2bgf Citations

Various strategies of using residual dipolar couplings in NMR-driven protein docking: application to Lys48-linked di-ubiquitin and validation against 15N-relaxation data.

Proteins 60 367-81 (2005)
Cited: 52 times
EuropePMC logo PMID: 15937902

Abstract

When classical, Nuclear Overhauser Effect (NOE)-based approaches fail, it is possible, given high-resolution structures of the free molecules, to model the structure of a complex in solution based solely on chemical shift perturbation (CSP) data in combination with orientational restraints from residual dipolar couplings (RDCs) when available. RDCs can be incorporated into the docking following various strategies: as direct restraints and/or as intermolecular intervector projection angle restraints (Meiler et al., J Biomol NMR 2000;16:245-252). The advantage of the latter for docking is that they directly define the relative orientation of the molecules. A combined protocol in which RDCs are first introduced as intervector projection angle restraints and at a later stage as direct restraints is shown here to give the best performance. This approach, implemented in our information-driven docking approach HADDOCK (Dominguez et al., J Am Chem Soc 2003;125:1731-1737), is used to determine the solution structure of the Lys48-linked di-ubiquitin, for which chemical shift mapping, RDCs, and (15)N-relaxation data have been previously obtained (Varadan et al., J Mol Biol 2002;324:637-647). The resulting structures, derived from CSP and RDC data, are cross-validated using (15)N-relaxation data. The solution structure differs from the crystal structure by a 20 degrees rotation of the two ubiquitin units relative to each other.

Articles - 2bgf mentioned but not cited (9)

  1. Recovering a representative conformational ensemble from underdetermined macromolecular structural data. Berlin K, Castañeda CA, Schneidman-Duhovny D, Sali A, Nava-Tudela A, Fushman D. J. Am. Chem. Soc. 135 16595-16609 (2013)
  2. Structural analysis of a viral ovarian tumor domain protease from the Crimean-Congo hemorrhagic fever virus in complex with covalently bonded ubiquitin. Capodagli GC, McKercher MA, Baker EA, Masters EM, Brunzelle JS, Pegan SD. J. Virol. 85 3621-3630 (2011)
  3. Understanding the role of the Josephin domain in the PolyUb binding and cleavage properties of ataxin-3. Nicastro G, Todi SV, Karaca E, Bonvin AM, Paulson HL, Pastore A. PLoS ONE 5 e12430 (2010)
  4. A new crystal form of Lys48-linked diubiquitin. Trempe JF, Brown NR, Noble ME, Endicott JA. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 66 994-998 (2010)
  5. Structural assembly of molecular complexes based on residual dipolar couplings. Berlin K, O'Leary DP, Fushman D. J. Am. Chem. Soc. 132 8961-8972 (2010)
  6. Comparison of native and non-native ubiquitin oligomers reveals analogous structures and reactivities. Pham GH, Rana AS, Korkmaz EN, Trang VH, Cui Q, Strieter ER. Protein Sci. 25 456-471 (2016)
  7. Artificially Linked Ubiquitin Dimers Characterised Structurally and Dynamically by NMR Spectroscopy. Zhao X, Mißun M, Schneider T, Müller F, Lutz J, Scheffner M, Marx A, Kovermann M. Chembiochem 20 1772-1777 (2019)
  8. Enhancing NMR derived ensembles with kinetics on multiple timescales. Smith CA, Mazur A, Rout AK, Becker S, Lee D, de Groot BL, Griesinger C. J Biomol NMR 74 27-43 (2020)
  9. Towards a molecular basis of ubiquitin signaling: A dual-scale simulation study of ubiquitin dimers. Berg A, Kukharenko O, Scheffner M, Peter C. PLoS Comput. Biol. 14 e1006589 (2018)


Reviews citing this publication (9)

  1. Chemistry and biology of the ubiquitin signal. Spasser L, Brik A. Angew. Chem. Int. Ed. Engl. 51 6840-6862 (2012)
  2. NMR analysis of protein interactions. Bonvin AM, Boelens R, Kaptein R. Curr Opin Chem Biol 9 501-508 (2005)
  3. Integrative computational modeling of protein interactions. Rodrigues JP, Bonvin AM. FEBS J. 281 1988-2003 (2014)
  4. Enzymes of ubiquitination and deubiquitination. Neutzner M, Neutzner A. Essays Biochem. 52 37-50 (2012)
  5. Biomolecular NMR: a chaperone to drug discovery. Betz M, Saxena K, Schwalbe H. Curr Opin Chem Biol 10 219-225 (2006)
  6. Synergistic applications of MD and NMR for the study of biological systems. Fisette O, Lagüe P, Gagné S, Morin S. J. Biomed. Biotechnol. 2012 254208 (2012)
  7. Nuclear magnetic resonance analysis of protein-DNA interactions. Campagne S, Gervais V, Milon A. J R Soc Interface 8 1065-1078 (2011)
  8. Computational structure modeling for diverse categories of macromolecular interactions. Aderinwale T, Christoffer CW, Sarkar D, Alnabati E, Kihara D. Curr Opin Struct Biol 64 1-8 (2020)
  9. Modeling and Structure Determination of Homo-Oligomeric Proteins: An Overview of Challenges and Current Approaches. Gaber A, Pavšič M. Int J Mol Sci 22 9081 (2021)

Articles citing this publication (34)

  1. The HADDOCK web server for data-driven biomolecular docking. de Vries SJ, van Dijk M, Bonvin AM. Nat Protoc 5 883-897 (2010)
  2. HADDOCK versus HADDOCK: new features and performance of HADDOCK2.0 on the CAPRI targets. de Vries SJ, van Dijk AD, Krzeminski M, van Dijk M, Thureau A, Hsu V, Wassenaar T, Bonvin AM. Proteins 69 726-733 (2007)
  3. The HADDOCK2.2 Web Server: User-Friendly Integrative Modeling of Biomolecular Complexes. van Zundert GCP, Rodrigues JPGLM, Trellet M, Schmitz C, Kastritis PL, Karaca E, Melquiond ASJ, van Dijk M, de Vries SJ, Bonvin AMJJ. J. Mol. Biol. 428 720-725 (2016)
  4. Structural determinants for selective recognition of a Lys48-linked polyubiquitin chain by a UBA domain. Varadan R, Assfalg M, Raasi S, Pickart C, Fushman D. Mol. Cell 18 687-698 (2005)
  5. Crystal structure and solution NMR studies of Lys48-linked tetraubiquitin at neutral pH. Eddins MJ, Varadan R, Fushman D, Pickart CM, Wolberger C. J. Mol. Biol. 367 204-211 (2007)
  6. Affinity makes the difference: nonselective interaction of the UBA domain of Ubiquilin-1 with monomeric ubiquitin and polyubiquitin chains. Zhang D, Raasi S, Fushman D. J. Mol. Biol. 377 162-180 (2008)
  7. Building macromolecular assemblies by information-driven docking: introducing the HADDOCK multibody docking server. Karaca E, Melquiond AS, de Vries SJ, Kastritis PL, Bonvin AM. Mol. Cell Proteomics 9 1784-1794 (2010)
  8. A model of interdomain mobility in a multidomain protein. Ryabov YE, Fushman D. J. Am. Chem. Soc. 129 3315-3327 (2007)
  9. Interdomain mobility in di-ubiquitin revealed by NMR. Ryabov Y, Fushman D. Proteins 63 787-796 (2006)
  10. Binding site structure of one LRP-RAP complex: implications for a common ligand-receptor binding motif. Jensen GA, Andersen OM, Bonvin AM, Bjerrum-Bohr I, Etzerodt M, Thøgersen HC, O'Shea C, Poulsen FM, Kragelund BB. J. Mol. Biol. 362 700-716 (2006)
  11. An efficient protocol for NMR-spectroscopy-based structure determination of protein complexes in solution. Simon B, Madl T, Mackereth CD, Nilges M, Sattler M. Angew. Chem. Int. Ed. Engl. 49 1967-1970 (2010)
  12. Exploring the linkage dependence of polyubiquitin conformations using molecular modeling. Fushman D, Walker O. J. Mol. Biol. 395 803-814 (2010)
  13. Efficient chi-tensor determination and NH assignment of paramagnetic proteins. Schmitz C, John M, Park AY, Dixon NE, Otting G, Pintacuda G, Huber T. J. Biomol. NMR 35 79-87 (2006)
  14. NMR structure of a heterodimeric SAM:SAM complex: characterization and manipulation of EphA2 binding reveal new cellular functions of SHIP2. Lee HJ, Hota PK, Chugha P, Guo H, Miao H, Zhang L, Kim SJ, Stetzik L, Wang BC, Buck M. Structure 20 41-55 (2012)
  15. Structural assembly of multidomain proteins and protein complexes guided by the overall rotational diffusion tensor. Ryabov Y, Fushman D. J. Am. Chem. Soc. 129 7894-7902 (2007)
  16. Structural model of the TRPP2/PKD1 C-terminal coiled-coil complex produced by a combined computational and experimental approach. Zhu J, Yu Y, Ulbrich MH, Li MH, Isacoff EY, Honig B, Yang J. Proc. Natl. Acad. Sci. U.S.A. 108 10133-10138 (2011)
  17. Combining NMR relaxation with chemical shift perturbation data to drive protein-protein docking. van Dijk AD, Kaptein R, Boelens R, Bonvin AM. J. Biomol. NMR 34 237-244 (2006)
  18. NMR structural analysis of DNA recognition by a novel Myb1 DNA-binding domain in the protozoan parasite Trichomonas vaginalis. Lou YC, Wei SY, Rajasekaran M, Chou CC, Hsu HM, Tai JH, Chen C. Nucleic Acids Res. 37 2381-2394 (2009)
  19. Ubiquitination of the Dishevelled DIX domain blocks its head-to-tail polymerization. Madrzak J, Fiedler M, Johnson CM, Ewan R, Knebel A, Bienz M, Chin JW. Nat Commun 6 6718 (2015)
  20. Structural and biochemical studies of the open state of Lys48-linked diubiquitin. Lai MY, Zhang D, Laronde-Leblanc N, Fushman D. Biochim. Biophys. Acta 1823 2046-2056 (2012)
  21. Effects of cyclization on conformational dynamics and binding properties of Lys48-linked di-ubiquitin. Dickinson BC, Varadan R, Fushman D. Protein Sci. 16 369-378 (2007)
  22. Structure, dynamics, and kinetics of weak protein-protein complexes from NMR spin relaxation measurements of titrated solutions. Salmon L, Ortega Roldan JL, Lescop E, Licinio A, van Nuland N, Jensen MR, Blackledge M. Angew. Chem. Int. Ed. Engl. 50 3755-3759 (2011)
  23. Branching via K11 and K48 Bestows Ubiquitin Chains with a Unique Interdomain Interface and Enhanced Affinity for Proteasomal Subunit Rpn1. Boughton AJ, Krueger S, Fushman D. Structure 28 29-43.e6 (2020)
  24. Structural analysis of poly-SUMO chain recognition by the RNF4-SIMs domain. Kung CC, Naik MT, Wang SH, Shih HM, Chang CC, Lin LY, Chen CL, Ma C, Chang CF, Huang TH. Biochem. J. 462 53-65 (2014)
  25. The intrinsic mechanics of B-DNA in solution characterized by NMR. Imeddourene AB, Xu X, Zargarian L, Oguey C, Foloppe N, Mauffret O, Hartmann B. Nucleic Acids Res. 44 3432-3447 (2016)
  26. Predicted binding site information improves model ranking in protein docking using experimental and computer-generated target structures. Maheshwari S, Brylinski M. BMC Struct. Biol. 15 23 (2015)
  27. Sampling small-scale and large-scale conformational changes in proteins and molecular complexes. Yun MR, Mousseau N, Derreumaux P. J Chem Phys 126 105101 (2007)
  28. Cryo-EM Data Are Superior to Contact and Interface Information in Integrative Modeling. de Vries SJ, Chauvot de Beauchêne I, Schindler CE, Zacharias M. Biophys. J. 110 785-797 (2016)
  29. Insights into the DNA cleavage mechanism of human LINE-1 retrotransposon endonuclease. Repanas K, Fuentes G, Cohen SX, Bonvin AM, Perrakis A. Proteins 74 917-928 (2009)
  30. A novel recognition site for polyubiquitin and ubiquitin-like signals in an unexpected region of proteasomal subunit Rpn1. Boughton AJ, Liu L, Lavy T, Kleifeld O, Fushman D. J Biol Chem 297 101052 (2021)
  31. An Integrative Approach to Determine 3D Protein Structures Using Sparse Paramagnetic NMR Data and Physical Modeling. Gaalswyk K, Liu Z, Vogel HJ, MacCallum JL. Front Mol Biosci 8 676268 (2021)
  32. Diubiquitin-Based NMR Analysis: Interactions Between Lys6-Linked diUb and UBA Domain of UBXN1. Shahul Hameed D, van Tilburg GBA, Merkx R, Flierman D, Wienk H, El Oualid F, Hofmann K, Boelens R, Ovaa H. Front Chem 7 921 (2019)
  33. Mutational and Environmental Effects on the Dynamic Conformational Distributions of Lys48-Linked Ubiquitin Chains. Hiranyakorn M, Yagi-Utsumi M, Yanaka S, Ohtsuka N, Momiyama N, Satoh T, Kato K. Int J Mol Sci 24 6075 (2023)
  34. [Residual dipolar couplings and molecular dynamic calculations as a source for refinement of protein spatial structures]. Tishchenko EV, Sobol' AG, Krachkovskiĭ SA, Vasil'eva LI, Nol'de SB, Shul'ga AA, Kirpichnikov MP, Arsen'ev AS. Bioorg Khim 32 589-602 (2006)


Related citations provided by authors (1)

  1. Structural properties of polyubiquitin chains in solution.. Varadan R, Walker O, Pickart C, Fushman D J Mol Biol 324 637-47 (2002)