2c7v Citations

Structure and reactivity of Trypanosoma brucei pteridine reductase: inhibition by the archetypal antifolate methotrexate.

Abstract

The protozoan Trypanosoma brucei has a functional pteridine reductase (TbPTR1), an NADPH-dependent short-chain reductase that participates in the salvage of pterins, which are essential for parasite growth. PTR1 displays broad-spectrum activity with pterins and folates, provides a metabolic bypass for inhibition of the trypanosomatid dihydrofolate reductase and therefore compromises the use of antifolates for treatment of trypanosomiasis. Catalytic properties of recombinant TbPTR1 and inhibition by the archetypal antifolate methotrexate have been characterized and the crystal structure of the ternary complex with cofactor NADP+ and the inhibitor determined at 2.2 A resolution. This enzyme shares 50% amino acid sequence identity with Leishmania major PTR1 (LmPTR1) and comparisons show that the architecture of the cofactor binding site, and the catalytic centre are highly conserved, as are most interactions with the inhibitor. However, specific amino acid differences, in particular the placement of Trp221 at the side of the active site, and adjustment of the beta6-alpha6 loop and alpha6 helix at one side of the substrate-binding cleft significantly reduce the size of the substrate binding site of TbPTR1 and alter the chemical properties compared with LmPTR1. A reactive Cys168, within the active site cleft, in conjunction with the C-terminus carboxyl group and His267 of a partner subunit forms a triad similar to the catalytic component of cysteine proteases. TbPTR1 therefore offers novel structural features to exploit in the search for inhibitors of therapeutic value against African trypanosomiasis.

Articles citing this publication (23)

  1. Chemical and genetic validation of dihydrofolate reductase-thymidylate synthase as a drug target in African trypanosomes. Sienkiewicz N, Jarosławski S, Wyllie S, Fairlamb AH. Mol. Microbiol. 69 520-533 (2008)
  2. One scaffold, three binding modes: novel and selective pteridine reductase 1 inhibitors derived from fragment hits discovered by virtual screening. Mpamhanga CP, Spinks D, Tulloch LB, Shanks EJ, Robinson DA, Collie IT, Fairlamb AH, Wyatt PG, Frearson JA, Hunter WN, Gilbert IH, Brenk R. J. Med. Chem. 52 4454-4465 (2009)
  3. Discovery of potent pteridine reductase inhibitors to guide antiparasite drug development. Cavazzuti A, Paglietti G, Hunter WN, Gamarro F, Piras S, Loriga M, Allecca S, Corona P, McLuskey K, Tulloch L, Gibellini F, Ferrari S, Costi MP. Proc. Natl. Acad. Sci. U.S.A. 105 1448-1453 (2008)
  4. Structure-based design of pteridine reductase inhibitors targeting African sleeping sickness and the leishmaniases. Tulloch LB, Martini VP, Iulek J, Huggan JK, Lee JH, Gibson CL, Smith TK, Suckling CJ, Hunter WN. J. Med. Chem. 53 221-229 (2010)
  5. Trypanosoma brucei pteridine reductase 1 is essential for survival in vitro and for virulence in mice. Sienkiewicz N, Ong HB, Fairlamb AH. Mol. Microbiol. 77 658-671 (2010)
  6. Development and validation of a cytochrome c-coupled assay for pteridine reductase 1 and dihydrofolate reductase. Shanks EJ, Ong HB, Robinson DA, Thompson S, Sienkiewicz N, Fairlamb AH, Frearson JA. Anal. Biochem. 396 194-203 (2010)
  7. Dissecting the metabolic roles of pteridine reductase 1 in Trypanosoma brucei and Leishmania major. Ong HB, Sienkiewicz N, Wyllie S, Fairlamb AH. J. Biol. Chem. 286 10429-10438 (2011)
  8. Get phases from arsenic anomalous scattering: de novo SAD phasing of two protein structures crystallized in cacodylate buffer. Liu X, Zhang H, Wang XJ, Li LF, Su XD. PLoS ONE 6 e24227 (2011)
  9. Structure-based design and synthesis of antiparasitic pyrrolopyrimidines targeting pteridine reductase 1. Khalaf AI, Huggan JK, Suckling CJ, Gibson CL, Stewart K, Giordani F, Barrett MP, Wong PE, Barrack KL, Hunter WN. J. Med. Chem. 57 6479-6494 (2014)
  10. The crystal structure of Leishmania major N(5),N(10)-methylenetetrahydrofolate dehydrogenase/cyclohydrolase and assessment of a potential drug target. Eadsforth TC, Cameron S, Hunter WN. Mol. Biochem. Parasitol. 181 178-185 (2012)
  11. Methotrexate and aminopterin lack in vivo antimalarial activity against murine malaria species. Irungu B, Kiboi D, Langat B, Rukunga G, Wittlin S, Nzila A. Exp. Parasitol. 123 118-121 (2009)
  12. Structure-guided discovery of thiazolidine-2,4-dione derivatives as a novel class of Leishmania major pteridine reductase 1 inhibitors. Leite FHA, Santiago PBGDS, Froes TQ, da Silva Filho J, da Silva SG, Ximenes RM, de Faria AR, Brondani DJ, de Albuquerque JFC, Castilho MS. Eur J Med Chem 123 639-648 (2016)
  13. Trypanosoma brucei DHFR-TS Revisited: Characterisation of a Bifunctional and Highly Unstable Recombinant Dihydrofolate Reductase-Thymidylate Synthase. Gibson MW, Dewar S, Ong HB, Sienkiewicz N, Fairlamb AH. PLoS Negl Trop Dis 10 e0004714 (2016)
  14. High-resolution structures of Trypanosoma brucei pteridine reductase ligand complexes inform on the placement of new molecular entities in the active site of a potential drug target. Dawson A, Tulloch LB, Barrack KL, Hunter WN. Acta Crystallogr. D Biol. Crystallogr. 66 1334-1340 (2010)
  15. Assessment of Pseudomonas aeruginosa N5,N10-methylenetetrahydrofolate dehydrogenase-cyclohydrolase as a potential antibacterial drug target. Eadsforth TC, Gardiner M, Maluf FV, McElroy S, James D, Frearson J, Gray D, Hunter WN. PLoS ONE 7 e35973 (2012)
  16. Molecular cloning, expression and enzymatic assay of pteridine reductase 1 from Iranian lizard Leishmania. Kazemi B, Tohidi F, Bandehpour M, Yarian F. Iran. Biomed. J. 14 97-102 (2010)
  17. Structure of recombinant Leishmania donovani pteridine reductase reveals a disordered active site. Barrack KL, Tulloch LB, Burke LA, Fyfe PK, Hunter WN. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 67 33-37 (2011)
  18. Pharmacophore Mapping, In Silico Screening and Molecular Docking to Identify Selective Trypanosoma brucei Pteridine Reductase Inhibitors. Dube D, Sharma S, Singh TP, Kaur P. Mol Inform 33 124-134 (2014)
  19. Chroman-4-One Derivatives Targeting Pteridine Reductase 1 and Showing Anti-Parasitic Activity. Di Pisa F, Landi G, Dello Iacono L, Pozzi C, Borsari C, Ferrari S, Santucci M, Santarem N, Cordeiro-da-Silva A, Moraes CB, Alcantara LM, Fontana V, Freitas-Junior LH, Gul S, Kuzikov M, Behrens B, Pöhner I, Wade RC, Costi MP, Mangani S. Molecules 22 (2017)
  20. An integrated approach towards the discovery of novel non-nucleoside Leishmania major pteridine reductase 1 inhibitors. Leite FHA, Froes TQ, da Silva SG, de Souza EIM, Vital-Fujii DG, Trossini GHG, Pita SSDR, Castilho MS. Eur J Med Chem 132 322-332 (2017)
  21. Essential multimeric enzymes in kinetoplastid parasites: A host of potentially druggable protein-protein interactions. Wachsmuth LM, Johnson MG, Gavenonis J. PLoS Negl Trop Dis 11 e0005720 (2017)
  22. Application of a simple quantum chemical approach to ligand fragment scoring for Trypanosoma brucei pteridine reductase 1 inhibition. Jedwabny W, Panecka-Hofman J, Dyguda-Kazimierowicz E, Wade RC, Sokalski WA. J. Comput. Aided Mol. Des. (2017)
  23. Exploiting the 2-Amino-1,3,4-thiadiazole Scaffold To Inhibit Trypanosoma brucei Pteridine Reductase in Support of Early-Stage Drug Discovery. Linciano P, Dawson A, Pöhner I, Costa DM, Sá MS, Cordeiro-da-Silva A, Luciani R, Gul S, Witt G, Ellinger B, Kuzikov M, Gribbon P, Reinshagen J, Wolf M, Behrens B, Hannaert V, Michels PAM, Nerini E, Pozzi C, di Pisa F, Landi G, Santarem N, Ferrari S, Saxena P, Lazzari S, Cannazza G, Freitas-Junior LH, Moraes CB, Pascoalino BS, Alcântara LM, Bertolacini CP, Fontana V, Wittig U, Müller W, Wade RC, Hunter WN, Mangani S, Costantino L, Costi MP. ACS Omega 2 5666-5683 (2017)