2c6g Citations

Structure of glutamate carboxypeptidase II, a drug target in neuronal damage and prostate cancer.

EMBO J 25 1375-84 (2006)
Related entries: 2c6c, 2c6p

Cited: 138 times
EuropePMC logo PMID: 16467855

Abstract

Membrane-bound glutamate carboxypeptidase II (GCPII) is a zinc metalloenzyme that catalyzes the hydrolysis of the neurotransmitter N-acetyl-L-aspartyl-L-glutamate (NAAG) to N-acetyl-L-aspartate and L-glutamate (which is itself a neurotransmitter). Potent and selective GCPII inhibitors have been shown to decrease brain glutamate and provide neuroprotection in preclinical models of stroke, amyotrophic lateral sclerosis, and neuropathic pain. Here, we report crystal structures of the extracellular part of GCPII in complex with both potent and weak inhibitors and with glutamate, the product of the enzyme's hydrolysis reaction, at 2.0, 2.4, and 2.2 A resolution, respectively. GCPII folds into three domains: protease-like, apical, and C-terminal. All three participate in substrate binding, with two of them directly involved in C-terminal glutamate recognition. One of the carbohydrate moieties of the enzyme is essential for homodimer formation of GCPII. The three-dimensional structures presented here reveal an induced-fit substrate-binding mode of this key enzyme and provide essential information for the design of GCPII inhibitors useful in the treatment of neuronal diseases and prostate cancer.

Reviews - 2c6g mentioned but not cited (1)

  1. Metamorphosis of prostate specific membrane antigen (PSMA) inhibitors. Nikfarjam Z, Zargari F, Nowroozi A, Bavi O. Biophys Rev 14 303-315 (2022)

Articles - 2c6g mentioned but not cited (8)

  1. Structure of glutamate carboxypeptidase II, a drug target in neuronal damage and prostate cancer. Mesters JR, Barinka C, Li W, Tsukamoto T, Majer P, Slusher BS, Konvalinka J, Hilgenfeld R. EMBO J. 25 1375-1384 (2006)
  2. Interactions between human glutamate carboxypeptidase II and urea-based inhibitors: structural characterization. Barinka C, Byun Y, Dusich CL, Banerjee SR, Chen Y, Castanares M, Kozikowski AP, Mease RC, Pomper MG, Lubkowski J. J. Med. Chem. 51 7737-7743 (2008)
  3. Reaction mechanism of glutamate carboxypeptidase II revealed by mutagenesis, X-ray crystallography, and computational methods. Klusák V, Barinka C, Plechanovová A, Mlcochová P, Konvalinka J, Rulísek L, Lubkowski J. Biochemistry 48 4126-4138 (2009)
  4. Substrate specificity of prostate-specific membrane antigen. Anderson MO, Wu LY, Santiago NM, Moser JM, Rowley JA, Bolstad ES, Berkman CE. Bioorg. Med. Chem. 15 6678-6686 (2007)
  5. A high-resolution structure of ligand-free human glutamate carboxypeptidase II. Barinka C, Starkova J, Konvalinka J, Lubkowski J. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 63 150-153 (2007)
  6. Structural and biochemical characterization of the folyl-poly-γ-l-glutamate hydrolyzing activity of human glutamate carboxypeptidase II. Navrátil M, Ptáček J, Šácha P, Starková J, Lubkowski J, Bařinka C, Konvalinka J. FEBS J. 281 3228-3242 (2014)
  7. Crystal Structure of Human Herpesvirus 6B Tegument Protein U14. Wang B, Nishimura M, Tang H, Kawabata A, Mahmoud NF, Khanlari Z, Hamada D, Tsuruta H, Mori Y. PLoS Pathog 12 e1005594 (2016)
  8. Structural modelling of the lumenal domain of human GPAA1, the metallo-peptide synthetase subunit of the transamidase complex, reveals zinc-binding mode and two flaps surrounding the active site. Su CT, Sinha S, Eisenhaber B, Eisenhaber F. Biol Direct 15 14 (2020)


Reviews citing this publication (22)

  1. PET imaging in prostate cancer: focus on prostate-specific membrane antigen. Mease RC, Foss CA, Pomper MG. Curr Top Med Chem 13 951-962 (2013)
  2. PSMA Ligands for Radionuclide Imaging and Therapy of Prostate Cancer: Clinical Status. Lütje S, Heskamp S, Cornelissen AS, Poeppel TD, van den Broek SA, Rosenbaum-Krumme S, Bockisch A, Gotthardt M, Rijpkema M, Boerman OC. Theranostics 5 1388-1401 (2015)
  3. Progress in the discovery and development of glutamate carboxypeptidase II inhibitors. Tsukamoto T, Wozniak KM, Slusher BS. Drug Discov. Today 12 767-776 (2007)
  4. Glutamate carboxypeptidase II in diagnosis and treatment of neurologic disorders and prostate cancer. Bařinka C, Rojas C, Slusher B, Pomper M. Curr. Med. Chem. 19 856-870 (2012)
  5. Structure and mechanism of metallocarboxypeptidases. Gomis-Rüth FX. Crit. Rev. Biochem. Mol. Biol. 43 319-345 (2008)
  6. Extracellular proteases as targets for drug development. Cudic M, Fields GB. Curr. Protein Pept. Sci. 10 297-307 (2009)
  7. GCPII imaging and cancer. Foss CA, Mease RC, Cho SY, Kim HJ, Pomper MG. Curr. Med. Chem. 19 1346-1359 (2012)
  8. Opportunities for structure-based design of protease-directed drugs. Mittl PR, Grütter MG. Curr. Opin. Struct. Biol. 16 769-775 (2006)
  9. Prostate cancer relevant antigens and enzymes for targeted drug delivery. Barve A, Jin W, Cheng K. J Control Release 187 118-132 (2014)
  10. Targeted treatment of prostate cancer. Wang X, Yin L, Rao P, Stein R, Harsch KM, Lee Z, Heston WD. J. Cell. Biochem. 102 571-579 (2007)
  11. Immunotherapy for prostate cancer: lessons from responses to tumor-associated antigens. Westdorp H, Sköld AE, Snijer BA, Franik S, Mulder SF, Major PP, Foley R, Gerritsen WR, de Vries IJ. Front Immunol 5 191 (2014)
  12. Nanoformulation of natural products for prevention and therapy of prostate cancer. Sanna V, Siddiqui IA, Sechi M, Mukhtar H. Cancer Lett. 334 142-151 (2013)
  13. Radiolabeled enzyme inhibitors and binding agents targeting PSMA: Effective theranostic tools for imaging and therapy of prostate cancer. Pillai MRA, Nanabala R, Joy A, Sasikumar A, Russ Knapp FF. Nucl. Med. Biol. 43 692-720 (2016)
  14. Promising tumor-associated antigens for future prostate cancer therapy. Li Y, Cozzi PJ, Russell PJ. Med Res Rev 30 67-101 (2010)
  15. Toward the Discovery and Development of PSMA Targeted Inhibitors for Nuclear Medicine Applications. Pastorino S, Riondato M, Uccelli L, Giovacchini G, Giovannini E, Duce V, Ciarmiello A. Curr Radiopharm 13 63-79 (2020)
  16. Targeting the prostate-specific membrane antigen for prostate cancer therapy. Bühler P, Wolf P, Elsässer-Beile U. Immunotherapy 1 471-481 (2009)
  17. Comparison of prostate-specific membrane antigen ligands in clinical translation research for diagnosis of prostate cancer. Sengupta S, Asha Krishnan M, Chattopadhyay S, Chelvam V. Cancer Rep (Hoboken) 2 e1169 (2019)
  18. The therapeutic and diagnostic potential of the prostate specific membrane antigen/glutamate carboxypeptidase II (PSMA/GCPII) in cancer and neurological disease. Evans JC, Malhotra M, Cryan JF, O'Driscoll CM. Br. J. Pharmacol. 173 3041-3079 (2016)
  19. A Review on the Current State and Future Perspectives of [99mTc]Tc-Housed PSMA-i in Prostate Cancer. Brunello S, Salvarese N, Carpanese D, Gobbi C, Melendez-Alafort L, Bolzati C. Molecules 27 2617 (2022)
  20. Meeting report from the Prostate Cancer Foundation PSMA-directed radionuclide scientific working group. Miyahira AK, Pienta KJ, Morris MJ, Bander NH, Baum RP, Fendler WP, Goeckeler W, Gorin MA, Hennekes H, Pomper MG, Sartor O, Tagawa ST, Williams S, Soule HR. Prostate 78 775-789 (2018)
  21. More Than Meets the Eye: Scientific Rationale behind Molecular Imaging and Therapeutic Targeting of Prostate-Specific Membrane Antigen (PSMA) in Metastatic Prostate Cancer and Beyond. Hyväkkä A, Virtanen V, Kemppainen J, Grönroos TJ, Minn H, Sundvall M. Cancers (Basel) 13 2244 (2021)
  22. Targeting prostate cancer: Prostate-specific membrane antigen based diagnosis and therapy. Wüstemann T, Haberkorn U, Babich J, Mier W. Med Res Rev 39 40-69 (2019)

Articles citing this publication (107)

  1. 2-(3-{1-Carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pentanedioic acid, [18F]DCFPyL, a PSMA-based PET imaging agent for prostate cancer. Chen Y, Pullambhatla M, Foss CA, Byun Y, Nimmagadda S, Senthamizhchelvan S, Sgouros G, Mease RC, Pomper MG. Clin. Cancer Res. 17 7645-7653 (2011)
  2. Synthesis and evaluation of technetium-99m- and rhenium-labeled inhibitors of the prostate-specific membrane antigen (PSMA). Banerjee SR, Foss CA, Castanares M, Mease RC, Byun Y, Fox JJ, Hilton J, Lupold SE, Kozikowski AP, Pomper MG. J. Med. Chem. 51 4504-4517 (2008)
  3. Design, synthesis, and preclinical evaluation of prostate-specific membrane antigen targeted (99m)Tc-radioimaging agents. Kularatne SA, Zhou Z, Yang J, Post CB, Low PS. Mol Pharm 6 790-800 (2009)
  4. Engineering a prostate-specific membrane antigen-activated tumor endothelial cell prodrug for cancer therapy. Denmeade SR, Mhaka AM, Rosen DM, Brennen WN, Dalrymple S, Dach I, Olesen C, Gurel B, Demarzo AM, Wilding G, Carducci MA, Dionne CA, Møller JV, Nissen P, Christensen SB, Isaacs JT. Sci Transl Med 4 140ra86 (2012)
  5. Editorial PSMA as a target for radiolabelled small molecules. Eder M, Eisenhut M, Babich J, Haberkorn U. Eur. J. Nucl. Med. Mol. Imaging 40 819-823 (2013)
  6. Expression of glutamate carboxypeptidase II in human brain. Sácha P, Zámecník J, Barinka C, Hlouchová K, Vícha A, Mlcochová P, Hilgert I, Eckschlager T, Konvalinka J. Neuroscience 144 1361-1372 (2007)
  7. Synthesis and preclinical evaluation of DOTAGA-conjugated PSMA ligands for functional imaging and endoradiotherapy of prostate cancer. Weineisen M, Simecek J, Schottelius M, Schwaiger M, Wester HJ. EJNMMI Res 4 63 (2014)
  8. Cell-Surface labeling and internalization by a fluorescent inhibitor of prostate-specific membrane antigen. Liu T, Wu LY, Kazak M, Berkman CE. Prostate 68 955-964 (2008)
  9. Three conformational antibodies specific for different PSMA epitopes are promising diagnostic and therapeutic tools for prostate cancer. Wolf P, Freudenberg N, Bühler P, Alt K, Schultze-Seemann W, Wetterauer U, Elsässer-Beile U. Prostate 70 562-569 (2010)
  10. Bioisosterism of urea-based GCPII inhibitors: Synthesis and structure-activity relationship studies. Wang H, Byun Y, Barinka C, Pullambhatla M, Bhang HE, Fox JJ, Lubkowski J, Mease RC, Pomper MG. Bioorg. Med. Chem. Lett. 20 392-397 (2010)
  11. Biochemical characterization of human glutamate carboxypeptidase III. Hlouchová K, Barinka C, Klusák V, Sácha P, Mlcochová P, Majer P, Rulísek L, Konvalinka J. J. Neurochem. 101 682-696 (2007)
  12. A targeted low molecular weight near-infrared fluorescent probe for prostate cancer. Liu T, Wu LY, Hopkins MR, Choi JK, Berkman CE. Bioorg. Med. Chem. Lett. 20 7124-7126 (2010)
  13. Structural basis of interactions between human glutamate carboxypeptidase II and its substrate analogs. Barinka C, Hlouchova K, Rovenska M, Majer P, Dauter M, Hin N, Ko YS, Tsukamoto T, Slusher BS, Konvalinka J, Lubkowski J. J. Mol. Biol. 376 1438-1450 (2008)
  14. High-resolution animal PET imaging of prostate cancer xenografts with three different 64Cu-labeled antibodies against native cell-adherent PSMA. Alt K, Wiehr S, Ehrlichmann W, Reischl G, Wolf P, Pichler BJ, Elsässer-Beile U, Bühler P. Prostate 70 1413-1421 (2010)
  15. Synthesis and biological evaluation of low molecular weight fluorescent imaging agents for the prostate-specific membrane antigen. Chen Y, Pullambhatla M, Banerjee SR, Byun Y, Stathis M, Rojas C, Slusher BS, Mease RC, Pomper MG. Bioconjug. Chem. 23 2377-2385 (2012)
  16. Multivalent scaffolds for affinity maturation of small molecule cell surface binders and their application to prostate tumor targeting. Humblet V, Misra P, Bhushan KR, Nasr K, Ko YS, Tsukamoto T, Pannier N, Frangioni JV, Maison W. J. Med. Chem. 52 544-550 (2009)
  17. The molecular pruning of a phosphoramidate peptidomimetic inhibitor of prostate-specific membrane antigen. Wu LY, Anderson MO, Toriyabe Y, Maung J, Campbell TY, Tajon C, Kazak M, Moser J, Berkman CE. Bioorg. Med. Chem. 15 7434-7443 (2007)
  18. Tissue expression and enzymologic characterization of human prostate specific membrane antigen and its rat and pig orthologs. Rovenská M, Hlouchová K, Sácha P, Mlcochová P, Horák V, Zámecník J, Barinka C, Konvalinka J. Prostate 68 171-182 (2008)
  19. X-ray structure of ILL2, an auxin-conjugate amidohydrolase from Arabidopsis thaliana. Bitto E, Bingman CA, Bittova L, Houston NL, Boston RS, Fox BG, Phillips GN. Proteins 74 61-71 (2009)
  20. Developing neuroprotective strategies for treatment of HIV-associated neurocognitive dysfunction. Rumbaugh JA, Steiner J, Sacktor N, Nath A. Futur HIV Ther 2 271-280 (2008)
  21. Endogenous N-acetylaspartylglutamate reduced NMDA receptor-dependent current neurotransmission in the CA1 area of the hippocampus. Bergeron R, Imamura Y, Frangioni JV, Greene RW, Coyle JT. J. Neurochem. 100 346-357 (2007)
  22. Immunocapture of prostate cancer cells by use of anti-PSMA antibodies in microdevices. Santana SM, Liu H, Bander NH, Gleghorn JP, Kirby BJ. Biomed Microdevices 14 401-407 (2012)
  23. Prostate specific membrane antigen (PSMA) regulates angiogenesis independently of VEGF during ocular neovascularization. Grant CL, Caromile LA, Ho V, Durrani K, Rahman MM, Claffey KP, Fong GH, Shapiro LH. PLoS ONE 7 e41285 (2012)
  24. Spacer length effects on in vitro imaging and surface accessibility of fluorescent inhibitors of prostate specific membrane antigen. Liu T, Nedrow-Byers JR, Hopkins MR, Berkman CE. Bioorg. Med. Chem. Lett. 21 7013-7016 (2011)
  25. Comparative analysis of monoclonal antibodies against prostate-specific membrane antigen (PSMA). Tykvart J, Navrátil V, Sedlák F, Corey E, Colombatti M, Fracasso G, Koukolík F, Bařinka C, Sácha P, Konvalinka J. Prostate 74 1674-1690 (2014)
  26. Glutamate carboxypeptidase II: an amyloid peptide-degrading enzyme with physiological function in the brain. Kim MJ, Chae SS, Koh YH, Lee SK, Jo SA. FASEB J. 24 4491-4502 (2010)
  27. Preclinical evaluation of a recombinant anti-prostate specific membrane antigen single-chain immunotoxin against prostate cancer. Wolf P, Alt K, Wetterauer D, Bühler P, Gierschner D, Katzenwadel A, Wetterauer U, Elsässer-Beile U. J. Immunother. 33 262-271 (2010)
  28. A Systematic Review and Meta-analysis of the Effectiveness and Toxicities of Lutetium-177-labeled Prostate-specific Membrane Antigen-targeted Radioligand Therapy in Metastatic Castration-Resistant Prostate Cancer. Sadaghiani MS, Sheikhbahaei S, Werner RA, Pienta KJ, Pomper MG, Solnes LB, Gorin MA, Wang NY, Rowe SP. Eur Urol 80 82-94 (2021)
  29. Hybrid Tracers Based on Cyanine Backbones Targeting Prostate-Specific Membrane Antigen: Tuning Pharmacokinetic Properties and Exploring Dye-Protein Interaction. Hensbergen AW, Buckle T, van Willigen DM, Schottelius M, Welling MM, van der Wijk FA, Maurer T, van der Poel HG, van der Pluijm G, van Weerden WM, Wester HJ, van Leeuwen FWB. J Nucl Med 61 234-241 (2020)
  30. Prostate specific membrane antigen produces pro-angiogenic laminin peptides downstream of matrix metalloprotease-2. Conway RE, Joiner K, Patterson A, Bourgeois D, Rampp R, Hannah BC, McReynolds S, Elder JM, Gilfilen H, Shapiro LH. Angiogenesis 16 847-860 (2013)
  31. Targeting prostate cancer cells with a multivalent PSMA inhibitor-guided streptavidin conjugate. Liu T, Nedrow-Byers JR, Hopkins MR, Wu LY, Lee J, Reilly PT, Berkman CE. Bioorg. Med. Chem. Lett. 22 3931-3934 (2012)
  32. A shortcut to high-affinity Ga-68 and Cu-64 radiopharmaceuticals: one-pot click chemistry trimerisation on the TRAP platform. Baranyai Z, Reich D, Vágner A, Weineisen M, Tóth I, Wester HJ, Notni J. Dalton Trans 44 11137-11146 (2015)
  33. N-acetyl-L-aspartyl-L-glutamate peptidase-like 2 is overexpressed in cancer and promotes a pro-migratory and pro-metastatic phenotype. Whitaker HC, Shiong LL, Kay JD, Grönberg H, Warren AY, Seipel A, Wiklund F, Thomas B, Wiklund P, Miller JL, Menon S, Ramos-Montoya A, Vowler SL, Massie C, Egevad L, Neal DE. Oncogene 33 5274-5287 (2014)
  34. Structural insight into the evolutionary and pharmacologic homology of glutamate carboxypeptidases II and III. Hlouchova K, Barinka C, Konvalinka J, Lubkowski J. FEBS J. 276 4448-4462 (2009)
  35. Anti-PSMA immunotoxin as novel treatment for prostate cancer? High and specific antitumor activity on human prostate xenograft tumors in SCID mice. Wolf P, Alt K, Bühler P, Katzenwadel A, Wetterauer U, Tacke M, Elsässer-Beile U. Prostate 68 129-138 (2008)
  36. Molecular identification of β-citrylglutamate hydrolase as glutamate carboxypeptidase 3. Collard F, Vertommen D, Constantinescu S, Buts L, Van Schaftingen E. J. Biol. Chem. 286 38220-38230 (2011)
  37. Target-dependent T-cell activation by coligation with a PSMA x CD3 diabody induces lysis of prostate cancer cells. Bühler P, Molnar E, Dopfer EP, Wolf P, Gierschner D, Wetterauer U, Schamel WW, Elsässer-Beile U. J. Immunother. 32 565-573 (2009)
  38. Mapping of the active site of glutamate carboxypeptidase II by site-directed mutagenesis. Mlcochová P, Plechanovová A, Barinka C, Mahadevan D, Saldanha JW, Rulísek L, Konvalinka J. FEBS J. 274 4731-4741 (2007)
  39. Spacer length impacts the efficacy of targeted docetaxel conjugates in prostate-specific membrane antigen expressing prostate cancer. Peng ZH, Sima M, Salama ME, Kopečková P, Kopeček J. J Drug Target 21 968-980 (2013)
  40. [(18)F]Fluorobenzoyllysinepentanedioic Acid Carbamates: New Scaffolds for Positron Emission Tomography (PET) Imaging of Prostate-Specific Membrane Antigen (PSMA). Yang X, Mease RC, Pullambhatla M, Lisok A, Chen Y, Foss CA, Wang Y, Shallal H, Edelman H, Hoye AT, Attardo G, Nimmagadda S, Pomper MG. J. Med. Chem. 59 206-218 (2016)
  41. Catalytic mechanism of SGAP, a double-zinc aminopeptidase from Streptomyces griseus. Hershcovitz YF, Gilboa R, Reiland V, Shoham G, Shoham Y. FEBS J. 274 3864-3876 (2007)
  42. Targeted nanoparticles encapsulating (-)-epigallocatechin-3-gallate for prostate cancer prevention and therapy. Sanna V, Singh CK, Jashari R, Adhami VM, Chamcheu JC, Rady I, Sechi M, Mukhtar H, Siddiqui IA. Sci Rep 7 41573 (2017)
  43. PSMA Expression in Glioblastoma as a Basis for Theranostic Approaches: A Retrospective, Correlational Panel Study Including Immunohistochemistry, Clinical Parameters and PET Imaging. Holzgreve A, Biczok A, Ruf VC, Liesche-Starnecker F, Steiger K, Kirchner MA, Unterrainer M, Mittlmeier L, Herms J, Schlegel J, Bartenstein P, Tonn JC, Albert NL, Suchorska B. Front Oncol 11 646387 (2021)
  44. Paradoxical role of C1561T glutamate carboxypeptidase II (GCPII) genetic polymorphism in altering disease susceptibility. Divyya S, Naushad SM, Addlagatta A, Murthy PV, Reddy ChR, Digumarti RR, Gottumukkala SR, Kumar A, Rammurti S, Kutala VK. Gene 497 273-279 (2012)
  45. Cellular Delivery of Bioorthogonal Pretargeting Therapeutics in PSMA-Positive Prostate Cancer. Hapuarachchige S, Huang CT, Donnelly MC, Bařinka C, Lupold SE, Pomper MG, Artemov D. Mol Pharm 17 98-108 (2020)
  46. Discovery of PSMA-specific peptide ligands for targeted drug delivery. Jin W, Qin B, Chen Z, Liu H, Barve A, Cheng K. Int J Pharm 513 138-147 (2016)
  47. Improving the biodistribution of PSMA-targeting tracers with a highly negatively charged linker. Huang SS, Wang X, Zhang Y, Doke A, DiFilippo FP, Heston WD. Prostate 74 702-713 (2014)
  48. Glutamate synthase MoGlt1-mediated glutamate homeostasis is important for autophagy, virulence and conidiation in the rice blast fungus. Zhou W, Shi W, Xu XW, Li ZG, Yin CF, Peng JB, Pan S, Chen XL, Zhao WS, Zhang Y, Yang J, Peng YL. Mol. Plant Pathol. 19 564-578 (2018)
  49. N-substituted glutamyl sulfonamides as inhibitors of glutamate carboxypeptidase II (GCP2). Blank BR, Alayoglu P, Engen W, Choi JK, Berkman CE, Anderson MO. Chem Biol Drug Des 77 241-247 (2011)
  50. Patterns of uptake of prostate-specific membrane antigen (PSMA)-targeted 18F-DCFPyL in peripheral ganglia. Werner RA, Sheikhbahaei S, Jones KM, Javadi MS, Solnes LB, Ross AE, Allaf ME, Pienta KJ, Lapa C, Buck AK, Higuchi T, Pomper MG, Gorin MA, Rowe SP. Ann Nucl Med 31 696-702 (2017)
  51. Blocking glutamate carboxypeptidase II inhibits glutamate excitotoxicity and regulates immune responses in experimental autoimmune encephalomyelitis. Ha D, Bing SJ, Ahn G, Kim J, Cho J, Kim A, Herath KH, Yu HS, Jo SA, Cho IH, Jee Y. FEBS J. 283 3438-3456 (2016)
  52. Comparison of human glutamate carboxypeptidases II and III reveals their divergent substrate specificities. Navrátil M, Tykvart J, Schimer J, Pachl P, Navrátil V, Rokob TA, Hlouchová K, Rulíšek L, Konvalinka J. FEBS J. 283 2528-2545 (2016)
  53. Crystal structure of bacteriophage ϕNIT1 zinc peptidase PghP that hydrolyzes γ-glutamyl linkage of bacterial poly-γ-glutamate. Fujimoto Z, Kimura K. Proteins 80 722-732 (2012)
  54. Evaluation of phage display discovered peptides as ligands for prostate-specific membrane antigen (PSMA). Shen D, Xie F, Edwards WB. PLoS ONE 8 e68339 (2013)
  55. Preparation and characterization of new anti-PSMA monoclonal antibodies with potential clinical use. Moffett S, Mélançon D, DeCrescenzo G, St-Pierre C, Deschénes F, Saragovi HU, Gold P, Cuello AC. Hybridoma (Larchmt) 26 363-372 (2007)
  56. Prostate-cancer-targeted N-(2-hydroxypropyl)methacrylamide copolymer/docetaxel conjugates. Liu J, Kopečková P, Pan H, Sima M, Bühler P, Wolf P, Elsässer-Beile U, Kopeček J. Macromol Biosci 12 412-422 (2012)
  57. Selective CNS Uptake of the GCP-II Inhibitor 2-PMPA following Intranasal Administration. Rais R, Wozniak K, Wu Y, Niwa M, Stathis M, Alt J, Giroux M, Sawa A, Rojas C, Slusher BS. PLoS ONE 10 e0131861 (2015)
  58. AMP1 and CYP78A5/7 act through a common pathway to govern cell fate maintenance in Arabidopsis thaliana. Poretska O, Yang S, Pitorre D, Poppenberger B, Sieberer T. PLoS Genet 16 e1009043 (2020)
  59. Phosphoramidate derivatives of hydroxysteroids as inhibitors of prostate-specific membrane antigen. Wu LY, Do JC, Kazak M, Page H, Toriyabe Y, Anderson MO, Berkman CE. Bioorg. Med. Chem. Lett. 18 281-284 (2008)
  60. Production of nanobodies against prostate-specific membrane antigen (PSMA) recognizing LnCaP cells. Zare H, Rajabibazl M, Rasooli I, Ebrahimizadeh W, Bakherad H, Ardakani LS, Gargari SL. Int. J. Biol. Markers 29 e169-79 (2014)
  61. 64Cu-PSMA-617: A novel PSMA-targeted radio-tracer for PET imaging in gastric adenocarcinoma xenografted mice model. Han XD, Liu C, Liu F, Xie QH, Liu TL, Guo XY, Xu XX, Yang X, Zhu H, Yang Z. Oncotarget 8 74159-74169 (2017)
  62. Prostate-Specific Membrane Antigen Expression and Response to DNA Damaging Agents in Prostate Cancer. Sheehan B, Neeb A, Buroni L, Paschalis A, Riisnaes R, Gurel B, Gil V, Miranda S, Crespo M, Guo C, Jiménez Vacas J, Figueiredo I, Ferreira A, Welti J, Yuan W, Carreira S, Sharp A, de Bono J. Clin Cancer Res 28 3104-3115 (2022)
  63. Structural and biochemical characterization of a novel aminopeptidase from human intestine. Tykvart J, Bařinka C, Svoboda M, Navrátil V, Souček R, Hubálek M, Hradilek M, Šácha P, Lubkowski J, Konvalinka J. J. Biol. Chem. 290 11321-11336 (2015)
  64. A prostate-specific membrane antigen activated molecular rotor for real-time fluorescence imaging. Zhang J, Rakhimbekova A, Duan X, Yin Q, Foss CA, Fan Y, Xu Y, Li X, Cai X, Kutil Z, Wang P, Yang Z, Zhang N, Pomper MG, Wang Y, Bařinka C, Yang X. Nat Commun 12 5460 (2021)
  65. Advances in PSMA theranostics. Jeitner TM, Babich JW, Kelly JM. Transl Oncol 22 101450 (2022)
  66. Design of composite inhibitors targeting glutamate carboxypeptidase II: the importance of effector functionalities. Novakova Z, Cerny J, Choy CJ, Nedrow JR, Choi JK, Lubkowski J, Berkman CE, Barinka C. FEBS J. 283 130-143 (2016)
  67. Dual-Nuclide Radiopharmaceuticals for Positron Emission Tomography Based Dosimetry in Radiotherapy. Wurzer A, Seidl C, Morgenstern A, Bruchertseifer F, Schwaiger M, Wester HJ, Notni J. Chemistry 24 547-550 (2018)
  68. Glycoforms of human prostate-specific membrane antigen (PSMA) in human cells and prostate tissue. Yuan W, Liu B, Sanda M, Wei R, Benicky J, Novakova Z, Barinka C, Goldman R. Prostate 82 132-144 (2022)
  69. Polypeptide-Based Molecular Platform and Its Docetaxel/Sulfo-Cy5-Containing Conjugate for Targeted Delivery to Prostate Specific Membrane Antigen. Petrov SA, Machulkin AE, Uspenskaya AA, Zyk NY, Nimenko EA, Garanina AS, Petrov RA, Polshakov VI, Grishin YK, Roznyatovsky VA, Zyk NV, Majouga AG, Beloglazkina EK. Molecules 25 E5784 (2020)
  70. Rational Linker Design to Accelerate Excretion and Reduce Background Uptake of Peptidomimetic PSMA-Targeting Hybrid Molecules. Eder AC, Schäfer M, Schmidt J, Bauder-Wüst U, Roscher M, Leotta K, Haberkorn U, Kopka K, Eder M. J Nucl Med 62 1461-1467 (2021)
  71. Structural basis of prostate-specific membrane antigen recognition by the A9g RNA aptamer. Ptacek J, Zhang D, Qiu L, Kruspe S, Motlova L, Kolenko P, Novakova Z, Shubham S, Havlinova B, Baranova P, Chen SJ, Zou X, Giangrande P, Barinka C. Nucleic Acids Res 48 11130-11145 (2020)
  72. Structure-activity relationships of 2',5'-oligoadenylate analogue modifications of prostate-specific membrane antigen (PSMA) antagonists. Wang X, Tian H, Lee Z, Heston WD. Nucleosides Nucleotides Nucleic Acids 31 432-444 (2012)
  73. The Small Molecule Hyperphyllin Enhances Leaf Formation Rate and Mimics Shoot Meristem Integrity Defects Associated with AMP1 Deficiency. Poretska O, Yang S, Pitorre D, Rozhon W, Zwerger K, Uribe MC, May S, McCourt P, Poppenberger B, Sieberer T. Plant Physiol. 171 1277-1290 (2016)
  74. A Structure-Activity Relationship Study of Bimodal BODIPY-Labeled PSMA-Targeting Bioconjugates. Stemler T, Hoffmann C, Hierlmeier IM, Maus S, Krause E, Ezziddin S, Jung G, Bartholomä MD. ChemMedChem 16 2535-2545 (2021)
  75. Antibody recruiting small molecules: a new option for prostate tumor therapy by PSMA targeting. Küchenthal CH, Maison W. Chembiochem 11 1052-1054 (2010)
  76. Bridging the Metabolic Parallels Between Neurological Diseases and Cancer. Guo S, Gu Y, Qu J, Le A. Adv Exp Med Biol 1311 229-248 (2021)
  77. DNA-linked Inhibitor Antibody Assay (DIANA) for sensitive and selective enzyme detection and inhibitor screening. Navrátil V, Schimer J, Tykvart J, Knedlík T, Vik V, Majer P, Konvalinka J, Šácha P. Nucleic Acids Res. 45 e10 (2017)
  78. From Plant to Patient: Thapsigargin, a Tool for Understanding Natural Product Chemistry, Total Syntheses, Biosynthesis, Taxonomy, ATPases, Cell Death, and Drug Development. Christensen SB, Simonsen HT, Engedal N, Nissen P, Møller JV, Denmeade SR, Isaacs JT. Prog Chem Org Nat Prod 115 59-114 (2021)
  79. Glutamate carboxypeptidase II is not an amyloid peptide-degrading enzyme. Alt J, Stathis M, Rojas C, Slusher B. FASEB J. 27 2620-2625 (2013)
  80. Mouse glutamate carboxypeptidase II (GCPII) has a similar enzyme activity and inhibition profile but a different tissue distribution to human GCPII. Knedlík T, Vorlová B, Navrátil V, Tykvart J, Sedlák F, Vaculín Š, Franěk M, Šácha P, Konvalinka J. FEBS Open Bio 7 1362-1378 (2017)
  81. Synthesis and Biological Evaluation of Substrate-Based Imaging Agents for the Prostate-Specific Membrane Antigen. Byun Y, Pullambhatla M, Wang H, Mease RC, Pomper MG. Macromol Res 21 565-573 (2013)
  82. TaLAMP1 Plays Key Roles in Plant Architecture and Yield Response to Nitrogen Fertilizer in Wheat. Shi J, Tong Y. Front Plant Sci 11 598015 (2020)
  83. Anticancer activity, DFT study, ADMET prediction, and molecular docking of novel α-sulfamidophosphonates. Guerfi M, Berredjem M, Dekir A, Bahadi R, Djouad SE, Sothea TO, Redjemia R, Belhani B, Boussaker M. Mol Divers (2023)
  84. Characterization of glutamate carboxypeptidase 2 orthologs in trematodes. Jedlickova L, Peterkova K, Boateng EM, Ulrychova L, Vacek V, Kutil Z, Jiang Z, Novakova Z, Snajdr I, Kim J, O'Donoghue AJ, Barinka C, Dvorak J. Parasit Vectors 15 480 (2022)
  85. Combination of In Silico and In Vitro Screening to Identify Novel Glutamate Carboxypeptidase II Inhibitors. Temml V, Kollár J, Schönleitner T, Höll A, Schuster D, Kutil Z. J Chem Inf Model 63 1249-1259 (2023)
  86. Deep Membrane Proteome Profiling Reveals Overexpression of Prostate-Specific Membrane Antigen (PSMA) in High-Risk Human Paraganglioma and Pheochromocytoma, Suggesting New Theranostic Opportunity. Vit O, Patel M, Musil Z, Hartmann I, Frysak Z, Miettinen M, Pacak K, Petrak J. Molecules 26 6567 (2021)
  87. Dendritic poly-chelator frameworks for multimeric bioconjugation. Reich D, Wurzer A, Wirtz M, Stiegler V, Spatz P, Pollmann J, Wester HJ, Notni J. Chem. Commun. (Camb.) 53 2586-2589 (2017)
  88. Enhanced Brain Delivery of 2-(Phosphonomethyl)pentanedioic Acid Following Intranasal Administration of Its γ-Substituted Ester Prodrugs. Nedelcovych M, Dash RP, Tenora L, Zimmermann SC, Gadiano AJ, Garrett C, Alt J, Hollinger KR, Pommier E, Jančařík A, Rojas C, Thomas AG, Wu Y, Wozniak K, Majer P, Slusher BS, Rais R. Mol. Pharm. 14 3248-3257 (2017)
  89. Expression of Prostate Specific Membrane Antigen (PSMA) in Breast Cancer. Unger C, Bronsert P, Michalski K, Bicker A, Juhasz-Böss I. Geburtshilfe Frauenheilkd 82 50-58 (2022)
  90. Halogen Replacement on the Lysine Side Chain of Lys-Urea-Glu-Based PSMA Inhibitors Leads to Significant Changes in Targeting Properties. Xia L, Liu Y, Cai P, Feng Y, Yuan H, Tang S, Wang YW, Liu N, Chen Y, Zhou Z. Mol Imaging Biol 25 765-775 (2023)
  91. Heterogeneity of prostate-specific membrane antigen (PSMA) and PSMA-ligand uptake detection combining autoradiography and postoperative pathology in primary prostate cancer. Wang H, Remke M, Horn T, Schwamborn K, Chen Y, Steiger K, Weichert W, Wester HJ, Schottelius M, Weber WA, Eiber M. EJNMMI Res 13 99 (2023)
  92. Identification of alternative protein targets of glutamate-ureido-lysine associated with PSMA tracer uptake in prostate cancer cells. Bakht MK, Hayward JJ, Shahbazi-Raz F, Skubal M, Tamura R, Stringer KF, Meister D, Venkadakrishnan VB, Xue H, Pillon A, Stover M, Tronchin A, Fifield BA, Mader L, Ku SY, Cheon GJ, Kang KW, Wang Y, Dong X, Beltran H, Grimm J, Porter LA, Trant JF. Proc Natl Acad Sci U S A 119 e2025710119 (2022)
  93. In silico approaches to identify the potential inhibitors of glutamate carboxypeptidase II (GCPII) for neuroprotection. Naushad SM, Janaki Ramaiah M, Stanley BA, Prasanna Lakshmi S, Vishnu Priya J, Hussain T, Alrokayan SA, Kutala VK. J. Theor. Biol. 406 137-142 (2016)
  94. In vitro and in vivo comparative study of a novel 68Ga-labeled PSMA-targeted inhibitor and 68Ga-PSMA-11. Chen H, Cai P, Feng Y, Sun Z, Wang Y, Chen Y, Zhang W, Liu N, Zhou Z. Sci Rep 11 19122 (2021)
  95. Interactions of Urea-Based Inhibitors with Prostate-Specific Membrane Antigen for Boron Neutron Capture Therapy. Hu Q, Padron K, Hara D, Shi J, Pollack A, Prabhakar R, Tao W. ACS Omega 6 33354-33369 (2021)
  96. Modulation of plasma and urine metabolome in colorectal cancer survivors consuming rice bran. Zarei I, Oppel RC, Borresen EC, Brown RJ, Ryan EP. Integr Food Nutr Metab 6 (2019)
  97. Novel solid-phase strategy for the synthesis of ligand-targeted fluorescent-labelled chelating peptide conjugates as a theranostic tool for cancer. Sengupta S, Krishnan MA, Dudhe P, Reddy RB, Giri B, Chattopadhyay S, Chelvam V. Beilstein J Org Chem 14 2665-2679 (2018)
  98. PSMA-Directed CAR T Cells Combined with Low-Dose Docetaxel Treatment Induce Tumor Regression in a Prostate Cancer Xenograft Model. Alzubi J, Dettmer-Monaco V, Kuehle J, Thorausch N, Seidl M, Taromi S, Schamel W, Zeiser R, Abken H, Cathomen T, Wolf P. Mol Ther Oncolytics 18 226-235 (2020)
  99. Preclinical Evaluation of a PSMA-Targeting Homodimer with an Optimized Linker for Imaging of Prostate Cancer. Murce E, Beekman S, Spaan E, Handula M, Stuurman D, de Ridder C, Seimbille Y. Molecules 28 4022 (2023)
  100. Editorial Prostate-specific membrane antigen-mediated theragnostics in prostate cancer. Jeong SH, Kwak C. Investig Clin Urol 62 497-499 (2021)
  101. Proteomics analysis of human breast milk by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) coupled with mass spectrometry to assess breast cancer risk. Aslebagh R, Whitham D, Channaveerappa D, Lowe J, Pentecost BT, Arcaro KF, Darie CC. Electrophoresis 44 1097-1113 (2023)
  102. S1 pocket of glutamate carboxypeptidase II: a new binding site for amyloid-β degradation. Lee SK, Kim H, Cheong YH, Kim MJ, Jo SA, Youn HS, Park SI. Biochem. Biophys. Res. Commun. 438 765-771 (2013)
  103. Site-Specific Intact N-Linked Glycopeptide Characterization of Prostate-Specific Membrane Antigen from Metastatic Prostate Cancer Cells. Mackay S, Hitefield NL, Oduor IO, Roberts AB, Burch TC, Lance RS, Cunningham TD, Troyer DA, Semmes OJ, Nyalwidhe JO. ACS Omega 7 29714-29727 (2022)
  104. Synthesis of Symmetrical Tetrameric Conjugates of the Radiolanthanide Chelator DOTPI for Application in Endoradiotherapy by Means of Click Chemistry. Wurzer A, Vágner A, Horváth D, Fellegi F, Wester HJ, Kálmán FK, Notni J. Front Chem 6 107 (2018)
  105. The calcium-binding site of human glutamate carboxypeptidase II is critical for dimerization, thermal stability, and enzymatic activity. Ptacek J, Nedvedova J, Navratil M, Havlinova B, Konvalinka J, Barinka C. Protein Sci. 27 1575-1584 (2018)
  106. Two Sides of Quantum-Based Modeling of Enzyme-Catalyzed Reactions: Mechanistic and Electronic Structure Aspects of the Hydrolysis by Glutamate Carboxypeptidase. Krivitskaya AV, Khrenova MG, Nemukhin AV. Molecules 26 6280 (2021)
  107. Uncovering the essential roles of glutamate carboxypeptidase 2 orthologs in Caenorhabditis elegans. Panska L, Nedvedova S, Vacek V, Krivska D, Konecny L, Knop F, Kutil Z, Skultetyova L, Leontovyc A, Ulrychova L, Sakanari J, Asahina M, Barinka C, Macurkova M, Dvorak J. Biosci Rep 44 BSR20230502 (2024)