2dgk Citations

Escherichia coli acid resistance: pH-sensing, activation by chloride and autoinhibition in GadB.

EMBO J 25 2643-51 (2006)
Related entries: 1pmm, 1pmo, 2dgl, 2dgm

Cited: 59 times
EuropePMC logo PMID: 16675957

Abstract

Escherichia coli and other enterobacteria exploit the H+ -consuming reaction catalysed by glutamate decarboxylase to survive the stomach acidity before reaching the intestine. Here we show that chloride, extremely abundant in gastric secretions, is an allosteric activator producing a 10-fold increase in the decarboxylase activity at pH 5.6. Cooperativity and sensitivity to chloride were lost when the N-terminal 14 residues, involved in the formation of two triple-helix bundles, were deleted by mutagenesis. X-ray structures, obtained in the presence of the substrate analogue acetate, identified halide-binding sites at the base of each N-terminal helix, showed how halide binding is responsible for bundle stability and demonstrated that the interconversion between active and inactive forms of the enzyme is a stepwise process. We also discovered an entirely novel structure of the cofactor pyridoxal 5'-phosphate (aldamine) to be responsible for the reversibly inactivated enzyme. Our results link the entry of chloride ions, via the H+/Cl- exchange activities of ClC-ec1, to the trigger of the acid stress response in the cell when the intracellular proton concentration has not yet reached fatal values.

Articles - 2dgk mentioned but not cited (2)

  1. Escherichia coli acid resistance: pH-sensing, activation by chloride and autoinhibition in GadB. Gut H, Pennacchietti E, John RA, Bossa F, Capitani G, De Biase D, Grütter MG. EMBO J 25 2643-2651 (2006)
  2. Mutation of His465 alters the pH-dependent spectroscopic properties of Escherichia coli glutamate decarboxylase and broadens the range of its activity toward more alkaline pH. Pennacchietti E, Lammens TM, Capitani G, Franssen MC, John RA, Bossa F, De Biase D. J Biol Chem 284 31587-31596 (2009)


Reviews citing this publication (10)

  1. Molecular aspects of bacterial pH sensing and homeostasis. Krulwich TA, Sachs G, Padan E. Nat Rev Microbiol 9 330-343 (2011)
  2. Coping with low pH: molecular strategies in neutralophilic bacteria. Lund P, Tramonti A, De Biase D. FEMS Microbiol Rev 38 1091-1125 (2014)
  3. Mechanisms of acid resistance in Escherichia coli. Kanjee U, Houry WA. Annu Rev Microbiol 67 65-81 (2013)
  4. Acid stress response in enteropathogenic gammaproteobacteria: an aptitude for survival. Zhao B, Houry WA. Biochem Cell Biol 88 301-314 (2010)
  5. PLP-dependent enzymes as entry and exit gates of sphingolipid metabolism. Bourquin F, Capitani G, Grütter MG. Protein Sci 20 1492-1508 (2011)
  6. Proteomics as a tool for studying energy metabolism in lactic acid bacteria. Pessione A, Lamberti C, Pessione E. Mol Biosyst 6 1419-1430 (2010)
  7. Physiological Processes Modulated by the Chloride-Sensitive WNK-SPAK/OSR1 Kinase Signaling Pathway and the Cation-Coupled Chloride Cotransporters. Murillo-de-Ozores AR, Chávez-Canales M, de Los Heros P, Gamba G, Castañeda-Bueno M. Front Physiol 11 585907 (2020)
  8. Comparative Review of the Responses of Listeria monocytogenes and Escherichia coli to Low pH Stress. Arcari T, Feger ML, Guerreiro DN, Wu J, O'Byrne CP. Genes (Basel) 11 E1330 (2020)
  9. An overview of molecular stress response mechanisms in Escherichia coli contributing to survival of Shiga toxin-producing Escherichia coli during raw milk cheese production. Peng S, Tasara T, Hummerjohann J, Stephan R. J Food Prot 74 849-864 (2011)
  10. Current advances and future prospects in production of recombinant insulin and other proteins to treat diabetes mellitus. Bhoria S, Yadav J, Yadav H, Chaudhary D, Jaiwal R, Jaiwal PK. Biotechnol Lett 44 643-669 (2022)

Articles citing this publication (47)

  1. GABA production by glutamic acid decarboxylase is regulated by a dynamic catalytic loop. Fenalti G, Law RH, Buckle AM, Langendorf C, Tuck K, Rosado CJ, Faux NG, Mahmood K, Hampe CS, Banga JP, Wilce M, Schmidberger J, Rossjohn J, El-Kabbani O, Pike RN, Smith AI, Mackay IR, Rowley MJ, Whisstock JC. Nat Struct Mol Biol 14 280-286 (2007)
  2. Glutamate decarboxylase-dependent acid resistance in orally acquired bacteria: function, distribution and biomedical implications of the gadBC operon. De Biase D, Pennacchietti E. Mol Microbiol 86 770-786 (2012)
  3. Intestinal organoids model human responses to infection by commensal and Shiga toxin producing Escherichia coli. Karve SS, Pradhan S, Ward DV, Weiss AA. PLoS One 12 e0178966 (2017)
  4. Characterization of glutamate decarboxylase from a high gamma-aminobutyric acid (GABA)-producer, Lactobacillus paracasei. Komatsuzaki N, Nakamura T, Kimura T, Shima J. Biosci Biotechnol Biochem 72 278-285 (2008)
  5. Structure and function of sphingosine-1-phosphate lyase, a key enzyme of sphingolipid metabolism. Bourquin F, Riezman H, Capitani G, Grütter MG. Structure 18 1054-1065 (2010)
  6. Synthesis of gamma-aminobutyric acid (GABA) by Lactobacillus plantarum DSM19463: functional grape must beverage and dermatological applications. Di Cagno R, Mazzacane F, Rizzello CG, De Angelis M, Giuliani G, Meloni M, De Servi B, Gobbetti M. Appl Microbiol Biotechnol 86 731-741 (2010)
  7. Mechanisms of transcription activation exerted by GadX and GadW at the gadA and gadBC gene promoters of the glutamate-based acid resistance system in Escherichia coli. Tramonti A, De Canio M, Delany I, Scarlato V, De Biase D. J Bacteriol 188 8118-8127 (2006)
  8. Glutamate decarboxylase from Lactobacillus brevis: activation by ammonium sulfate. Hiraga K, Ueno Y, Oda K. Biosci Biotechnol Biochem 72 1299-1306 (2008)
  9. Decrypting the H-NS-dependent regulatory cascade of acid stress resistance in Escherichia coli. Krin E, Danchin A, Soutourina O. BMC Microbiol 10 273 (2010)
  10. A common structural basis for pH- and calmodulin-mediated regulation in plant glutamate decarboxylase. Gut H, Dominici P, Pilati S, Astegno A, Petoukhov MV, Svergun DI, Grütter MG, Capitani G. J Mol Biol 392 334-351 (2009)
  11. Evolutionary adaptation to environmental pH in experimental lineages of Escherichia coli. Hughes BS, Cullum AJ, Bennett AF. Evolution 61 1725-1734 (2007)
  12. The enzymatic activities of the Escherichia coli basic aliphatic amino acid decarboxylases exhibit a pH zone of inhibition. Kanjee U, Gutsche I, Ramachandran S, Houry WA. Biochemistry 50 9388-9398 (2011)
  13. Genetic analysis of activation of the Vibrio cholerae Cpx pathway. Slamti L, Waldor MK. J Bacteriol 191 5044-5056 (2009)
  14. Compensations for diminished terminal oxidase activity in Escherichia coli: cytochrome bd-II-mediated respiration and glutamate metabolism. Shepherd M, Sanguinetti G, Cook GM, Poole RK. J Biol Chem 285 18464-18472 (2010)
  15. Evaluation of Acquired Antibiotic Resistance in Escherichia coli Exposed to Long-Term Low-Shear Modeled Microgravity and Background Antibiotic Exposure. Tirumalai MR, Karouia F, Tran Q, Stepanov VG, Bruce RJ, Ott CM, Pierson DL, Fox GE. mBio 10 e02637-18 (2019)
  16. Expanding the active pH range of Escherichia coli glutamate decarboxylase by breaking the cooperativeness. Thu Ho NA, Hou CY, Kim WH, Kang TJ. J Biosci Bioeng 115 154-158 (2013)
  17. Persister Escherichia coli Cells Have a Lower Intracellular pH than Susceptible Cells but Maintain Their pH in Response to Antibiotic Treatment. Goode O, Smith A, Zarkan A, Cama J, Invergo BM, Belgami D, Caño-Muñiz S, Metz J, O'Neill P, Jeffries A, Norville IH, David J, Summers D, Pagliara S. mBio 12 e0090921 (2021)
  18. Directed evolution and mutagenesis of glutamate decarboxylase from Lactobacillus brevis Lb85 to broaden the range of its activity toward a near-neutral pH. Shi F, Xie Y, Jiang J, Wang N, Li Y, Wang X. Enzyme Microb Technol 61-62 35-43 (2014)
  19. Structural plasticity of the phage P22 tail needle gp26 probed with xenon gas. Olia AS, Casjens S, Cingolani G. Protein Sci 18 537-548 (2009)
  20. Comparative analysis of different biofactories for the production of a major diabetes autoantigen. Avesani L, Merlin M, Gecchele E, Capaldi S, Brozzetti A, Falorni A, Pezzotti M. Transgenic Res 23 281-291 (2014)
  21. Recombinant human GAD65 accumulates to high levels in transgenic tobacco plants when expressed as an enzymatically inactive mutant. Avesani L, Vitale A, Pedrazzini E, Devirgilio M, Pompa A, Barbante A, Gecchele E, Dominici P, Morandini F, Brozzetti A, Falorni A, Pezzotti M. Plant Biotechnol J 8 862-872 (2010)
  22. The Glutaminase-Dependent Acid Resistance System: Qualitative and Quantitative Assays and Analysis of Its Distribution in Enteric Bacteria. Pennacchietti E, D'Alonzo C, Freddi L, Occhialini A, De Biase D. Front Microbiol 9 2869 (2018)
  23. Regulation of human serine racemase activity and dynamics by halides, ATP and malonate. Marchetti M, Bruno S, Campanini B, Bettati S, Peracchi A, Mozzarelli A. Amino Acids 47 163-173 (2015)
  24. Buffer-free production of gamma-aminobutyric acid using an engineered glutamate decarboxylase from Escherichia coli. Kang TJ, Ho NA, Pack SP. Enzyme Microb Technol 53 200-205 (2013)
  25. Structural characterization of the mechanism through which human glutamic acid decarboxylase auto-activates. Langendorf CG, Tuck KL, Key TL, Fenalti G, Pike RN, Rosado CJ, Wong AS, Buckle AM, Law RH, Whisstock JC. Biosci Rep 33 137-144 (2013)
  26. Thermostabilization of glutamate decarboxylase B from Escherichia coli by structure-guided design of its pH-responsive N-terminal interdomain. Jun C, Joo JC, Lee JH, Kim YH. J Biotechnol 174 22-28 (2014)
  27. Pyridoxine Supplementation Improves the Activity of Recombinant Glutamate Decarboxylase and the Enzymatic Production of Gama-Aminobutyric Acid. Huang Y, Su L, Wu J. PLoS One 11 e0157466 (2016)
  28. Structural insights into inhibition of Bacillus anthracis sporulation by a novel class of non-heme globin sensor domains. Stranzl GR, Santelli E, Bankston LA, La Clair C, Bobkov A, Schwarzenbacher R, Godzik A, Perego M, Grynberg M, Liddington RC. J Biol Chem 286 8448-8458 (2011)
  29. Whole-cell conversion of l-glutamic acid into gamma-aminobutyric acid by metabolically engineered Escherichia coli. Ke C, Yang X, Rao H, Zeng W, Hu M, Tao Y, Huang J. Springerplus 5 591 (2016)
  30. Roles of H2 uptake hydrogenases in Shigella flexneri acid tolerance. McNorton MM, Maier RJ. Microbiology (Reading) 158 2204-2212 (2012)
  31. Biochemical and spectroscopic properties of Brucella microti glutamate decarboxylase, a key component of the glutamate-dependent acid resistance system. Grassini G, Pennacchietti E, Cappadocio F, Occhialini A, De Biase D. FEBS Open Bio 5 209-218 (2015)
  32. Extracellular expression of glutamate decarboxylase B in Escherichia coli to improve gamma-aminobutyric acid production. Zhao A, Hu X, Li Y, Chen C, Wang X. AMB Express 6 55 (2016)
  33. Identification of a proton-chloride antiporter (EriC) by Himar1 transposon mutagenesis in Lactobacillus reuteri and its role in histamine production. Hemarajata P, Spinler JK, Balderas MA, Versalovic J. Antonie Van Leeuwenhoek 105 579-592 (2014)
  34. Reconstruction of the glutamate decarboxylase system in Lactococcus lactis for biosynthesis of food-grade γ-aminobutyric acid. Lyu C, Yao L, Zhu Q, Mei J, Cao Y, Hu S, Zhao W, Huang J, Mei L, Yao S, Du G. Appl Microbiol Biotechnol 105 4127-4140 (2021)
  35. A Novel Inorganic Sulfur Compound Metabolizing Ferroplasma-Like Population Is Suggested to Mediate Extracellular Electron Transfer. Ni G, Simone D, Palma D, Broman E, Wu X, Turner S, Dopson M. Front Microbiol 9 2945 (2018)
  36. Ferric Uptake Regulator Provides a New Strategy for Acidophile Adaptation to Acidic Ecosystems. Chen XK, Li XY, Ha YF, Lin JQ, Liu XM, Pang X, Lin JQ, Chen LX. Appl Environ Microbiol 86 e00268-20 (2020)
  37. Production of γ-Aminobutyrate (GABA) in Recombinant Corynebacterium glutamicum by Expression of Glutamate Decarboxylase Active at Neutral pH. Son J, Baritugo KA, Sohn YJ, Kang KH, Kim HT, Joo JC, Park SJ. ACS Omega 7 29106-29115 (2022)
  38. ClC transporter activity modulates histidine catabolism in Lactobacillus reuteri by altering intracellular pH and membrane potential. Hall AE, Engevik MA, Oezguen N, Haag A, Versalovic J. Microb Cell Fact 18 212 (2019)
  39. Expression of recombinant glutamic acid decarboxylase in insect larvae and its application in an immunoassay for the diagnosis of autoimmune diabetes mellitus. Trabucchi A, Bombicino SS, Targovnik AM, Marfía JI, Sabljic AV, Faccinetti NI, Guerra LL, Iacono RF, Miranda MV, Valdez SN. Sci Rep 9 824 (2019)
  40. Molecular Analysis of Glutamate Decarboxylases in Enterococcus avium. Gu X, Zhao J, Zhang R, Yu R, Guo T, Kong J. Front Microbiol 12 691968 (2021)
  41. Development of a 2-pyrrolidone biosynthetic pathway in Corynebacterium glutamicum by engineering an acetyl-CoA balance route. Xu M, Gao H, Ma Z, Han J, Zheng K, Shao M, Rao Z. Amino Acids 54 1437-1450 (2022)
  42. Editorial Editorial: Microbial Stress: From Sensing to Intracellular and Population Responses. De Biase D, Morrissey JP, O'Byrne CP. Front Microbiol 11 1667 (2020)
  43. Enzymatic kinetic resolution of desmethylphosphinothricin indicates that phosphinic group is a bioisostere of carboxyl group. De Biase D, Cappadocio F, Pennacchietti E, Giovannercole F, Coluccia A, Vepsäläinen J, Khomutov A. Commun Chem 3 121 (2020)
  44. On the effect of alkaline pH and cofactor availability in the conformational and oligomeric state of Escherichia coli glutamate decarboxylase. Giovannercole F, Mérigoux C, Zamparelli C, Verzili D, Grassini G, Buckle M, Vachette P, De Biase D. Protein Eng Des Sel 30 235-244 (2017)
  45. Site-directed mutagenesis improves the practical application of L-glutamic acid decarboxylase in Escherichia coli. Fengmin L, Heng Z, Xiangjun Z, Xiaobo W, Huiyan L, Haitian F. Eng Life Sci 23 e2200064 (2023)
  46. Structural basis for substrate specificity of l-methionine decarboxylase. Okawa A, Shiba T, Hayashi M, Onoue Y, Murota M, Sato D, Inagaki J, Tamura T, Harada S, Inagaki K. Protein Sci 30 663-677 (2021)
  47. Transcriptomic and Metabolomic Profiling Reveals That KguR Broadly Impacts the Physiology of Uropathogenic Escherichia coli Under in vivo Relevant Conditions. Yang D, Jiang F, Huang X, Li G, Cai W. Front Microbiol 12 793391 (2021)


Related citations provided by authors (1)

  1. Crystal structure and functional analysis of Escherichia coli glutamate decarboxylase.. Capitani G, De Biase D, Aurizi C, Gut H, Bossa F, Grütter MG EMBO J 22 4027-37 (2003)