2btp Citations

Structural basis for protein-protein interactions in the 14-3-3 protein family.

Proc. Natl. Acad. Sci. U.S.A. 103 17237-42 (2006)
Related entries: 2c23, 2c74, 2bq0, 2c63, 2br9

Cited: 116 times
EuropePMC logo PMID: 17085597

Abstract

The seven members of the human 14-3-3 protein family regulate a diverse range of cell signaling pathways by formation of protein-protein complexes with signaling proteins that contain phosphorylated Ser/Thr residues within specific sequence motifs. Previously, crystal structures of three 14-3-3 isoforms (zeta, sigma, and tau) have been reported, with structural data for two isoforms deposited in the Protein Data Bank (zeta and sigma). In this study, we provide structural detail for five 14-3-3 isoforms bound to ligands, providing structural coverage for all isoforms of a human protein family. A comparative structural analysis of the seven 14-3-3 proteins revealed specificity determinants for binding of phosphopeptides in a specific orientation, target domain interaction surfaces and flexible adaptation of 14-3-3 proteins through domain movements. Specifically, the structures of the beta isoform in its apo and peptide bound forms showed that its binding site can exhibit structural flexibility to facilitate binding of its protein and peptide partners. In addition, the complex of 14-3-3 beta with the exoenzyme S peptide displayed a secondary structural element in the 14-3-3 peptide binding groove. These results show that the 14-3-3 proteins are adaptable structures in which internal flexibility is likely to facilitate recognition and binding of their interaction partners.

Articles - 2btp mentioned but not cited (2)

  1. Molecular dynamics and in vitro analysis of Connexin43: A new 14-3-3 mode-1 interacting protein. Park DJ, Freitas TA, Wallick CJ, Guyette CV, Warn-Cramer BJ. Protein Sci. 15 2344-2355 (2006)
  2. A common substrate recognition mode conserved between katanin p60 and VPS4 governs microtubule severing and membrane skeleton reorganization. Iwaya N, Kuwahara Y, Fujiwara Y, Goda N, Tenno T, Akiyama K, Mase S, Tochio H, Ikegami T, Shirakawa M, Hiroaki H. J. Biol. Chem. 285 16822-16829 (2010)


Reviews citing this publication (15)

  1. Moonlighting chaperone-like activity of the universal regulatory 14-3-3 proteins. Sluchanko NN, Gusev NB. FEBS J. 284 1279-1295 (2017)
  2. 14-3-3 Proteins in Brain Development: Neurogenesis, Neuronal Migration and Neuromorphogenesis. Cornell B, Toyo-Oka K. Front Mol Neurosci 10 318 (2017)
  3. Molecular insight into specific 14-3-3 modulators: Inhibitors and stabilisers of protein-protein interactions of 14-3-3. Hartman AM, Hirsch AKH. Eur J Med Chem 136 573-584 (2017)
  4. Involvement of 14-3-3 Proteins in Regulating Tumor Progression of Hepatocellular Carcinoma. Wu YJ, Jan YJ, Ko BS, Liang SM, Liou JY. Cancers (Basel) 7 1022-1036 (2015)
  5. Switching responses: spatial and temporal regulators of axon guidance. Kaplan A, Kent CB, Charron F, Fournier AE. Mol. Neurobiol. 49 1077-1086 (2014)
  6. Small molecules, peptides and natural products: getting a grip on 14-3-3 protein-protein modulation. Bartel M, Schäfer A, Stevers LM, Ottmann C. Future Med Chem 6 903-921 (2014)
  7. Protein intrinsic disorder and network connectivity. The case of 14-3-3 proteins. Uhart M, Bustos DM. Front Genet 5 10 (2014)
  8. 14-3-3 zeta as novel molecular target for cancer therapy. Matta A, Siu KW, Ralhan R. Expert Opin. Ther. Targets 16 515-523 (2012)
  9. Oligomeric structure of 14-3-3 protein: what do we know about monomers? Sluchanko NN, Gusev NB. FEBS Lett. 586 4249-4256 (2012)
  10. The application of modular protein domains in proteomics. Jadwin JA, Ogiue-Ikeda M, Machida K. FEBS Lett. 586 2586-2596 (2012)
  11. Post-translational modification of 14-3-3 isoforms and regulation of cellular function. Aitken A. Semin. Cell Dev. Biol. 22 673-680 (2011)
  12. Structural basis of 14-3-3 protein functions. Obsil T, Obsilova V. Semin. Cell Dev. Biol. 22 663-672 (2011)
  13. Large-scale structural biology of the human proteome. Edwards A. Annu. Rev. Biochem. 78 541-568 (2009)
  14. 14-3-3 proteins in Echinococcus: their role and potential as protective antigens. Siles-Lucas M, Merli M, Gottstein B. Exp. Parasitol. 119 516-523 (2008)
  15. The scientific impact of the Structural Genomics Consortium: a protein family and ligand-centered approach to medically-relevant human proteins. Gileadi O, Knapp S, Lee WH, Marsden BD, Müller S, Niesen FH, Kavanagh KL, Ball LJ, von Delft F, Doyle DA, Oppermann UC, Sundström M. J. Struct. Funct. Genomics 8 107-119 (2007)

Articles citing this publication (99)

  1. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M. Science 325 834-840 (2009)
  2. Bioinformatic and experimental survey of 14-3-3-binding sites. Johnson C, Crowther S, Stafford MJ, Campbell DG, Toth R, MacKintosh C. Biochem. J. 427 69-78 (2010)
  3. The mitochondrial targeting chaperone 14-3-3ε regulates a RIG-I translocon that mediates membrane association and innate antiviral immunity. Liu HM, Loo YM, Horner SM, Zornetzer GA, Katze MG, Gale M. Cell Host Microbe 11 528-537 (2012)
  4. Metabolic control of oocyte apoptosis mediated by 14-3-3zeta-regulated dephosphorylation of caspase-2. Nutt LK, Buchakjian MR, Gan E, Darbandi R, Yoon SY, Wu JQ, Miyamoto YJ, Gibbons JA, Andersen JL, Freel CD, Tang W, He C, Kurokawa M, Wang Y, Margolis SS, Fissore RA, Kornbluth S. Dev. Cell 16 856-866 (2009)
  5. Regulation of nuclear import/export of carbohydrate response element-binding protein (ChREBP): interaction of an alpha-helix of ChREBP with the 14-3-3 proteins and regulation by phosphorylation. Sakiyama H, Wynn RM, Lee WR, Fukasawa M, Mizuguchi H, Gardner KH, Repa JJ, Uyeda K. J. Biol. Chem. 283 24899-24908 (2008)
  6. Discovery and structural characterization of a small molecule 14-3-3 protein-protein interaction inhibitor. Zhao J, Du Y, Horton JR, Upadhyay AK, Lou B, Bai Y, Zhang X, Du L, Li M, Wang B, Zhang L, Barbieri JT, Khuri FR, Cheng X, Fu H. Proc. Natl. Acad. Sci. U.S.A. 108 16212-16216 (2011)
  7. 14-3-3 phosphoprotein interaction networks - does isoform diversity present functional interaction specification? Paul AL, Denison FC, Schultz ER, Zupanska AK, Ferl RJ. Front Plant Sci 3 190 (2012)
  8. Mechanistic differences in the transcriptional activation of p53 by 14-3-3 isoforms. Rajagopalan S, Sade RS, Townsley FM, Fersht AR. Nucleic Acids Res. 38 893-906 (2010)
  9. Annotating N termini for the human proteome project: N termini and Nα-acetylation status differentiate stable cleaved protein species from degradation remnants in the human erythrocyte proteome. Lange PF, Huesgen PF, Nguyen K, Overall CM. J. Proteome Res. 13 2028-2044 (2014)
  10. 14-3-3sigma, the double-edged sword of human cancers. Li Z, Liu JY, Zhang JT. Am J Transl Res 1 326-340 (2009)
  11. Structural analysis and functional implications of the negative mTORC1 regulator REDD1. Vega-Rubin-de-Celis S, Abdallah Z, Kinch L, Grishin NV, Brugarolas J, Zhang X. Biochemistry 49 2491-2501 (2010)
  12. Microarray-assisted high-throughput identification of a cell-permeable small-molecule binder of 14-3-3 proteins. Wu H, Ge J, Yao SQ. Angew. Chem. Int. Ed. Engl. 49 6528-6532 (2010)
  13. Phosphorylation-dependent 14-3-3 protein interactions regulate CFTR biogenesis. Liang X, Da Paula AC, Bozóky Z, Zhang H, Bertrand CA, Peters KW, Forman-Kay JD, Frizzell RA. Mol. Biol. Cell 23 996-1009 (2012)
  14. Tomato 14-3-3 protein TFT7 interacts with a MAP kinase kinase to regulate immunity-associated programmed cell death mediated by diverse disease resistance proteins. Oh CS, Martin GB. J. Biol. Chem. 286 14129-14136 (2011)
  15. Three-way interaction between 14-3-3 proteins, the N-terminal region of tyrosine hydroxylase, and negatively charged membranes. Halskau Ø, Ying M, Baumann A, Kleppe R, Rodriguez-Larrea D, Almås B, Haavik J, Martinez A. J. Biol. Chem. 284 32758-32769 (2009)
  16. 14-3-3ε overexpression contributes to epithelial-mesenchymal transition of hepatocellular carcinoma. Liu TA, Jan YJ, Ko BS, Liang SM, Chen SC, Wang J, Hsu C, Wu YM, Liou JY. PLoS ONE 8 e57968 (2013)
  17. Dimerization is essential for 14-3-3zeta stability and function in vivo. Messaritou G, Grammenoudi S, Skoulakis EM. J. Biol. Chem. 285 1692-1700 (2010)
  18. Human 14-3-3 paralogs differences uncovered by cross-talk of phosphorylation and lysine acetylation. Uhart M, Bustos DM. PLoS ONE 8 e55703 (2013)
  19. 14-3-3zeta escorts CCTalpha for calcium-activated nuclear import in lung epithelia. Agassandian M, Chen BB, Schuster CC, Houtman JC, Mallampalli RK. FASEB J. 24 1271-1283 (2010)
  20. Crystal structure of human myosin 1c--the motor in GLUT4 exocytosis: implications for Ca2+ regulation and 14-3-3 binding. Münnich S, Taft MH, Taft MH, Manstein DJ. J. Mol. Biol. 426 2070-2081 (2014)
  21. Involvement of non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase in response to oxidative stress. Bustos DM, Bustamante CA, Iglesias AA. J. Plant Physiol. 165 456-461 (2008)
  22. Inhibition of CLIC4 enhances autophagy and triggers mitochondrial and ER stress-induced apoptosis in human glioma U251 cells under starvation. Zhong J, Kong X, Zhang H, Yu C, Xu Y, Kang J, Yu H, Yi H, Yang X, Sun L. PLoS ONE 7 e39378 (2012)
  23. 14-3-3 Proteins regulate exonuclease 1-dependent processing of stalled replication forks. Engels K, Giannattasio M, Muzi-Falconi M, Lopes M, Ferrari S. PLoS Genet. 7 e1001367 (2011)
  24. Decoded calreticulin-deficient embryonic stem cell transcriptome resolves latent cardiophenotype. Faustino RS, Chiriac A, Niederlander NJ, Nelson TJ, Behfar A, Mishra PK, Macura S, Michalak M, Terzic A, Perez-Terzic C. Stem Cells 28 1281-1291 (2010)
  25. Structural characterization of partially disordered human Chibby: insights into its function in the Wnt-signaling pathway. Mokhtarzada S, Yu C, Brickenden A, Choy WY. Biochemistry 50 715-726 (2011)
  26. A novel pocket in 14-3-3epsilon is required to mediate specific complex formation with cdc25C and to inhibit cell cycle progression upon activation of checkpoint pathways. Telles E, Hosing AS, Kundu ST, Venkatraman P, Dalal SN. Exp. Cell Res. 315 1448-1457 (2009)
  27. Substrate-modulated thermal fluctuations affect long-range allosteric signaling in protein homodimers: exemplified in CAP. Toncrova H, McLeish TC. Biophys. J. 98 2317-2326 (2010)
  28. Rapid affinity-based fingerprinting of 14-3-3 isoforms using a combinatorial peptide microarray. Lu CH, Sun H, Abu Bakar FB, Uttamchandani M, Zhou W, Liou YC, Yao SQ. Angew. Chem. Int. Ed. Engl. 47 7438-7441 (2008)
  29. Phenotypic and genotypic convergences are influenced by historical contingency and environment in yeast. Spor A, Kvitek DJ, Nidelet T, Martin J, Legrand J, Dillmann C, Bourgais A, de Vienne D, Sherlock G, Sicard D. Evolution 68 772-790 (2014)
  30. Structural basis of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1. Macakova E, Kopecka M, Kukacka Z, Veisova D, Novak P, Man P, Obsil T, Obsilova V. Biochim. Biophys. Acta 1830 4491-4499 (2013)
  31. Comprehensive histone phosphorylation analysis and identification of Pf14-3-3 protein as a histone H3 phosphorylation reader in malaria parasites. Dastidar EG, Dzeyk K, Krijgsveld J, Malmquist NA, Doerig C, Scherf A, Lopez-Rubio JJ. PLoS ONE 8 e53179 (2013)
  32. Synergistic binding of the phosphorylated S233- and S259-binding sites of C-RAF to one 14-3-3ζ dimer. Molzan M, Ottmann C. J. Mol. Biol. 423 486-495 (2012)
  33. Importin-alpha protein binding to a nuclear localization signal of carbohydrate response element-binding protein (ChREBP). Ge Q, Nakagawa T, Wynn RM, Chook YM, Miller BC, Uyeda K. J. Biol. Chem. 286 28119-28127 (2011)
  34. Emerging roles for the FSH receptor adapter protein APPL1 and overlap of a putative 14-3-3τ interaction domain with a canonical G-protein interaction site. Dias JA, Mahale SD, Nechamen CA, Davydenko O, Thomas RM, Ulloa-Aguirre A. Mol. Cell. Endocrinol. 329 17-25 (2010)
  35. Phosphorylation dependence and stoichiometry of the complex formed by tyrosine hydroxylase and 14-3-3γ. Kleppe R, Rosati S, Jorge-Finnigan A, Alvira S, Ghorbani S, Haavik J, Valpuesta JM, Heck AJ, Martinez A. Mol. Cell Proteomics 13 2017-2030 (2014)
  36. Site-specific phosphorylation and microtubule dynamics control Pyrin inflammasome activation. Gao W, Yang J, Liu W, Wang Y, Shao F. Proc. Natl. Acad. Sci. U.S.A. 113 E4857-66 (2016)
  37. Characterization and small-molecule stabilization of the multisite tandem binding between 14-3-3 and the R domain of CFTR. Stevers LM, Lam CV, Leysen SF, Meijer FA, van Scheppingen DS, de Vries RM, Carlile GW, Milroy LG, Thomas DY, Brunsveld L, Ottmann C. Proc. Natl. Acad. Sci. U.S.A. 113 E1152-61 (2016)
  38. Expression and purification of recombinant human inward rectifier K+ (KCNJ) channels in Saccharomyces cerevisiae. D'Avanzo N, Cheng WW, Xia X, Dong L, Savitsky P, Nichols CG, Doyle DA. Protein Expr. Purif. 71 115-121 (2010)
  39. 14-3-3σ induces heat shock protein 70 expression in hepatocellular carcinoma. Liu CC, Jan YJ, Ko BS, Wu YM, Liang SM, Chen SC, Lee YM, Liu TA, Chang TC, Wang J, Shyue SK, Sung LY, Liou JY. BMC Cancer 14 425 (2014)
  40. The chaperone-like protein 14-3-3η interacts with human α-synuclein aggregation intermediates rerouting the amyloidogenic pathway and reducing α-synuclein cellular toxicity. Plotegher N, Kumar D, Tessari I, Brucale M, Munari F, Tosatto L, Belluzzi E, Greggio E, Bisaglia M, Capaldi S, Aioanei D, Mammi S, Monaco HL, Samo B, Bubacco L. Hum. Mol. Genet. 23 5615-5629 (2014)
  41. Structural and functional analysis of novel human cytochrome C targets in apoptosis. Martínez-Fábregas J, Díaz-Moreno I, González-Arzola K, Janocha S, Navarro JA, Hervás M, Bernhardt R, Velázquez-Campoy A, Díaz-Quintana A, De la Rosa MA. Mol. Cell Proteomics 13 1439-1456 (2014)
  42. Structural characterization of a unique interface between carbohydrate response element-binding protein (ChREBP) and 14-3-3β protein. Ge Q, Huang N, Wynn RM, Li Y, Du X, Miller B, Zhang H, Uyeda K. J. Biol. Chem. 287 41914-41921 (2012)
  43. Structural basis for the 14-3-3 protein-dependent inhibition of the regulator of G protein signaling 3 (RGS3) function. Rezabkova L, Man P, Novak P, Herman P, Vecer J, Obsilova V, Obsil T. J. Biol. Chem. 286 43527-43536 (2011)
  44. Structural insights of the MLF1/14-3-3 interaction. Molzan M, Weyand M, Rose R, Ottmann C. FEBS J. 279 563-571 (2012)
  45. Ligand and Target Discovery by Fragment-Based Screening in Human Cells. Parker CG, Galmozzi A, Wang Y, Correia BE, Sasaki K, Joslyn CM, Kim AS, Cavallaro CL, Lawrence RM, Johnson SR, Narvaiza I, Saez E, Cravatt BF. Cell 168 527-541.e29 (2017)
  46. Revealing the binding modes and the unbinding of 14-3-3σ proteins and inhibitors by computational methods. Hu G, Cao Z, Xu S, Wang W, Wang J. Sci Rep 5 16481 (2015)
  47. The N-terminal sequence of tyrosine hydroxylase is a conformationally versatile motif that binds 14-3-3 proteins and membranes. Skjevik AA, Mileni M, Baumann A, Halskau O, Teigen K, Stevens RC, Martinez A. J. Mol. Biol. 426 150-168 (2014)
  48. Characterization of 14-3-3-ζ Interactions with integrin tails. Bonet R, Vakonakis I, Campbell ID. J. Mol. Biol. 425 3060-3072 (2013)
  49. The peripheral binding of 14-3-3γ to membranes involves isoform-specific histidine residues. Bustad HJ, Skjaerven L, Ying M, Halskau Ø, Baumann A, Rodriguez-Larrea D, Costas M, Underhaug J, Sanchez-Ruiz JM, Martinez A. PLoS ONE 7 e49671 (2012)
  50. Role of the 14-3-3 C-terminal region in the interaction with the plasma membrane H+-ATPase. Visconti S, Camoni L, Marra M, Aducci P. Plant Cell Physiol. 49 1887-1897 (2008)
  51. Genome-wide identification, classification, and expression analysis of 14-3-3 gene family in Populus. Tian F, Wang T, Xie Y, Zhang J, Hu J. PLoS ONE 10 e0123225 (2015)
  52. Characterization of 14-3-3 proteins from Cryptosporidium parvum. Brokx SJ, Wernimont AK, Dong A, Wasney GA, Lin YH, Lew J, Vedadi M, Lee WH, Hui R. PLoS ONE 6 e14827 (2011)
  53. Critical residue that promotes protein dimerization: a story of partially exposed Phe25 in 14-3-3σ. Liu JY, Li Z, Li H, Zhang JT. J Chem Inf Model 51 2612-2625 (2011)
  54. The interaction between casein kinase Ialpha and 14-3-3 is phosphorylation dependent. Clokie S, Falconer H, Mackie S, Dubois T, Aitken A. FEBS J. 276 6971-6984 (2009)
  55. 14-3-3 Proteins regulate mutant LRRK2 kinase activity and neurite shortening. Lavalley NJ, Slone SR, Ding H, West AB, Yacoubian TA. Hum. Mol. Genet. 25 109-122 (2016)
  56. Structural Analysis of the 14-3-3ζ/Chibby Interaction Involved in Wnt/β-Catenin Signaling. Killoran RC, Fan J, Yang D, Shilton BH, Choy WY. PLoS ONE 10 e0123934 (2015)
  57. Chaperone-like activity of monomeric human 14-3-3ζ on different protein substrates. Sluchanko NN, Roman SG, Chebotareva NA, Gusev NB. Arch. Biochem. Biophys. 549 32-39 (2014)
  58. Insight into conformational change for 14-3-3σ protein by molecular dynamics simulation. Hu G, Li H, Liu JY, Wang J. Int J Mol Sci 15 2794-2810 (2014)
  59. Screening of a library of T7 phage-displayed peptides identifies alphaC helix in 14-3-3 protein as a CBP501-binding site. Matsumoto Y, Shindo Y, Takakusagi Y, Takakusagi K, Tsukuda S, Kusayanagi T, Sato H, Kawabe T, Sugawara F, Sakaguchi K. Bioorg. Med. Chem. 19 7049-7056 (2011)
  60. The binding of 14-3-3γ to membranes studied by intrinsic fluorescence spectroscopy. Bustad HJ, Underhaug J, Halskau O, Martinez A. FEBS Lett. 585 1163-1168 (2011)
  61. A robust protocol to map binding sites of the 14-3-3 interactome: Cdc25C requires phosphorylation of both S216 and S263 to bind 14-3-3. Chan PM, Ng YW, Manser E. Mol. Cell Proteomics 10 M110.005157 (2011)
  62. Genome-Wide Identification and Expression Analysis of the 14-3-3 Family Genes in Medicago truncatula. Qin C, Cheng L, Shen J, Zhang Y, Cao H, Lu D, Shen C. Front Plant Sci 7 320 (2016)
  63. Dissection of binding between a phosphorylated tyrosine hydroxylase peptide and 14-3-3zeta: A complex story elucidated by NMR. Hritz J, Byeon IJ, Krzysiak T, Martinez A, Sklenar V, Gronenborn AM. Biophys. J. 107 2185-2194 (2014)
  64. Direct interaction of 14-3-3ζ with ezrin promotes cell migration by regulating the formation of membrane ruffle. Chen M, Liu T, Xu L, Gao X, Liu X, Wang C, He Q, Zhang G, Liu L. J. Mol. Biol. 426 3118-3133 (2014)
  65. Molecular Modeling of Differentially Phosphorylated Serine 10 and Acetylated lysine 9/14 of Histone H3 Regulates their Interactions with 14-3-3ζ, MSK1, and MKP1. Sharma AK, Mansukh A, Varma A, Gadewal N, Gupta S. Bioinform Biol Insights 7 271-288 (2013)
  66. The weak complex between RhoGAP protein ARHGAP22 and signal regulatory protein 14-3-3 has 1:2 stoichiometry and a single peptide binding mode. Hu SH, Whitten AE, King GJ, Jones A, Rowland AF, James DE, Martin JL. PLoS ONE 7 e41731 (2012)
  67. A third functional isoform enriched in mushroom body neurons is encoded by the Drosophila 14-3-3zeta gene. Messaritou G, Leptourgidou F, Franco M, Skoulakis EM. FEBS Lett. 583 2934-2938 (2009)
  68. PreImplantation factor (PIF*) regulates systemic immunity and targets protective regulatory and cytoskeleton proteins. Barnea ER, Hayrabedyan S, Todorova K, Almogi-Hazan O, Or R, Guingab J, McElhinney J, Fernandez N, Barder T. Immunobiology 221 778-793 (2016)
  69. The pro-inflammatory cytokine 14-3-3ε is a ligand of CD13 in cartilage. Nefla M, Sudre L, Denat G, Priam S, Andre-Leroux G, Berenbaum F, Jacques C. J. Cell. Sci. 128 3250-3262 (2015)
  70. 14-3-3ζ reduces DNA damage by interacting with and stabilizing proliferating cell nuclear antigen. Gao X, Dan S, Xie Y, Qin H, Tang D, Liu X, He QY, Liu L. J. Cell. Biochem. 116 158-169 (2015)
  71. Role of the EF-hand-like motif in the 14-3-3 protein-mediated activation of yeast neutral trehalase Nth1. Kopecka M, Kosek D, Kukacka Z, Rezabkova L, Man P, Novak P, Obsil T, Obsilova V. J. Biol. Chem. 289 13948-13961 (2014)
  72. Activation of the transcription of Gal4-regulated genes by Physarum 14-3-3 in yeast is related to dimer-binding motif-2 and three phosphorylation sites. Liu S, Li M, Zhang J, Kang K, Tian S, Wang Y, Xing M. Arch. Microbiol. 192 33-40 (2010)
  73. A Proteomics Approach to Investigate miR-153-3p and miR-205-5p Targets in Neuroblastoma Cells. Patil KS, Basak I, Pal R, Ho HP, Alves G, Chang EJ, Larsen JP, Møller SG. PLoS ONE 10 e0143969 (2015)
  74. Regulation of aldo-keto-reductase family 1 B10 by 14-3-3ε and their prognostic impact of hepatocellular carcinoma. Liu TA, Jan YJ, Ko BS, Wu YJ, Lu YJ, Liang SM, Liu CC, Chen SC, Wang J, Shyue SK, Liou JY. Oncotarget 6 38967-38982 (2015)
  75. Epistatic and gene wide effects in YWHA and aromatic amino hydroxylase genes across ADHD and other common neuropsychiatric disorders: Association with YWHAE. Jacobsen KK, Kleppe R, Johansson S, Zayats T, Haavik J. Am. J. Med. Genet. B Neuropsychiatr. Genet. 168 423-432 (2015)
  76. 14-3-3-β and -{varepsilon} contribute to activation of the osmoprotective transcription factor NFAT5 by increasing its protein abundance and its transactivating activity. Izumi Y, Burg MB, Ferraris JD. Physiol Rep 2 e12000 (2014)
  77. Letter Bermuda Principles meet structural biology. Edwards A. Nat. Struct. Mol. Biol. 15 116 (2008)
  78. Identification of Two Secondary Ligand Binding Sites in 14-3-3 Proteins Using Fragment Screening. Sijbesma E, Skora L, Leysen S, Brunsveld L, Koch U, Nussbaumer P, Jahnke W, Ottmann C. Biochemistry 56 3972-3982 (2017)
  79. Bacterial co-expression of human Tau protein with protein kinase A and 14-3-3 for studies of 14-3-3/phospho-Tau interaction. Tugaeva KV, Tsvetkov PO, Sluchanko NN. PLoS ONE 12 e0178933 (2017)
  80. 14-3-3γ Prevents Centrosome Amplification and Neoplastic Progression. Mukhopadhyay A, Sehgal L, Bose A, Gulvady A, Senapati P, Thorat R, Basu S, Bhatt K, Hosing AS, Balyan R, Borde L, Kundu TK, Dalal SN. Sci Rep 6 26580 (2016)
  81. Regulation of tyrosine hydroxylase is preserved across different homo- and heterodimeric 14-3-3 proteins. Ghorbani S, Fossbakk A, Jorge-Finnigan A, Flydal MI, Haavik J, Kleppe R. Amino Acids 48 1221-1229 (2016)
  82. A Cytosolic Multiprotein Complex Containing p85α Is Required for β-Catenin Activation in Colitis and Colitis-associated Cancer. Goretsky T, Bradford EM, Ryu H, Tahir M, Moyer MP, Gao T, Li L, Barrett TA. J. Biol. Chem. 291 4166-4177 (2016)
  83. Identification of Novel 14-3-3 Residues That Are Critical for Isoform-specific Interaction with GluN2C to Regulate N-Methyl-D-aspartate (NMDA) Receptor Trafficking. Chung C, Wu WH, Chen BS. J. Biol. Chem. 290 23188-23200 (2015)
  84. Heterologous fermentation of a diterpene from Alternaria brassisicola. Arens J, Bergs D, Mewes M, Merz J, Schembecker G, Schulz F. Mycology 5 207-219 (2014)
  85. The application of an emerging technique for protein-protein interaction interface mapping: the combination of photo-initiated cross-linking protein nanoprobes with mass spectrometry. Ptáčková R, Ječmen T, Novák P, Hudeček J, Stiborová M, Šulc M. Int J Mol Sci 15 9224-9241 (2014)
  86. Identification of genes involved in carbon metabolism from Eleusine coracana (L.) for understanding their light-mediated entrainment and regulation. Kanwal P, Gupta S, Arora S, Kumar A. Plant Cell Rep. 33 1403-1411 (2014)
  87. The crystal structure of Giardia duodenalis 14-3-3 in the apo form: when protein post-translational modifications make the difference. Fiorillo A, di Marino D, Bertuccini L, Via A, Pozio E, Camerini S, Ilari A, Lalle M. PLoS ONE 9 e92902 (2014)
  88. Interaction between 14-3-3β and PrP influences the dimerization of 14-3-3 and fibrillization of PrP106-126. Han J, Song QQ, Sun P, Zhang J, Wang X, Song J, Li GQ, Liu YH, Mei GY, Shi Q, Tian C, Chen C, Gao C, Zhao B, Dong XP. Int. J. Biochem. Cell Biol. 47 20-28 (2014)
  89. Interacting domains of P14-3-3 and actin involved in protein-protein interactions of living cells. Luo D, Yang Y, Guo J, Zhang J, Guo Z, Liu S, Tian S. Arch. Microbiol. 193 651-663 (2011)
  90. Identification of Inhibitors of Pseudomonas aeruginosa Exotoxin-S ADP-Ribosyltransferase Activity. Pinto AF, Ebrahimi M, Saleeb M, Forsberg Å, Elofsson M, Schüler H. J Biomol Screen 21 590-595 (2016)
  91. Migratory activation of parasitized dendritic cells by the protozoan Toxoplasma gondii 14-3-3 protein. Weidner JM, Kanatani S, Uchtenhagen H, Varas-Godoy M, Schulte T, Engelberg K, Gubbels MJ, Sun HS, Harrison RE, Achour A, Barragan A. Cell. Microbiol. 18 1537-1550 (2016)
  92. The Silencing of a 14-3-3ɛ Homolog in Tenebrio molitor Leads to Increased Antimicrobial Activity in Hemocyte and Reduces Larval Survivability. Seo GW, Jo YH, Seong JH, Park KB, Patnaik BB, Tindwa H, Kim SA, Lee YS, Kim YJ, Han YS. Genes (Basel) 7 (2016)
  93. Proteomic analysis of selective cytotoxic anticancer properties of flavonoids isolated from Citrus platymamma on A549 human lung cancer cells. Nagappan A, Venkatarame Gowda Saralamma V, Hong GE, Lee HJ, Shin SC, Kim EH, Lee WS, Kim GS. Mol Med Rep 14 3814-3822 (2016)
  94. Upregulation of heat shock protein 70 and the differential protein expression induced by tumor necrosis factor-alpha enhances migration and inhibits apoptosis of hepatocellular carcinoma cell HepG2. Huang BP, Lin CS, Wang CJ, Kao SH. Int J Med Sci 14 284-293 (2017)
  95. Esculetin ameliorates hepatic fibrosis in high fat diet induced non-alcoholic fatty liver disease by regulation of FoxO1 mediated pathway. Pandey A, Raj P, Goru SK, Kadakol A, Malek V, Sharma N, Gaikwad AB. Pharmacol Rep 69 666-672 (2017)
  96. Dysregulation of 14-3-3 proteins in neurodegenerative diseases with Lewy body or Alzheimer pathology. McFerrin MB, Chi X, Cutter G, Yacoubian TA. Ann Clin Transl Neurol 4 466-477 (2017)
  97. Exploring the binding pathways of the 14-3-3ζ protein: Structural and free-energy profiles revealed by Hamiltonian replica exchange molecular dynamics with distancefield distance restraints. Nagy G, Oostenbrink C, Hritz J. PLoS ONE 12 e0180633 (2017)
  98. De Novo Mutations in YWHAG Cause Early-Onset Epilepsy. Guella I, McKenzie MB, Evans DM, Buerki SE, Toyota EB, Van Allen MI, Epilepsy Genomics Study, Suri M, Elmslie F, Deciphering Developmental Disorders Study, Simon MEH, van Gassen KLI, Héron D, Keren B, Nava C, Connolly MB, Demos M, Farrer MJ. Am. J. Hum. Genet. 101 300-310 (2017)
  99. Chimeric 14-3-3 proteins for unraveling interactions with intrinsically disordered partners. Sluchanko NN, Tugaeva KV, Greive SJ, Antson AA. Sci Rep 7 12014 (2017)