2c30 Citations

Crystal Structures of the p21-activated kinases PAK4, PAK5, and PAK6 reveal catalytic domain plasticity of active group II PAKs.

Structure 15 201-13 (2007)
Related entries: 2bva, 2cdz, 2f57

Cited: 76 times
EuropePMC logo PMID: 17292838

Abstract

p21-activated kinases have been classified into two groups based on their domain architecture. Group II PAKs (PAK4-6) regulate a wide variety of cellular functions, and PAK deregulation has been linked to tumor development. Structural comparison of five high-resolution structures comprising all active, monophosphorylated group II catalytic domains revealed a surprising degree of domain plasticity, including a number of catalytically productive and nonproductive conformers. Rearrangements of helix alphaC, a key regulatory element of kinase function, resulted in an additional helical turn at the alphaC N terminus and a distortion of its C terminus, a movement hitherto unseen in protein kinases. The observed structural changes led to the formation of interactions between conserved residues that structurally link the glycine-rich loop, alphaC, and the activation segment and firmly anchor alphaC in an active conformation. Inhibitor screening identified six potent PAK inhibitors from which a tri-substituted purine inhibitor was cocrystallized with PAK4 and PAK5.

Reviews - 2c30 mentioned but not cited (1)

  1. Substrate and docking interactions in serine/threonine protein kinases. Goldsmith EJ, Akella R, Min X, Zhou T, Humphreys JM. Chem Rev 107 5065-5081 (2007)

Articles - 2c30 mentioned but not cited (11)

  1. Comparative analysis of plant immune receptor architectures uncovers host proteins likely targeted by pathogens. Sarris PF, Cevik V, Dagdas G, Jones JD, Krasileva KV. BMC Biol 14 8 (2016)
  2. Structural comparison of human mammalian ste20-like kinases. Record CJ, Chaikuad A, Rellos P, Das S, Pike AC, Fedorov O, Marsden BD, Knapp S, Lee WH. PLoS One 5 e11905 (2010)
  3. Substrate and inhibitor specificity of the type II p21-activated kinase, PAK6. Gao J, Ha BH, Lou HJ, Morse EM, Zhang R, Calderwood DA, Turk BE, Boggon TJ. PLoS One 8 e77818 (2013)
  4. Domain-Swapping Switch Point in Ste20 Protein Kinase SPAK. Taylor CA, Juang YC, Earnest S, Sengupta S, Goldsmith EJ, Cobb MH. Biochemistry 54 5063-5071 (2015)
  5. 3D structure analysis of PAKs: A clue to the rational design for affinity reagents and blockers. Jha RK, Strauss CE. Cell Logist 2 69-77 (2012)
  6. Solution structures and biophysical analysis of full-length group A PAKs reveal they are monomeric and auto-inhibited in cis. Sorrell FJ, Kilian LM, Elkins JM. Biochem J 476 1037-1051 (2019)
  7. Phosphorylation-dependent activity-based conformational changes in P21-activated kinase family members and screening of novel ATP competitive inhibitors. Gul M, Fakhar M, Najumuddin, Rashid S. PLoS One 14 e0225132 (2019)
  8. An allosteric regulation mechanism of Arabidopsis Serine/Threonine kinase 1 (SIK1) through phosphorylation. Mu J, Zhou J, Gong Q, Xu Q. Comput Struct Biotechnol J 20 368-379 (2022)
  9. Global 30 meters spatiotemporal 3D urban expansion dataset from 1990 to 2010. He T, Wang K, Xiao W, Xu S, Li M, Yang R, Yue W. Sci Data 10 321 (2023)
  10. Identification of a Class of WNK Isoform-Specific Inhibitors Through High-Throughput Screening. Chlebowicz J, Akella R, Humphreys JM, He H, Kannangara AR, Wei S, Posner B, Goldsmith EJ. Drug Des Devel Ther 17 93-105 (2023)
  11. Molecular modelling approaches predicted 1,2,3-triazolyl ester of ketorolac (15K) to be a novel allosteric modulator of the oncogenic kinase PAK1. Shahinozzaman M, Ahmed S, Emran R, Tawata S. Sci Rep 11 17471 (2021)


Reviews citing this publication (21)

  1. A tale of two Paks. Arias-Romero LE, Chernoff J. Biol Cell 100 97-108 (2008)
  2. The emerging importance of group II PAKs. Wells CM, Jones GE. Biochem J 425 465-473 (2010)
  3. UnPAKing the class differences among p21-activated kinases. Eswaran J, Soundararajan M, Kumar R, Knapp S. Trends Biochem Sci 33 394-403 (2008)
  4. PAK1 as a therapeutic target. Kichina JV, Goc A, Al-Husein B, Somanath PR, Kandel ES. Expert Opin Ther Targets 14 703-725 (2010)
  5. Targeting group II PAKs in cancer and metastasis. Eswaran J, Soundararajan M, Knapp S. Cancer Metastasis Rev 28 209-217 (2009)
  6. P21-activated kinase 4--not just one of the PAK. Dart AE, Wells CM. Eur J Cell Biol 92 129-138 (2013)
  7. Signaling, Regulation, and Specificity of the Type II p21-activated Kinases. Ha BH, Morse EM, Turk BE, Boggon TJ. J Biol Chem 290 12975-12983 (2015)
  8. The scientific impact of the Structural Genomics Consortium: a protein family and ligand-centered approach to medically-relevant human proteins. Gileadi O, Knapp S, Lee WH, Marsden BD, Müller S, Niesen FH, Kavanagh KL, Ball LJ, von Delft F, Doyle DA, Oppermann UC, Sundström M. J Struct Funct Genomics 8 107-119 (2007)
  9. PAKing up to the endothelium. Galan Moya EM, Le Guelte A, Gavard J, Gavard J. Cell Signal 21 1727-1737 (2009)
  10. Curcumin and Gastric Cancer: a Review on Mechanisms of Action. Hassanalilou T, Ghavamzadeh S, Khalili L. J Gastrointest Cancer 50 185-192 (2019)
  11. Insights into protein kinase regulation and inhibition by large scale structural comparison. Eswaran J, Knapp S. Biochim Biophys Acta 1804 429-432 (2010)
  12. p21-Activated kinase inhibitors: a patent review. Crawford JJ, Hoeflich KP, Rudolph J. Expert Opin Ther Pat 22 293-310 (2012)
  13. Structural genomics and drug discovery: all in the family. Weigelt J, McBroom-Cerajewski LD, Schapira M, Zhao Y, Arrowsmith CH. Curr Opin Chem Biol 12 32-39 (2008)
  14. PAK thread from amoeba to mammals. Kumar A, Molli PR, Pakala SB, Bui Nguyen TM, Rayala SK, Kumar R. J Cell Biochem 107 579-585 (2009)
  15. PAK as a therapeutic target in gastric cancer. Li X, Liu F, Li F. Expert Opin Ther Targets 14 419-433 (2010)
  16. p21-activated kinases and gastrointestinal cancer. He H, Baldwin GS. Biochim Biophys Acta 1833 33-39 (2013)
  17. New insights into the structure of PINK1 and the mechanism of ubiquitin phosphorylation. Rasool S, Trempe JF. Crit Rev Biochem Mol Biol 53 515-534 (2018)
  18. p21-Activated kinase 5: a pleiotropic kinase. Wen YY, Wang XX, Pei DS, Zheng JN. Bioorg Med Chem Lett 23 6636-6639 (2013)
  19. Recent advances on development of p21-activated kinase 4 inhibitors as anti-tumor agents. Li Y, Lu Q, Xie C, Yu Y, Zhang A. Front Pharmacol 13 956220 (2022)
  20. The significance of PAK4 in signaling and clinicopathology: A review. Yu X, Huang C, Liu J, Shi X, Li X. Open Life Sci 17 586-598 (2022)
  21. Targeting P21-Activated Kinase-1 for Metastatic Prostate Cancer. Somanath PR, Chernoff J, Cummings BS, Prasad SM, Homan HD. Cancers (Basel) 15 2236 (2023)

Articles citing this publication (43)

  1. An isoform-selective, small-molecule inhibitor targets the autoregulatory mechanism of p21-activated kinase. Deacon SW, Beeser A, Fukui JA, Rennefahrt UE, Myers C, Chernoff J, Peterson JR. Chem Biol 15 322-331 (2008)
  2. Small-molecule p21-activated kinase inhibitor PF-3758309 is a potent inhibitor of oncogenic signaling and tumor growth. Murray BW, Guo C, Piraino J, Westwick JK, Zhang C, Lamerdin J, Dagostino E, Knighton D, Loi CM, Zager M, Kraynov E, Popoff I, Christensen JG, Martinez R, Kephart SE, Marakovits J, Karlicek S, Bergqvist S, Smeal T. Proc Natl Acad Sci U S A 107 9446-9451 (2010)
  3. Activation segment dimerization: a mechanism for kinase autophosphorylation of non-consensus sites. Pike AC, Rellos P, Niesen FH, Turnbull A, Oliver AW, Parker SA, Turk BE, Pearl LH, Knapp S. EMBO J 27 704-714 (2008)
  4. Copy number alterations in pancreatic cancer identify recurrent PAK4 amplification. Chen S, Auletta T, Dovirak O, Hutter C, Kuntz K, El-ftesi S, Kendall J, Han H, Von Hoff DD, Ashfaq R, Maitra A, Iacobuzio-Donahue CA, Hruban RH, Lucito R. Cancer Biol Ther 7 1793-1802 (2008)
  5. FRAX597, a small molecule inhibitor of the p21-activated kinases, inhibits tumorigenesis of neurofibromatosis type 2 (NF2)-associated Schwannomas. Licciulli S, Maksimoska J, Zhou C, Troutman S, Kota S, Liu Q, Duron S, Campbell D, Chernoff J, Field J, Marmorstein R, Kissil JL. J Biol Chem 288 29105-29114 (2013)
  6. Group I and II mammalian PAKs have different modes of activation by Cdc42. Baskaran Y, Ng YW, Selamat W, Ling FT, Manser E. EMBO Rep 13 653-659 (2012)
  7. p21-Activated kinase 4 promotes prostate cancer progression through CREB. Park MH, Lee HS, Lee CS, You ST, Kim DJ, Park BH, Kang MJ, Heo WD, Shin EY, Schwartz MA, Kim EG. Oncogene 32 2475-2482 (2013)
  8. PAK family kinases: Physiological roles and regulation. Zhao ZS, Manser E. Cell Logist 2 59-68 (2012)
  9. Identification of a major determinant for serine-threonine kinase phosphoacceptor specificity. Chen C, Ha BH, Thévenin AF, Lou HJ, Zhang R, Yip KY, Peterson JR, Gerstein M, Kim PM, Filippakopoulos P, Knapp S, Boggon TJ, Turk BE. Mol Cell 53 140-147 (2014)
  10. Structural and functional characterization of the human protein kinase ASK1. Bunkoczi G, Salah E, Filippakopoulos P, Fedorov O, Müller S, Sobott F, Parker SA, Zhang H, Min W, Turk BE, Knapp S. Structure 15 1215-1226 (2007)
  11. MicroRNA-224 is upregulated in HepG2 cells and involved in cellular migration and invasion. Li Q, Wang G, Shan JL, Yang ZX, Wang HZ, Feng J, Zhen JJ, Chen C, Zhang ZM, Xu W, Luo XZ, Wang D. J Gastroenterol Hepatol 25 164-171 (2010)
  12. P21 activated kinase-1 (Pak1) promotes prostate tumor growth and microinvasion via inhibition of transforming growth factor β expression and enhanced matrix metalloproteinase 9 secretion. Goc A, Al-Azayzih A, Abdalla M, Al-Husein B, Kavuri S, Lee J, Moses K, Somanath PR. J Biol Chem 288 3025-3035 (2013)
  13. Type II p21-activated kinases (PAKs) are regulated by an autoinhibitory pseudosubstrate. Ha BH, Davis MJ, Chen C, Lou HJ, Gao J, Zhang R, Krauthammer M, Halaban R, Schlessinger J, Turk BE, Boggon TJ. Proc Natl Acad Sci U S A 109 16107-16112 (2012)
  14. Structural and evolutionary adaptation of rhoptry kinases and pseudokinases, a family of coccidian virulence factors. Talevich E, Kannan N. BMC Evol Biol 13 117 (2013)
  15. Glycogen synthase kinase 3 is a potential drug target for African trypanosomiasis therapy. Ojo KK, Gillespie JR, Riechers AJ, Napuli AJ, Verlinde CL, Buckner FS, Gelb MH, Domostoj MM, Wells SJ, Scheer A, Wells TN, Van Voorhis WC. Antimicrob Agents Chemother 52 3710-3717 (2008)
  16. Toward the development of a potent and selective organoruthenium mammalian sterile 20 kinase inhibitor. Anand R, Maksimoska J, Pagano N, Wong EY, Gimotty PA, Diamond SL, Meggers E, Marmorstein R. J Med Chem 52 1602-1611 (2009)
  17. An in cellulo-derived structure of PAK4 in complex with its inhibitor Inka1. Baskaran Y, Ang KC, Anekal PV, Chan WL, Grimes JM, Manser E, Robinson RC. Nat Commun 6 8681 (2015)
  18. PAK4 kinase activity and somatic mutation promote carcinoma cell motility and influence inhibitor sensitivity. Whale AD, Dart A, Holt M, Jones GE, Wells CM. Oncogene 32 2114-2120 (2013)
  19. Structure of the OSR1 kinase, a hypertension drug target. Villa F, Deak M, Alessi DR, van Aalten DM. Proteins 73 1082-1087 (2008)
  20. Why an A-loop phospho-mimetic fails to activate PAK1: understanding an inaccessible kinase state by molecular dynamics simulations. Ng YW, Raghunathan D, Chan PM, Baskaran Y, Smith DJ, Lee CH, Verma C, Manser E. Structure 18 879-890 (2010)
  21. Role of p21-activated kinase 1 in regulating the migration and invasion of fibroblast-like synoviocytes from rheumatoid arthritis patients. Fu D, Yang Y, Xiao Y, Lin H, Ye Y, Zhan Z, Liang L, Yang X, Sun L, Xu H. Rheumatology (Oxford) 51 1170-1180 (2012)
  22. Discovery and the structural basis of a novel p21-activated kinase 4 inhibitor. Ryu BJ, Kim S, Min B, Kim KY, Lee JS, Park WJ, Lee H, Kim SH, Park S. Cancer Lett 349 45-50 (2014)
  23. Reprogramming an energetic AKT-PAK5 axis boosts axon energy supply and facilitates neuron survival and regeneration after injury and ischemia. Huang N, Li S, Xie Y, Han Q, Xu XM, Sheng ZH. Curr Biol 31 3098-3114.e7 (2021)
  24. NMR binding and crystal structure reveal that intrinsically-unstructured regulatory domain auto-inhibits PAK4 by a mechanism different from that of PAK1. Wang W, Lim L, Baskaran Y, Manser E, Song J. Biochem Biophys Res Commun 438 169-174 (2013)
  25. Structures of human MST3 kinase in complex with adenine, ADP and Mn2+. Ko TP, Jeng WY, Liu CI, Lai MD, Wu CL, Chang WJ, Shr HL, Lu TJ, Wang AH. Acta Crystallogr D Biol Crystallogr 66 145-154 (2010)
  26. Reduced expression of p21-activated protein kinase 1 correlates with poor histological differentiation in pancreatic cancer. Han J, Wang F, Yuan SQ, Guo Y, Zeng ZL, Li LR, Yang J, Wang DS, Liu MY, Zhao H, Liu KY, Liao JW, Zou QF, Xu RH. BMC Cancer 14 650 (2014)
  27. The overexpression of P21-activated kinase 5 (PAK5) promotes paclitaxel-chemoresistance of epithelial ovarian cancer. Li D, Yao X, Zhang P. Mol Cell Biochem 383 191-199 (2013)
  28. Cyclic AMP-dependent protein kinase A and EPAC mediate VIP and secretin stimulation of PAK4 and activation of Na+,K+-ATPase in pancreatic acinar cells. Ramos-Alvarez I, Lee L, Jensen RT. Am J Physiol Gastrointest Liver Physiol 316 G263-G277 (2019)
  29. p21-activated kinase 7 is an oncogene in human osteosarcoma. Han K, Zhou Y, Gan ZH, Qi WX, Zhang JJ, Fen T, Meng W, Jiang L, Shen Z, Min DL. Cell Biol Int 38 1394-1402 (2014)
  30. Osmosensing by WNK Kinases. Akella R, Humphreys JM, Sekulski K, He H, Durbacz M, Chakravarthy S, Liwocha J, Mohammed ZJ, Brautigam CA, Goldsmith EJ. Mol Biol Cell 32 1614-1623 (2021)
  31. P21-activated kinase 4 in pancreatic acinar cells is activated by numerous gastrointestinal hormones/neurotransmitters and growth factors by novel signaling, and its activation stimulates secretory/growth cascades. Ramos-Alvarez I, Jensen RT. Am J Physiol Gastrointest Liver Physiol 315 G302-G317 (2018)
  32. Bioinformatic search of plant microtubule-and cell cycle related serine-threonine protein kinases. Karpov PA, Nadezhdina ES, Yemets AI, Matusov VG, Nyporko AY, Shashina NY, Blume YB. BMC Genomics 11 Suppl 1 S14 (2010)
  33. PAK4 crystal structures suggest unusual kinase conformational movements. Zhang EY, Ha BH, Boggon TJ. Biochim Biophys Acta Proteins Proteom 1866 356-365 (2018)
  34. Activation of RSK by phosphomimetic substitution in the activation loop is prevented by structural constraints. Somale D, Di Nardo G, di Blasio L, Puliafito A, Vara-Messler M, Chiaverina G, Palmiero M, Monica V, Gilardi G, Primo L, Gagliardi PA. Sci Rep 10 591 (2020)
  35. CK2beta interacts with and regulates p21-activated kinases in Drosophila. Mentzel B, Jauch E, Raabe T. Biochem Biophys Res Commun 379 637-642 (2009)
  36. Discovery of indolin-2-one derivatives as potent PAK4 inhibitors: Structure-activity relationship analysis, biological evaluation and molecular docking study. Guo J, Zhu M, Wu T, Hao C, Wang K, Yan Z, Huang W, Wang J, Zhao D, Cheng M. Bioorg Med Chem 25 3500-3511 (2017)
  37. Computational insight into p21-activated kinase 4 inhibition: a combined ligand- and structure-based approach. Li RJ, Wang J, Xu Z, Huang WX, Li J, Jin SF, Zhao DM, Cheng MS. ChemMedChem 9 1012-1022 (2014)
  38. Identification and Evaluation of Novel MicroRNA Biomarkers in Plasma and Feces Associated with Drug-induced Intestinal Toxicity. Kalabat DY, Vitsky A, Scott W, Kindt E, Hayes K, John-Baptiste A, Huang W, Yang AH. Toxicol Pathol 45 302-320 (2017)
  39. Discovery of 2-(4-Substituted-piperidin/piperazine-1-yl)-N-(5-cyclopropyl-1H-pyrazol-3-yl)-quinazoline-2,4-diamines as PAK4 Inhibitors with Potent A549 Cell Proliferation, Migration, and Invasion Inhibition Activity. Wu T, Pang Y, Guo J, Yin W, Zhu M, Hao C, Wang K, Wang J, Zhao D, Cheng M. Molecules 23 E417 (2018)
  40. Melanoma-associated mutants within the serine-rich domain of PAK5 direct kinase activity to mitogenic pathways. LaPak KM, Vroom DC, Garg AA, Guan X, Hays JL, Song JW, Burd CE. Oncotarget 9 25386-25401 (2018)
  41. Over-expression of miR-193a-3p regulates the apoptosis of colorectal cancer cells by targeting PAK3. Ma T, Li H, Yang W, Liu Q, Yan H. Am J Transl Res 14 1361-1375 (2022)
  42. The Inhibitory Mechanism of 7H-Pyrrolo[2,3-d]pyrimidine Derivatives as Inhibitors of P21-Activated Kinase 4 through Molecular Dynamics Simulation. Du J, Wang S, Zhang X, Liu C, Zhang Y, Zhang H. Molecules 28 413 (2023)
  43. Letter IPA3 non-specifically enhances phosphorylation of several proteins in human platelets. Badolia R, Manne BK, Dangelmaier C, Kunapuli SP. Platelets 26 501-503 (2015)