3017 (2016)
  40. Molecular insights into allosteric modulation of Class C G protein-coupled receptors. Leach K, Gregory KJ. Pharmacol Res 116 105-118 (2017)
  41. Progress toward advanced understanding of metabotropic glutamate receptors: structure, signaling and therapeutic indications. Yin S, Niswender CM. Cell Signal 26 2284-2297 (2014)
  42. Recent progress on the identification of metabotropic glutamate 4 receptor ligands and their potential utility as CNS therapeutics. Robichaud AJ, Engers DW, Lindsley CW, Hopkins CR. ACS Chem Neurosci 2 433-449 (2011)
  43. Structural insights into emergent signaling modes of G protein-coupled receptors. Sutkeviciute I, Vilardaga JP. J Biol Chem 295 11626-11642 (2020)
  44. Structural insights into ligand recognition and selectivity for classes A, B, and C GPCRs. Lee SM, Booe JM, Pioszak AA. Eur J Pharmacol 763 196-205 (2015)
  45. Structure-Function Relationships of Olfactory and Taste Receptors. Behrens M, Briand L, de March CA, Matsunami H, Yamashita A, Meyerhof W, Weyand S. Chem Senses 43 81-87 (2018)
  46. Targeting metabotropic glutamate receptors in the treatment of epilepsy: rationale and current status. Celli R, Santolini I, Van Luijtelaar G, Ngomba RT, Bruno V, Nicoletti F. Expert Opin Ther Targets 23 341-351 (2019)
  47. The Different Facets of Extracellular Calcium Sensors: Old and New Concepts in Calcium-Sensing Receptor Signalling and Pharmacology. Gerbino A, Colella M. Int J Mol Sci 19 E999 (2018)
  48. Mechanisms of multimodal sensing by extracellular Ca(2+)-sensing receptors: a domain-based survey of requirements for binding and signalling. Khan MA, Conigrave AD. Br J Pharmacol 159 1039-1050 (2010)
  49. Structure, Dynamics, and Allosteric Potential of Ionotropic Glutamate Receptor N-Terminal Domains. Krieger J, Bahar I, Greger IH. Biophys J 109 1136-1148 (2015)
  50. Sweet taste in man: a review. Meyers B, Brewer MS. J Food Sci 73 R81-90 (2008)
  51. Nociception modulation by supraspinal group III metabotropic glutamate receptors. Palazzo E, Marabese I, Luongo L, Guida F, de Novellis V, Maione S. J Neurochem 141 507-519 (2017)
  52. Family C G-Protein-Coupled Receptors in Alzheimer's Disease and Therapeutic Implications. Dal Prà I, Armato U, Chiarini A. Front Pharmacol 10 1282 (2019)
  53. Structure-based drug discovery and protein targets in the CNS. Hubbard RE. Neuropharmacology 60 7-23 (2011)
  54. GPCRs: The most promiscuous druggable receptor of the mankind. Alhosaini K, Azhar A, Alonazi A, Al-Zoghaibi F. Saudi Pharm J 29 539-551 (2021)
  55. Role of post-translational modifications on structure, function and pharmacology of class C G protein-coupled receptors. Nørskov-Lauritsen L, Bräuner-Osborne H. Eur J Pharmacol 763 233-240 (2015)
  56. Multiple GPCR Functional Assays Based on Resonance Energy Transfer Sensors. Zhou Y, Meng J, Xu C, Liu J. Front Cell Dev Biol 9 611443 (2021)
  57. Insights From Molecular Dynamics Simulations of a Number of G-Protein Coupled Receptor Targets for the Treatment of Pain and Opioid Use Disorders. Ribeiro JML, Filizola M. Front Mol Neurosci 12 207 (2019)
  58. X-ray structural information of GPCRs in drug design: what are the limitations and where do we go? Topiol S. Expert Opin Drug Discov 8 607-620 (2013)
  59. Allosteric Molecular Switches in Metabotropic Glutamate Receptors. Orgován Z, Ferenczy GG, Keserű GM. ChemMedChem 16 81-93 (2021)
  60. Molecular insights into human taste perception and umami tastants: A review. Diepeveen J, Moerdijk-Poortvliet TCW, van der Leij FR. J Food Sci 87 1449-1465 (2022)
  61. Current Progress in Understanding the Structure and Function of Sweet Taste Receptor. Yang L, Cui M, Liu B. J Mol Neurosci 71 234-244 (2021)
  62. Evaluation of Sweetener Synergy in Humans by Isobole Analyses. Reyes MM, Gravina SA, Hayes JE. Chem Senses 44 571-582 (2019)
  63. Metabotropic Glutamate Receptors at Ribbon Synapses in the Retina and Cochlea. Klotz-Weigand L, Enz R. Cells 11 1097 (2022)
  64. Allosteric Modulators of Metabotropic Glutamate Receptors as Novel Therapeutics for Neuropsychiatric Disease. Luessen DJ, Conn PJ. Pharmacol Rev 74 630-661 (2022)
  65. Conformational flexibility of aspartame. Toniolo C, Temussi P. Biopolymers 106 376-384 (2016)
  66. Molecular Basis for Modulation of Metabotropic Glutamate Receptors and Their Drug Actions by Extracellular Ca2. Zou J, Jiang JY, Yang JJ. Int J Mol Sci 18 E672 (2017)
  67. Opportunities and challenges in drug discovery targeting metabotropic glutamate receptor 4. Volpi C, Fallarino F, Mondanelli G, Macchiarulo A, Grohmann U. Expert Opin Drug Discov 13 411-423 (2018)
  68. Hidden Relationships between N-Glycosylation and Disulfide Bonds in Individual Proteins. Bakshi T, Pham D, Kaur R, Sun B. Int J Mol Sci 23 3742 (2022)
  69. [G protein-coupled receptors in the spot light]. Benleulmi-Chaachoua A, Wojciech S, Jockers R. Biol Aujourdhui 207 191-200 (2013)

Articles citing this publication (121)

  1. Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Wu H, Wang C, Gregory KJ, Han GW, Cho HP, Xia Y, Niswender CM, Katritch V, Meiler J, Cherezov V, Conn PJ, Stevens RC. Science 344 58-64 (2014)
  2. Molecular mechanism for the umami taste synergism. Zhang F, Klebansky B, Fine RM, Xu H, Pronin A, Liu H, Tachdjian C, Li X. Proc Natl Acad Sci U S A 105 20930-20934 (2008)
  3. How and why do GPCRs dimerize? Gurevich VV, Gurevich EV. Trends Pharmacol Sci 29 234-240 (2008)
  4. Structural insights into the activation of metabotropic glutamate receptors. Koehl A, Hu H, Feng D, Sun B, Zhang Y, Robertson MJ, Chu M, Kobilka TS, Laeremans T, Steyaert J, Tarrasch J, Dutta S, Fonseca R, Weis WI, Mathiesen JM, Skiniotis G, Kobilka BK. Nature 566 79-84 (2019)
  5. Optical control of metabotropic glutamate receptors. Levitz J, Pantoja C, Gaub B, Janovjak H, Reiner A, Hoagland A, Schoppik D, Kane B, Stawski P, Schier AF, Trauner D, Isacoff EY. Nat Neurosci 16 507-516 (2013)
  6. Crystal structure and association behaviour of the GluR2 amino-terminal domain. Jin R, Singh SK, Gu S, Furukawa H, Sobolevsky AI, Zhou J, Jin Y, Gouaux E. EMBO J 28 1812-1823 (2009)
  7. Structural mechanism of ligand activation in human calcium-sensing receptor. Geng Y, Mosyak L, Kurinov I, Zuo H, Sturchler E, Cheng TC, Subramanyam P, Brown AP, Brennan SC, Mun HC, Bush M, Chen Y, Nguyen TX, Cao B, Chang DD, Quick M, Conigrave AD, Colecraft HM, McDonald P, Fan QR. Elife 5 e13662 (2016)
  8. Major ligand-induced rearrangement of the heptahelical domain interface in a GPCR dimer. Xue L, Rovira X, Scholler P, Zhao H, Liu J, Pin JP, Rondard P. Nat Chem Biol 11 134-140 (2015)
  9. Distinct roles of metabotropic glutamate receptor dimerization in agonist activation and G-protein coupling. El Moustaine D, Granier S, Doumazane E, Scholler P, Rahmeh R, Bron P, Mouillac B, Banères JL, Rondard P, Pin JP. Proc Natl Acad Sci U S A 109 16342-16347 (2012)
  10. Structural mechanism of ligand activation in human GABA(B) receptor. Geng Y, Bush M, Mosyak L, Wang F, Fan QR. Nature 504 254-259 (2013)
  11. Conformational dynamics of a class C G-protein-coupled receptor. Vafabakhsh R, Levitz J, Isacoff EY. Nature 524 497-501 (2015)
  12. Mechanism of Assembly and Cooperativity of Homomeric and Heteromeric Metabotropic Glutamate Receptors. Levitz J, Habrian C, Bharill S, Fu Z, Vafabakhsh R, Isacoff EY. Neuron 92 143-159 (2016)
  13. Activation of a dimeric metabotropic glutamate receptor by intersubunit rearrangement. Brock C, Oueslati N, Soler S, Boudier L, Rondard P, Pin JP. J Biol Chem 282 33000-33008 (2007)
  14. The N-terminal domain of GluR6-subtype glutamate receptor ion channels. Kumar J, Schuck P, Jin R, Mayer ML. Nat Struct Mol Biol 16 631-638 (2009)
  15. Characterization of the modes of binding between human sweet taste receptor and low-molecular-weight sweet compounds. Masuda K, Koizumi A, Nakajima K, Tanaka T, Abe K, Misaka T, Ishiguro M. PLoS One 7 e35380 (2012)
  16. Illuminating the activation mechanisms and allosteric properties of metabotropic glutamate receptors. Doumazane E, Scholler P, Fabre L, Zwier JM, Trinquet E, Pin JP, Rondard P. Proc Natl Acad Sci U S A 110 E1416-25 (2013)
  17. A novel selective metabotropic glutamate receptor 4 agonist reveals new possibilities for developing subtype selective ligands with therapeutic potential. Goudet C, Vilar B, Courtiol T, Deltheil T, Bessiron T, Brabet I, Oueslati N, Rigault D, Bertrand HO, McLean H, Daniel H, Amalric M, Acher F, Pin JP. FASEB J 26 1682-1693 (2012)
  18. Pharmacochaperone-mediated rescue of calcium-sensing receptor loss-of-function mutants. White E, McKenna J, Cavanaugh A, Breitwieser GE. Mol Endocrinol 23 1115-1123 (2009)
  19. Interdomain movements in metabotropic glutamate receptor activation. Huang S, Cao J, Jiang M, Labesse G, Liu J, Pin JP, Rondard P. Proc Natl Acad Sci U S A 108 15480-15485 (2011)
  20. Sequential inter- and intrasubunit rearrangements during activation of dimeric metabotropic glutamate receptor 1. Hlavackova V, Zabel U, Frankova D, Bätz J, Hoffmann C, Prezeau L, Pin JP, Blahos J, Blahos J, Lohse MJ. Sci Signal 5 ra59 (2012)
  21. Fine tuning of sub-millisecond conformational dynamics controls metabotropic glutamate receptors agonist efficacy. Olofsson L, Felekyan S, Doumazane E, Scholler P, Fabre L, Zwier JM, Rondard P, Seidel CA, Pin JP, Margeat E. Nat Commun 5 5206 (2014)
  22. Cryo-EM structures of inactive and active GABAB receptor. Mao C, Shen C, Li C, Shen DD, Xu C, Zhang S, Zhou R, Shen Q, Chen LN, Jiang Z, Liu J, Zhang Y. Cell Res 30 564-573 (2020)
  23. Chemical transmission in the sea anemone Nematostella vectensis: A genomic perspective. Anctil M. Comp Biochem Physiol Part D Genomics Proteomics 4 268-289 (2009)
  24. Allosteric modulation of the calcium-sensing receptor by gamma-glutamyl peptides: inhibition of PTH secretion, suppression of intracellular cAMP levels, and a common mechanism of action with L-amino acids. Broadhead GK, Mun HC, Avlani VA, Jourdon O, Church WB, Christopoulos A, Delbridge L, Conigrave AD. J Biol Chem 286 8786-8797 (2011)
  25. Functioning of the dimeric GABA(B) receptor extracellular domain revealed by glycan wedge scanning. Rondard P, Huang S, Monnier C, Tu H, Blanchard B, Oueslati N, Malhaire F, Li Y, Trinquet E, Labesse G, Pin JP, Liu J. EMBO J 27 1321-1332 (2008)
  26. Trans-activation between 7TM domains: implication in heterodimeric GABAB receptor activation. Monnier C, Tu H, Bourrier E, Vol C, Lamarque L, Trinquet E, Pin JP, Rondard P. EMBO J 30 32-42 (2011)
  27. Towards a structural understanding of allosteric drugs at the human calcium-sensing receptor. Leach K, Gregory KJ, Kufareva I, Khajehali E, Cook AE, Abagyan R, Conigrave AD, Sexton PM, Christopoulos A. Cell Res 26 574-592 (2016)
  28. Clustered coding variants in the glutamate receptor complexes of individuals with schizophrenia and bipolar disorder. Frank RA, McRae AF, Pocklington AJ, van de Lagemaat LN, Navarro P, Croning MD, Komiyama NH, Bradley SJ, Challiss RA, Armstrong JD, Finn RD, Malloy MP, MacLean AW, Harris SE, Starr JM, Bhaskar SS, Howard EK, Hunt SE, Coffey AJ, Ranganath V, Deloukas P, Rogers J, Muir WJ, Deary IJ, Blackwood DH, Visscher PM, Grant SG. PLoS One 6 e19011 (2011)
  29. Dynamics and allosteric potential of the AMPA receptor N-terminal domain. Sukumaran M, Rossmann M, Shrivastava I, Dutta A, Bahar I, Greger IH. EMBO J 30 972-982 (2011)
  30. Key amino acid residues involved in multi-point binding interactions between brazzein, a sweet protein, and the T1R2-T1R3 human sweet receptor. Assadi-Porter FM, Maillet EL, Radek JT, Quijada J, Markley JL, Max M. J Mol Biol 398 584-599 (2010)
  31. Optical measurement of mGluR1 conformational changes reveals fast activation, slow deactivation, and sensitization. Marcaggi P, Mutoh H, Dimitrov D, Beato M, Knöpfel T. Proc Natl Acad Sci U S A 106 11388-11393 (2009)
  32. Therapeutic molecules and endogenous ligands regulate the interaction between brain cellular prion protein (PrPC) and metabotropic glutamate receptor 5 (mGluR5). Haas LT, Kostylev MA, Strittmatter SM. J Biol Chem 289 28460-28477 (2014)
  33. Shank3 mutation in a mouse model of autism leads to changes in the S-nitroso-proteome and affects key proteins involved in vesicle release and synaptic function. Amal H, Barak B, Bhat V, Gong G, Joughin BA, Wang X, Wishnok JS, Feng G, Tannenbaum SR. Mol Psychiatry 25 1835-1848 (2020)
  34. Blocking metabotropic glutamate receptor subtype 7 (mGlu7) via the Venus flytrap domain (VFTD) inhibits amygdala plasticity, stress, and anxiety-related behavior. Gee CE, Peterlik D, Neuhäuser C, Bouhelal R, Kaupmann K, Laue G, Uschold-Schmidt N, Feuerbach D, Zimmermann K, Ofner S, Cryan JF, van der Putten H, Fendt M, Vranesic I, Glatthar R, Flor PJ. J Biol Chem 289 10975-10987 (2014)
  35. Structure and functional interaction of the extracellular domain of human GABA(B) receptor GBR2. Geng Y, Xiong D, Mosyak L, Malito DL, Kniazeff J, Chen Y, Burmakina S, Quick M, Bush M, Javitch JA, Pin JP, Fan QR. Nat Neurosci 15 970-978 (2012)
  36. Structural basis for perception of diverse chemical substances by T1r taste receptors. Nuemket N, Yasui N, Kusakabe Y, Nomura Y, Atsumi N, Akiyama S, Nango E, Kato Y, Kaneko MK, Takagi J, Hosotani M, Yamashita A. Nat Commun 8 15530 (2017)
  37. Structural determinants of allosteric antagonism at metabotropic glutamate receptor 2: mechanistic studies with new potent negative allosteric modulators. Lundström L, Bissantz C, Beck J, Wettstein JG, Woltering TJ, Wichmann J, Gatti S. Br J Pharmacol 164 521-537 (2011)
  38. Allosteric nanobodies uncover a role of hippocampal mGlu2 receptor homodimers in contextual fear consolidation. Scholler P, Nevoltris D, de Bundel D, Bossi S, Moreno-Delgado D, Rovira X, Møller TC, El Moustaine D, Mathieu M, Blanc E, McLean H, Dupuis E, Mathis G, Trinquet E, Daniel H, Valjent E, Baty D, Chames P, Rondard P, Pin JP. Nat Commun 8 1967 (2017)
  39. Two distinct determinants of ligand specificity in T1R1/T1R3 (the umami taste receptor). Toda Y, Nakagita T, Hayakawa T, Okada S, Narukawa M, Imai H, Ishimaru Y, Misaka T. J Biol Chem 288 36863-36877 (2013)
  40. Comparative dynamics of NMDA- and AMPA-glutamate receptor N-terminal domains. Dutta A, Shrivastava IH, Sukumaran M, Greger IH, Bahar I. Structure 20 1838-1849 (2012)
  41. Conformational changes in redox pairs of protein structures. Fan SW, George RA, Haworth NL, Feng LL, Liu JY, Wouters MA. Protein Sci 18 1745-1765 (2009)
  42. Human genetic polymorphisms in T1R1 and T1R3 taste receptor subunits affect their function. Raliou M, Grauso M, Hoffmann B, Schlegel-Le-Poupon C, Nespoulous C, Débat H, Belloir C, Wiencis A, Sigoillot M, Bano SP, Trotier D, Pernollet JC, Montmayeur JP, Montmayeur JP, Faurion A, Briand L. Chem Senses 36 527-537 (2011)
  43. Molecular mechanisms for sweet-suppressing effect of gymnemic acids. Sanematsu K, Kusakabe Y, Shigemura N, Hirokawa T, Nakamura S, Imoto T, Ninomiya Y. J Biol Chem 289 25711-25720 (2014)
  44. Crystal structures of the glutamate receptor ion channel GluK3 and GluK5 amino-terminal domains. Kumar J, Mayer ML. J Mol Biol 404 680-696 (2010)
  45. Class C G protein-coupled receptors: reviving old couples with new partners. Møller TC, Moreno-Delgado D, Pin JP, Kniazeff J. Biophys Rep 3 57-63 (2017)
  46. Interactions between the human sweet-sensing T1R2-T1R3 receptor and sweeteners detected by saturation transfer difference NMR spectroscopy. Assadi-Porter FM, Tonelli M, Maillet EL, Markley JL, Max M. Biochim Biophys Acta 1798 82-86 (2010)
  47. Pharmacological characterization and modeling of the binding sites of novel 1,3-bis(pyridinylethynyl)benzenes as metabotropic glutamate receptor 5-selective negative allosteric modulators. Mølck C, Harpsøe K, Gloriam DE, Clausen RP, Madsen U, Pedersen LØ, Jimenez HN, Nielsen SM, Mathiesen JM, Bräuner-Osborne H. Mol Pharmacol 82 929-937 (2012)
  48. Characterization of the Binding Site of Aspartame in the Human Sweet Taste Receptor. Maillet EL, Cui M, Jiang P, Mezei M, Hecht E, Quijada J, Margolskee RF, Osman R, Max M. Chem Senses 40 577-586 (2015)
  49. Conformational dynamics between transmembrane domains and allosteric modulation of a metabotropic glutamate receptor. Gutzeit VA, Thibado J, Stor DS, Zhou Z, Blanchard SC, Andersen OS, Levitz J. Elife 8 e45116 (2019)
  50. Defining the Homo- and Heterodimerization Propensities of Metabotropic Glutamate Receptors. Lee J, Munguba H, Gutzeit VA, Singh DR, Kristt M, Dittman JS, Levitz J. Cell Rep 31 107605 (2020)
  51. Recombinant expression, in vitro refolding, and biophysical characterization of the N-terminal domain of T1R3 taste receptor. Maîtrepierre E, Sigoillot M, Le Pessot L, Briand L. Protein Expr Purif 83 75-83 (2012)
  52. Structure of metabotropic glutamate receptor C-terminal domains in contact with interacting proteins. Enz R. Front Mol Neurosci 5 52 (2012)
  53. Allosteric Binding Site and Activation Mechanism of Class C G-Protein Coupled Receptors: Metabotropic Glutamate Receptor Family. Feng Z, Ma S, Hu G, Xie XQ. AAPS J 17 737-753 (2015)
  54. N-glycosylation and disulfide bonding affects GPRC6A receptor expression, function, and dimerization. Nørskov-Lauritsen L, Jørgensen S, Bräuner-Osborne H. FEBS Lett 589 588-597 (2015)
  55. Preferential binding of allosteric modulators to active and inactive conformational states of metabotropic glutamate receptors. Yanamala N, Tirupula KC, Klein-Seetharaman J. BMC Bioinformatics 9 Suppl 1 S16 (2008)
  56. Elucidation of a novel extracellular calcium-binding site on metabotropic glutamate receptor 1{alpha} (mGluR1{alpha}) that controls receptor activation. Jiang Y, Huang Y, Wong HC, Zhou Y, Wang X, Yang J, Hall RA, Brown EM, Yang JJ. J Biol Chem 285 33463-33474 (2010)
  57. Ligand-induced rearrangements of the GABA(B) receptor revealed by fluorescence resonance energy transfer. Matsushita S, Nakata H, Kubo Y, Tateyama M. J Biol Chem 285 10291-10299 (2010)
  58. Molecular mechanism of positive allosteric modulation of the metabotropic glutamate receptor 2 by JNJ-46281222. Doornbos ML, Pérez-Benito L, Tresadern G, Mulder-Krieger T, Biesmans I, Trabanco AA, Cid JM, Lavreysen H, IJzerman AP, Heitman LH. Br J Pharmacol 173 588-600 (2016)
  59. Molecular mechanism of the allosteric enhancement of the umami taste sensation. Mouritsen OG, Khandelia H. FEBS J 279 3112-3120 (2012)
  60. The GPRC6A receptor displays constitutive internalization and sorting to the slow recycling pathway. Jacobsen SE, Ammendrup-Johnsen I, Jansen AM, Gether U, Madsen KL, Bräuner-Osborne H. J Biol Chem 292 6910-6926 (2017)
  61. Conformational rearrangement during activation of a metabotropic glutamate receptor. Liauw BW, Afsari HS, Vafabakhsh R. Nat Chem Biol 17 291-297 (2021)
  62. The anatomy of mammalian sweet taste receptors. Chéron JB, Golebiowski J, Antonczak S, Fiorucci S. Proteins 85 332-341 (2017)
  63. Comparative fluorescence resonance energy transfer analysis of metabotropic glutamate receptors: implications about the dimeric arrangement and rearrangement upon ligand bindings. Yanagawa M, Yamashita T, Shichida Y. J Biol Chem 286 22971-22981 (2011)
  64. Structural basis for activation and allosteric modulation of full-length calcium-sensing receptor. Wen T, Wang Z, Chen X, Ren Y, Lu X, Xing Y, Lu J, Chang S, Zhang X, Shen Y, Yang X. Sci Adv 7 eabg1483 (2021)
  65. Taste substance binding elicits conformational change of taste receptor T1r heterodimer extracellular domains. Nango E, Akiyama S, Maki-Yonekura S, Ashikawa Y, Kusakabe Y, Krayukhina E, Maruno T, Uchiyama S, Nuemket N, Yonekura K, Shimizu M, Atsumi N, Yasui N, Hikima T, Yamamoto M, Kobayashi Y, Yamashita A. Sci Rep 6 25745 (2016)
  66. mGluR5: exploration of orthosteric and allosteric ligand binding pockets and their applications to drug discovery. Mølck C, Harpsøe K, Gloriam DE, Mathiesen JM, Nielsen SM, Bräuner-Osborne H. Neurochem Res 39 1862-1875 (2014)
  67. A critical pocket close to the glutamate binding site of mGlu receptors opens new possibilities for agonist design. Acher FC, Selvam C, Pin JP, Goudet C, Bertrand HO. Neuropharmacology 60 102-107 (2011)
  68. Activation switch in the transmembrane domain of metabotropic glutamate receptor. Yanagawa M, Yamashita T, Shichida Y. Mol Pharmacol 76 201-207 (2009)
  69. Direct determination of multiple ligand interactions with the extracellular domain of the calcium-sensing receptor. Zhang C, Zhuo Y, Moniz HA, Wang S, Moremen KW, Prestegard JH, Brown EM, Yang JJ. J Biol Chem 289 33529-33542 (2014)
  70. Pathophysiologic Changes in Extracellular pH Modulate Parathyroid Calcium-Sensing Receptor Activity and Secretion via a Histidine-Independent Mechanism. Campion KL, McCormick WD, Warwicker J, Khayat ME, Atkinson-Dell R, Steward MC, Delbridge LW, Mun HC, Conigrave AD, Ward DT. J Am Soc Nephrol 26 2163-2171 (2015)
  71. Structural mechanism of cooperative activation of the human calcium-sensing receptor by Ca2+ ions and L-tryptophan. Ling S, Shi P, Liu S, Meng X, Zhou Y, Sun W, Chang S, Zhang X, Zhang L, Shi C, Sun D, Liu L, Tian C. Cell Res 31 383-394 (2021)
  72. Five amino acid residues in cysteine-rich domain of human T1R3 were involved in the response for sweet-tasting protein, thaumatin. Masuda T, Taguchi W, Sano A, Ohta K, Kitabatake N, Tani F. Biochimie 95 1502-1505 (2013)
  73. GFP-based evaluation system of recombinant expression through the secretory pathway in insect cells and its application to the extracellular domains of class C GPCRs. Ashikawa Y, Ihara M, Matsuura N, Fukunaga Y, Kusakabe Y, Yamashita A. Protein Sci 20 1720-1734 (2011)
  74. Investigating the molecular mechanism of positive and negative allosteric modulators in the calcium-sensing receptor dimer. Jacobsen SE, Gether U, Bräuner-Osborne H. Sci Rep 7 46355 (2017)
  75. Radiosynthesis of N-(4-chloro-3-[(11)C]methoxyphenyl)-2-picolinamide ([(11)C]ML128) as a PET radiotracer for metabotropic glutamate receptor subtype 4 (mGlu4). Kil KE, Zhang Z, Jokivarsi K, Gong C, Choi JK, Kura S, Brownell AL. Bioorg Med Chem 21 5955-5962 (2013)
  76. Determinants of endogenous ligand specificity divergence among metabotropic glutamate receptors. Kang HJ, Wilkins AD, Lichtarge O, Wensel TG. J Biol Chem 290 2870-2878 (2015)
  77. Allosteric modulation of metabotropic glutamate receptors by chloride ions. Tora AS, Rovira X, Dione I, Bertrand HO, Brabet I, De Koninck Y, Doyon N, Pin JP, Acher F, Goudet C. FASEB J 29 4174-4188 (2015)
  78. Selectivity and evolutionary divergence of metabotropic glutamate receptors for endogenous ligands and G proteins coupled to phospholipase C or TRP channels. Kang HJ, Menlove K, Ma J, Wilkins A, Lichtarge O, Wensel TG. J Biol Chem 289 29961-29974 (2014)
  79. Letter Structural insights into the activation initiation of full-length mGlu1. Zhang J, Qu L, Wu L, Tang X, Luo F, Xu W, Xu Y, Liu ZJ, Hua T. Protein Cell 12 662-667 (2021)
  80. A Hypersweet Protein: Removal of The Specific Negative Charge at Asp21 Enhances Thaumatin Sweetness. Masuda T, Ohta K, Ojiro N, Murata K, Mikami B, Tani F, Temussi PA, Kitabatake N. Sci Rep 6 20255 (2016)
  81. Determinants of sweetness in proteins: a topological approach. Temussi PA. J Mol Recognit 24 1033-1042 (2011)
  82. Extracellular cysteine (Cys)/cystine (CySS) redox regulates metabotropic glutamate receptor 5 activity. Zhu JW, Yuan JF, Yang HM, Wang ST, Zhang CG, Sun LL, Yang H, Zhang H. Biochimie 94 617-627 (2012)
  83. Functional characterization of the heterodimeric sweet taste receptor T1R2 and T1R3 from a New World monkey species (squirrel monkey) and its response to sweet-tasting proteins. Liu B, Ha M, Meng XY, Khaleduzzaman M, Zhang Z, Li X, Cui M. Biochem Biophys Res Commun 427 431-437 (2012)
  84. Differentiated adaptive evolution, episodic relaxation of selective constraints, and pseudogenization of umami and sweet taste genes TAS1Rs in catarrhine primates. Liu G, Walter L, Tang S, Tan X, Shi F, Pan H, Roos C, Liu Z, Li M. Front Zool 11 79 (2014)
  85. Mutagenesis and molecular modeling of the orthosteric binding site of the mGlu2 receptor determining interactions of the group II receptor antagonist (3)H-HYDIA. Lundström L, Kuhn B, Beck J, Borroni E, Wettstein JG, Woltering TJ, Gatti S. ChemMedChem 4 1086-1094 (2009)
  86. Differences in interactions between transmembrane domains tune the activation of metabotropic glutamate receptors. Thibado JK, Tano JY, Lee J, Salas-Estrada L, Provasi D, Strauss A, Marcelo Lamim Ribeiro J, Xiang G, Broichhagen J, Filizola M, Lohse MJ, Levitz J. Elife 10 e67027 (2021)
  87. Exploration of structure-based drug design opportunities for mGluRs. Topiol S, Sabio M, Uberti M. Neuropharmacology 60 93-101 (2011)
  88. Glutamate acts as a partial inverse agonist to metabotropic glutamate receptor with a single amino acid mutation in the transmembrane domain. Yanagawa M, Yamashita T, Shichida Y. J Biol Chem 288 9593-9601 (2013)
  89. Structural characterization of intracellular C-terminal domains of group III metabotropic glutamate receptors. Seebahn A, Dinkel H, Mohrlüder J, Hartmann R, Vogel N, Becker CM, Sticht H, Enz R. FEBS Lett 585 511-516 (2011)
  90. Structural insights into the activation of human calcium-sensing receptor. Chen X, Wang L, Cui Q, Ding Z, Han L, Kou Y, Zhang W, Wang H, Jia X, Dai M, Shi Z, Li Y, Li X, Geng Y. Elife 10 e68578 (2021)
  91. Exploring the biological consequences of conformational changes in aspartame models containing constrained analogues of phenylalanine. Mollica A, Mirzaie S, Costante R, Carradori S, Macedonio G, Stefanucci A, Dvoracsko S, Novellino E. J Enzyme Inhib Med Chem 31 953-963 (2016)
  92. Narrow escape time to a structured target located on the boundary of a microdomain. Reingruber J, Abad E, Holcman D. J Chem Phys 130 094909 (2009)
  93. Shining Light on an mGlu5 Photoswitchable NAM: A Theoretical Perspective. Dalton JA, Lans I, Rovira X, Malhaire F, Gómez-Santacana X, Pittolo S, Gorostiza P, Llebaria A, Goudet C, Pin JP, Giraldo J. Curr Neuropharmacol 14 441-454 (2016)
  94. Structural features and activity of Brazzein and its mutants upon substitution of a surfaced exposed alanine. Ghanavatian P, Khalifeh K, Jafarian V. Biochimie 131 20-28 (2016)
  95. The Heptahelical Domain of the Sweet Taste Receptor T1R2 Is a New Allosteric Binding Site for the Sweet Taste Modulator Amiloride That Modulates Sweet Taste in a Species-Dependent Manner. Zhao M, Xu XQ, Meng XY, Liu B. J Mol Neurosci 66 207-213 (2018)
  96. An efficient Escherichia coli expression system for the production of a functional N-terminal domain of the T1R3 taste receptor. Maîtrepierre E, Sigoillot M, Le Pessot L, Briand L. Bioengineered 4 25-29 (2013)
  97. Expression, purification, crystallization and preliminary X-ray analysis of the ligand-binding domain of metabotropic glutamate receptor 7. Muto T, Tsuchiya D, Morikawa K, Jingami H. Acta Crystallogr Sect F Struct Biol Cryst Commun 63 627-630 (2007)
  98. A Systematic Review on Popularity, Application and Characteristics of Protein Secondary Structure Prediction Tools. Kashani-Amin E, Tabatabaei-Malazy O, Sakhteman A, Larijani B, Ebrahim-Habibi A. Curr Drug Discov Technol 16 159-172 (2019)
  99. Asymmetric synthesis and receptor pharmacology of the group II mGlu receptor ligand (1S,2R,3R,5R,6S)-2-amino-3-hydroxy-bicyclo[3.1.0]hexane-2,6-dicarboxylic acid-HYDIA. Woltering TJ, Adam G, Huguenin P, Wichmann J, Kolczewski S, Gatti S, Bourson A, Kew JN, Richards G, Kemp JA, Mutel V, Knoflach F. ChemMedChem 3 323-335 (2008)
  100. Characterization and its implication of a novel taste receptor detecting nutrients in the honey bee, Apis mellifera. Lim S, Jung J, Yunusbaev U, Ilyasov R, Kwon HW. Sci Rep 9 11620 (2019)
  101. Direct coupling of detergent purified human mGlu5 receptor to the heterotrimeric G proteins Gq and Gs. Nasrallah C, Rottier K, Marcellin R, Compan V, Font J, Llebaria A, Pin JP, Banères JL, Lebon G. Sci Rep 8 4407 (2018)
  102. Glycyrrhetic acid monoglucuronide: sweetness concentration-response and molecular mechanism as a naturally high-potency sweetener. Yang Y, Wei Y, Guo X, Qi P, Zhu H, Tang W. Food Sci Biotechnol 28 1187-1193 (2019)
  103. Inhibitory mechanism of l-glutamic acid on spawning of the starfish Patiria (Asterina) pectinifera. Mita M. Mol Reprod Dev 84 246-256 (2017)
  104. Molecular dynamic simulation of mGluR5 amino terminal domain: essential dynamics analysis captures the agonist or antagonist behaviour of ligands. Casoni A, Clerici F, Contini A. J Mol Graph Model 41 72-78 (2013)
  105. NMDA receptor subunits change in the prefrontal cortex of pure-opioid and multi-drug abusers: a post-mortem study. Daneshparvar H, Sadat-Shirazi MS, Fekri M, Khalifeh S, Ziaie A, Esfahanizadeh N, Vousooghi N, Zarrindast MR. Eur Arch Psychiatry Clin Neurosci 269 309-315 (2019)
  106. A group II metabotropic glutamate receptor 3 (mGlu3, GRM3) isoform implicated in schizophrenia interacts with canonical mGlu3 and reduces ligand binding. García-Bea A, Bermudez I, Harrison PJ, Lane TA. J Psychopharmacol 31 1519-1526 (2017)
  107. Mechanism of sensitivity modulation in the calcium-sensing receptor via electrostatic tuning. Schamber MR, Vafabakhsh R. Nat Commun 13 2194 (2022)
  108. Comment Methuselah antagonist extends life span. McGarrigle D, Huang XY. Nat Chem Biol 3 371-372 (2007)
  109. Presence of carbohydrate binding modules in extracellular region of class C G-protein coupled receptors (C GPCR): An in silico investigation on sweet taste receptor. Kashani-Amin E, Sakhteman A, Larijani B, Ebrahim-Habibi A. J Biosci 44 138 (2019)
  110. Development of hidden Markov modeling method for molecular orientations and structure estimation from high-speed atomic force microscopy time-series images. Ogane T, Noshiro D, Ando T, Yamashita A, Sugita Y, Matsunaga Y. PLoS Comput Biol 18 e1010384 (2022)
  111. Molecular Characterization and Expression Analysis of Putative Class C (Glutamate Family) G Protein-Coupled Receptors in Ascidian Styela clava. Zhang J, Dong B, Yang L. Biology (Basel) 11 782 (2022)
  112. Pharmacology of the Umami Taste Receptor. Servant G, Frerot E. Handb Exp Pharmacol 275 109-136 (2022)
  113. Prediction of dynamic allostery for the transmembrane domain of the sweet taste receptor subunit, TAS1R3. Sanematsu K, Yamamoto M, Nagasato Y, Kawabata Y, Watanabe Y, Iwata S, Takai S, Toko K, Matsui T, Wada N, Shigemura N. Commun Biol 6 340 (2023)
  114. Regulation and functional consequences of mGlu4 RNA editing. Hofmann CS, Carrington S, Keller AN, Gregory KJ, Niswender CM. RNA 27 1220-1240 (2021)
  115. Site-specific unglycosylation to improve crystallization of the metabotropic glutamate receptor 3 extracellular domain. Muto T, Tsuchiya D, Morikawa K, Jingami H. Acta Crystallogr Sect F Struct Biol Cryst Commun 65 236-241 (2009)
  116. 7TM X-ray structures for class C GPCRs as new drug-discovery tools. 1. mGluR5. Topiol S, Sabio M. Bioorg Med Chem Lett 26 484-494 (2016)
  117. Cell Surface Calcium-Sensing Receptor Heterodimers: Mutant Gene Dosage Affects Ca2+ Sensing but Not G Protein Interaction. Goolam MA, Brown AP, Edwards KT, Gregory KJ, Leach K, Conigrave AD. J Bone Miner Res 37 1787-1807 (2022)
  118. Concerted conformational changes control metabotropic glutamate receptor activity. Lecat-Guillet N, Quast RB, Liu H, Bourrier E, Møller TC, Rovira X, Soldevila S, Lamarque L, Trinquet E, Liu J, Pin JP, Rondard P, Margeat E. Sci Adv 9 eadf1378 (2023)
  119. Isoxazolo[3,4-d]pyridazinones positively modulate the metabotropic glutamate subtypes 2 and 4. Gates C, Backos DS, Reigan P, Kang HJ, Koerner C, Mirzaei J, Natale NR. Bioorg Med Chem 26 4797-4803 (2018)
  120. Molecular dynamics study of tropical calcific pancreatitis (TCP) associated calcium-sensing receptor single nucleotide variation. Shrivastava A, Mathur K, Verma RK, Jayadev Magani SK, Vyas DK, Singh A. Front Mol Biosci 9 982831 (2022)
  121. Sensing conformational changes in metabotropic glutamate receptors. Rives ML, Javitch JA. Proc Natl Acad Sci U S A 110 5742-5743 (2013)